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For k an algebraically closed field, the canonical k-algebras have been
introduced and investigated in [R2]. A different approach for obtaining the
structure of the module category of a canonical algebra over an algebraically
closed field has been displayed by Geigle and Lenzing [GL] and it seems that
there may be further interest in this class of algebras. An extension of these
results to the case of an arbitrary base field had been announced in [R2]: “it
should be easy to outline the necessary changes both in the formulations and
the proofs”. Actually, the author became aware only recently of a reasonable
definition of canonical algebras in general, and the purpose of this note is to
give an outline of the theory. The general approach seems to be of interest also
in the special case when the base [ield is algebraically closed. The paper was
stimulated by penetrating questions of William Crawley-Boevey and the
author is strongly endebted to him for his remarks and encouragements. In
particular, he has contributed an appendix presenting a straightforward
definition of the canonical algebras which may be read without preknowledge
on the representation theory of tame bimodules.

The methods which will be used are tilting theory [HR] and tubular
extensions [ER]. The structure theory for the category of representations of
a tame bimodule [DR1], [R1] will be presupposed, the additional factorization
property for knowing to deal with a separating tubular family will be derived in
Section 6. We also show that any connected hereditary algebra with semidefi-
nite quadratic form has a preprojective tilting module whose endomorphism
ring is a canonical algebra. As a consequence, we obtain a new proof for the
classification of the indecomposable modules of a tame hereditary algebra as
presented in [DR1]. For unexplained notation, we refer to [R2].

This paper is in final form and no version of it will be submitted [or publication elsewhere.

[407]
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1. The definition

Let k be a (commutative) field. The algebras which we will consider will be
finite-dimensional k-algebras, we will assume that k operates centrally on any
given bimodule, and all modules will be assumed tc be finite-dimensional
over k.

Let F(a), F(b) be division algebras, and M = M, an I(«)-F(b)-bimodule

such that dimy,M-dimM,,, =4. The representation theory of these
bimodules (they may be called tame bimodules) is known (see [DR1], [R1]), we
recall the essential features. A representation of M is of the form
X =(X,, X, ¢y), where X  is an F(a)-space, X, an F(b)-space, and ¢y:
X, ®rwa M, X, 1s F(b)-linear; given two representations X, Y of M, a map f:
X =Y is of the form f = (f,, f,) where f,: X, — Y, is F(a)-linear, f,: X, - Y, is
F(b)-linear and ¢,(f,®1) = f,©,. Sometimes, it will be convenient to consider
a representation of M just as an F(b)-linear map X ®p, M- X,.
N3 is called the dimension vector of X. The linear map &: Z2 - Z, defined by
0(x,, x,) = 2x,—mx,, where m = dim p,M, will be called the defect (it is
a positive multiple of the one used in [DR1]). A representation X of M is said
to be simple regular provided its endomorphism ring is a division ring and
é(dim X) = 0. We denote by Q2 = (M) the set of isomorphism classes of simple
regular representations of M. '

The set  will be used as the basic index set for our considerations. An
element of 2 (or also a [ixed representative of an element of ) will be denoted
by a small Greek letter, like g. (Note that for k algebraically closed, there is
only one possible choice for M, namely M = k?, and in this case Q = Q(k?)
= P k) Let T: 2> N, be a function with T(g) = | for almost all g€ Q. We are
going to define the canonical algebra of type T (so it depends on the division
algebras F(a), F(b), the F(a)-F(b)-bimodule M and the function T).

Let g,, .... ¢, be the pairwise different elements of Q with n,:= T(g,) > L.
We consider g; as a representation of M, say as an F(b)-linear map g;:
U.@paM -V, Let D, be the endomorphism ring of the representation g;.
Then U, is a D;-F(a)-bimodule, V;is a D,-F(b)-bimodule, and ¢;: U, @ ;) M =V,
is D-F(b)-linear. Let ¢;": V;" > U,®p,M be the kernel of this map g,. Then
V.* is again a D-F(b)-bimodule, and ¢ is D-F(b)-linear. Since the map g, is
surjective, 9 determines uniquely (the isomorphism class) ¢,. Since U, is
a D-F(b)-bimodule, U¥:= Homp,(U;, F(a),,) is an F(a)-D-bimodule, and
we may consider the adjoint map ¢,: Uf®,,V;" = A of ¢;. The species
Y = (F(i), ,-Mj),-.j which we construct has underlymg quiver as shown in Fig. 1,
the division algebras are for i = a and i = b the given ones F(a) and F(b),
whereas F(i, ) = D;, and the bimodules are

My=M, aM(,-'l)zU,*, (i.n.-—l)Mb=V;'+’
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Fig. 1

and finally, 4 )M j+1). for 1 <j < n,—2, is the canonical D-D;-bimodule D,.
Let .7 be the tensor algebra of &. Let # be the ideal of .7 which is generated
by the elements of the form

URIRI®...®1®@r—g,(u®r  with ue U¥, veV*
(this 1s an element of
(alw(i.l)®(i.l)M(i,2)®---®(i.n,—2)1w(i.n,-—1)®(i,n.-—1)Mb)® M)

The canonical algebra of type T (over M) is, by definition, C = C(T) = .7 /4.

It will be convenient to simplify the presentation of C when this is possible.
Assume that for some s, the map g,;: UF ®@p,V," = M is surjective. In this case,
we may omit the arrow ¢ — b [rom the underlying quiver of & and change the
ideal to be factored out accordingly. (The new ideal will be generated by the
elements of the form

U1 .. ®1P®v-> 1, VI®... 1 ®v,

with ue U, ve V", all u e U}, v,eV,*, such that §(u®v) =Y, d.(u,®v,). In
particular, it will contain the elements Y, 4, ®1®...®1®u, with ) u,®v, in
the kernel of ¢.) More generally, assume that the image of 4, is a direct
summand of the F(a)-F(b)-bimodule M. Let M be a direct complement for the
image of g, in M. Then we may replace M by M and change Z corresponding-
ly. In case M is nonzero, the underlying quiver of & is still as displayed above.
Finally, it may happen that there are s, s’ such that M is the direct sum of the
images of g, and §.. In this case, we may again omit the arrow a—b and
convey the appropriate changes to %.

PROPOSITION. The opposite of a canonical algebra is a canonical algebra.

Proof. First, consider the case t =1, T(g,) = 2. Thus, we deal with the
representation ¢ = ¢,: U®g, M -V of A, with endomorphism ring D.

We will need various dual modules. Let *M = Homy, (M, g F(a)); this is
an F(b)-F(a)-bimodule. The kernel 0*: V' 5 U®puM of ¢ has adjoint
0V ®pm*M - U, and we denote its kernel by dp: U* -+ V" ®pp, *M.
Observe that @g is a D-F(a)-bimodule map. We apply Homy,(—, F(@)pq) to
the exact sequence

0->U" V" @pp *M LU -0,
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and use the fact that
Homp(V* ®ppy *M, F(a)pw) = Homeg,(V*, Homgg(*M, F(a)ry)))
= Homg,(V™, M),

since Homg,(*M, F(a)p,) is the F(a)-bidual of M. We obtain the exact
sequence

0— U*€SHompg,(V*, M) 225U ** 50

of F(a)-D-bimodules. The map ¢*: U* > Homg,(V*, M) has as adjoint map
just the map 9: U*@V*' - M.

Given a ring R, we denote by R°? its opposite ring. If we consider M as an
F(b)°P-F(a)°*-bimodule, we denote it by M°®. Let A be the tensor algebra of
Fa@Mrpy. Then A°® is the tensor algebra of M°P.

We want to rewrite (Pg)* as a representation of M. Let V**
= Homgw(V ¥, F(b)rwm); it is an F(b)-D-bimodule, and we have Homgq,(V ", M)
= M®fryV ™ * as F(a)-D-bimodules. Thus, we may consider (¥dg)* as a map

(Po)*: M®F(b)V+* —-U™*

of left F(a)-modules, thus as a representation of M°®. This map (Pg)* is an
F(a)-D-bimodule map; it follows that D is the endomorphism ring of (Pg)*
considered as a left 4-module (first, we only know that D is a subring of
D' = End ,((®g)*); however, we can reverse the construction and embed D’ into
the endomorphism ring of g). If we consider (Pg)* as a right 4°*-module, then
its endomorphism ring (now acting on the left) is D°®. A straightforward
calculation shows that together with ¢ also (®g)* has defect zero, thus (Pg)* is
a simple regular representation of M°P.

We are going to construct the canonical algebra C(T') over M°P, where T
Q(M°®)> N, is defined by T'((P0)*) = 2, and T'(s) = 1 for the remaining o.
Note that the kernel of (Po)* is

(Po)** =g*: U*>M®py V™™

In order to construct ((®g)*)}~ we have to form the F(b)-dual of V' **; but this is
the F(b)-bidual of V*, which may be identified with V*. Thus

(@o)*) =a: U*@V* > M.
It follows that C(T') is obtained from the tensor algebra of the species
D%

v+ {U*)°P

F(b)°P o Fla)°f



CANONICAL ALGTBRAS 411

by factoring out the ideal corresponding to the map
¢ (V)P ® pe(U¥)P - M7,

thus C(T') = C(T)°™.

This calculation obviously extends to the case of a general T. In case t = 1
and T(g,) = 3, we have to insert the trivial bimodules por(D°P)per. In case t = 2,
the ¢ paths can be treated separately, as above. We only have to observe that
nonisomorphic simple regular representations g, ¢’ of M lead to nonisomorphic
representations (®9)* and (®g')*. This completes the proof.

Remark. We may identify the F(b)-F(a)-bimodule *M = Homp,) (M., ruF(a))
with Hompg, (M, F(b)ps), in this way dealing with dual bimodules in the sense
of [DRI1] (for a proof, see [D], Lemma 0.2). But note that such an
identification is quite arbitrary. Having made such an identification, ¢ may be
considered as a representation ®o: UT®M — V¥ of M. This functor @ is the
Coxeter functor as considered in [DR1]. Also, we may identify U** with
Hom,(U*, k) and V** with Hom,(V ", k); in this way, ($g)* becomes the
usual k-dual of the A-module @p.

2. Examples

2.1. Let F(a) = F(b) =k, thus M =k? and let g,,..., o, be pairwise
different indecomposable representations of M with dimension vector (1, 1).
Choose numbers n,> 1, for 1 <i<t¢ and let T: 2> N, be defined by
T(g;) = n;, and T(g) = 1 for the remaining g€ 2. Note that we may identify
U¥ and V;* with the canonical bimodule &, and ¢,: U*®V - M is the
embedding of a one-dimensional subspace of k2, and the subspaces are pairwise
different, for the various i.

If t = 0, we deal with the Kronecker quiver itself. If ¢t = 1, we may replace
M by M = M/Image(g,), and we may identify M with the canonical bimodule
k. The canonical algebra which we obtain is the path algebra of the quiver of
Fig. 2. For ¢t > 2, we observe that M = Image(g,)®Image(d,), so we may

(1|1) v (1.’7—1'
a/ 1 \b
_/

Fig. 2

delete the arrow a—b. We obtain the path algebra of the quiver of Fig.
3 modulo a (t—2)-dimensional ideal which is a generic subspace of the vector
space of paths from a to b (in the sense of [R2], p. 161).

If k is algebraically closed, this case 2.1 is the only possible one, so the
notion of a canonical k-algebra coincides with the one considered in [R2].

2.2, Assume the (tame) bimodule M = g, Mpq, 15 not simple, say there
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(14— coe —{1,n-1)
/(2,1) (Z,nz--1)\
\”'”__. .. ——"(f,nf—ﬂ/

Fig. 3

a b

is given a proper nonzero F(a)-F(b)-submodule M’ It follows immediately
that dim p,,M = dim Mg, = 2, and dim g,,M’ = dim M¥,, = 1. The canonical
projection m,.: M —M/M may be considered as a representation m,,.
= (F(a), M/M', ny) of M, and its endomorphism ring is F(a). Note that the
corresponding map 7. is the inclusion map F(@)®pyM c M. Let T: 25N,
be the function with T(g) =1 for all ¢ # my, and T(ny) = 2. The canonical
algebra C(T) 1s obtained from the tensor algebra of the species of Fig. 4 by

Fla}——» s+« —Fla)

~

Fla) Flal

M
Fig. 4

factoring out the ideal given by the elements of the form I®1®...@1&®x—x
with xe M’. In case an arrow ¢ — ¢’ of the graph of a species is equipped with
F(¢) = F(c') = D and the canonical bimodule ,D,, we will usually omit the
bimodule and simply write D—D.

This algebra and its representations have been studied in [DR2]. If M is
indecomposable as a bimodule, the algebra C = C(T) has the remarkable
property that there exists a subalgebra C’' of C with C"@radC = C, whereas
rad2C is not a direct summand of rad C as a C’-C’-bimodule (thus k cannot be
perfect in this case). It should be remarked that choosing a nonzero element
me M’ yields an isomorphism 1: F(a)— F(b) via xm = mi(x). If we identify
in this way F(a) and F(b), say F(a) = F(b) = F, then M’ may be identified
with  F.

2.3. Before we proceed, let us insert the following (easy) result.

LEMMA. Let 9: U@ p@q M — V be a simple regular representation of M and
assume the image of ¢: U*@V ™ - M is a proper submodule M’ of M. Then

dim poM =dim My, =2, and ¢ is isomorphic to the representation
iy = (F(a)s M/M,a T[.M')'

It follows that in dealing with a canonical algebra C = C(T), we may
almost always delete the arrow ¢ — b from the presentation of C; the only
exception is the case when T(g) > 1 for at most one ¢, and this g is of the form
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(F(a), M/M', m), where M’ is a proper F(a)-F(b)-submodule of M and = is the
canonical projection.

Also, if ¢ is a simple regular representation with endomorphism ring D,
say ¢: U®pM —V, and dim, (U*® V") =dim, M, then g: U*®@,V" - M
1s bijective. Thus, if C = C(T) is the canonical algebra of type T and T(g) > 1.
then we may delete the arrow @ — b, and rewrite the relations. Actually, in this
case, the generating set for the ideal to be factored out becomes simpler.

2.4. We return to the case F(a) = F(b) = k, thus M = k®. But we assume
now that A is not algebraically closed. so that there exist simple regular
representations of M with dimension vector (d. d). where d > 1. Always,

0 1
a simple regular representation ¢ different from k3 k is of the form D 3 D,

1 x
where k¥ < D is a finite field extension with a primitive element x (and we
denote the multiplication by x on D again by x). In particular, D is
commutative, and is the endomorphism ring of ¢. So suppose d = dim, D > 1,
thus ¢ is not isomorphic to a representation of the form x,,.. The canonical
algebras C(T) with T(g) = 2 and T(¢’) = 1 for the remaining o' are given by the
species

k<Po,p o > pBBey

and the ideal of the tensor algebra to be factored out is (d—2)-dimensional.
over K.

2.5. Certain extensions G = F of division algebras of index 2 give rise to
bimodules ryMpy Wwith dim ppM = 2 = dim Mg,.

First, let G,, G, be division subalgebras of the division algebra F, with
dimg, F = 2 = dimg, F, and let p Mgy = ¢, Fg,. Let p: F,® g, Fg,— Fg, be
the multiplication map. Then u = (F¢,, Fg,, #) is a representation of M with
endomorphism ring F and d(dim u) = 0, thus p is simple regular. The canonical
algebra C(T) with T(u) = n = 2 and T(g) = 1 for ¢ # p is the tensor algebra of
the species

Fr #Ga
G,~——F—>F-..-F~—%(,

with n+1 vertices.

Assume now, in addition, that G; = G, = G. The bimodule ;F; has the
G-G-submodule ;Gg, thus we also may consider the simple regular represen-
tation mg = (Gg, (F/G)g, g} With A;: G®;G—F the inclusion map. The
canonical algebra C(T) with T(u) =2, T(ng) = 2, and T(g) =1 for the
remaining g € 2 is obtained from the tensor algebra of a species of the form
shown in Fig. 5 by factoring out the ideal given by the elements of the form
IRI®..WIPI-1R®..®I®g with geG (the first summand being an
element of the tensor product along the upper path, the second of the tensor
product along the lower path).

Next, let G be a division algebra which 1s embedded into two
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F—»F—> st ——p F

6FF Fe
\G . G/

Fig. 5

G G

division algebras F,. F, such that dim;F, =2 =dim;F,, and let Mg,
= ¢ (F )6 ® 6(F,)r,- The projection &2 M - M/G®; F, gives a simple regular
representation & = ((F,)r,, (M/G®¢ F,)r,, €). Note that the endomorphism
ring of ¢ i1s G and that

E: F,(F1)0®G(G®G F))r,-»M

is the identity map. The canonical algebra C(T) with T(¢) = n > 2 and T(g) = 1
for ¢ # ¢ 1s the tensor algebra of the species

F
Fl Fyl l)G—‘)G—)G—),.,—)GG(FZ)FZ F2

with n+1 vertices.

If we assume now, in addition, that F, = F, = F, then the bimodule
fMp = F;®  Fr has a proper nonzero F-F-submodule M', namely the
kernel of the multiplication map F®; F — F. The projection ny: FQcF =M
— M/M’' = F is just the multiplication map and we obtain a simple regular
representation my. = (Fg, Ff, my), with endomorphism ring F. The canonical
algebra C(T) with T(g) = 1 if and only if ¢ ¢ {e, m),} is obtained from the path
algebra of a species of the form shown in Fig. 6 by factoring out the ideal given

G——-b—n—---—-—-»G

F F

o sFr
\F . o F/

Fig. 6

by the elements of the form f®1®.. XIPI-1I®IP.. VIR f—f®I®...
.. ®1I®1, with fefF, where the first two summands belong to the tensor
product along the upper path, the third to the tensor product along the lower
path.

2.6. Consider now a bimodule g, Mgy with dim g )M = 4, dim Mg, = 1.
Thus, we may consider F(a) as a division subalgebra of F(b), and identify
M with the canonical bimodule f,)F(b)rs. Assume that there exists an
intermediate division algebra F(a) = D < F(b) with dimg,D = 2, thus also
dim,, F(b) = 2. The multiplication map p: Dg,)® po)F (b) — F(D) gives a simple
regular representation u = (Dpw), F(b)rw), #) of M with endomorphism ring D.
The canonical algebras C(T) with T(u) = n > 2 and T(g) = 1 for g # p are just
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the tensor algebras of the species
F(a)™=22.p — . — DRI, [(p)
with n+1 vertices.
277. Let R be a hereditary k-algebra. Then
{dim X, dim Y) = dim, Hom(X, Y)—dim, Ext!(X, Y)

defines a bilinear form on the Grothendieck group K, (R). We denote by 7, the
corresponding quadratic form, thus yg(x) = (x, x).

PROPOSITION. Let R be a connected hereditary k-algebra with yp semidefi-
nite (but not definite). Then there exists a preprojectve tilting module Ty such that
End(Ty) is a canonical algebra.

The proof uses the classification of these algebras (see [DR1] and [DR2]).
In case R is of type A, B, C, or BC, the basic algebra for R is already
a canonical algebra, as we have seen above. Note that this includes the
exceptional case treated in [DR2]. In case R is of type D,, E,, E,, or E,,
a preprojective tilting module is constructed as in the special case of k being
algebraically closed (see [R2], 4.3.4).

For the remaining cases, we indicate in Fig. 7 the position of the
indecomposable direct summands in the preprojective component of R.

First we deal with the four cases which involve an extension G — F of
division algebras of index 2. In the case BT),,, we obtain the canonical algebra
C(T) over ;Fs® cFy with T(¢) = n—1, T(ny) = 2 (and T(g) = 1 otherwise).

: éVDnr é\l’)n
{here, n=7)
(a,b)
(a,b) Fu, Fi

(a.b) (a,b) alb,a)
ab=3

Fig. 7
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For CND". we obtain the canonical algebra C(T) over F, with T(y) =n—1,
T(r,,) = 2. For Fy,. we obtain C(Tyover . F with T = 2. T(r,) = 3. Finally,
for F,,, we obtain C{T) over F,® ;F, with T(t) =2, T(ny) = 3.

Second, assume G < F 1s an extension ol division algebras of index
3 which is involved in G., or G,.. These cases are slightly more technical since
one has to use dual bimodules {(see [DR1], § 2), so we only indicate the result.
Always, we obtain a canonical algebra C(T) with T(g) # | for precisely one
o (and = 2 for this g). Both the bimodule M and the representation ¢ to be
used may be read off from the corresponding tables in [DR1].

3. The module category of a canonical algebra

Let pyMp) be a tame bimodule, Q = Q(M) the set of isomorphism classes of
simple regular representations of M, and C(T) the canonical algebra of type T:
Q—N, over M.

The tensor algebra of p,Mpe will be denoted by A, and j*:
mod C —» mod 4 denotes the restriction functor. We denote by ¢{a) and ¢(b) the
idempotents of C corresponding to the vertices ¢ and b. respectively. and
¢ = c(a)+e(b). Note that e(a)Ce(b) is canonically 1somorphic to ;M ps, (due
to the choice of the ideal #), thus we can identify 4 with eCe, and
i*= —®Ce = Hom(¢C, —). The defect ¢ on K,(4) gives rise via j* to
a corresponding function K, (C)—Z which again will be denoted by ¢ and
called the defect; thus, for a C-module X, we have ¢(dim X) = ¢(dim j* X)
= 2dim X, —m-dim X, (where X, = Xe(i} and m = dim p,,M).

We denote by #, 7, and 2 the module classes given by the indecom-
posable C-modules X, satisfying J(dim X)) < 0. =0, or > 0. respectively.

THEOREM 1. The category & is abelian (with exact inclusion functor), it is
a stable tubular Q-family of type T, and 7 separates P from 2.

That 7 separates # from 2 means the following: first of all,
Hom(2,#) = Hom(2. ) = Hom(J , #) = 0, and, second, given a map from
# to 2 and any g€ £, this map can be factored through the tube in 7 with
index p.

CorOLLARY. Let X be an indecomposable C-module. Then

(a) X belongs to 2 if and only if j* X is a nonzero preprojective A-module.
(b) X belongs to T if and only if j*X is a regular A-module.
(€) X belongs to 2 if and only if j*X is a nonzero preinjective A-module.

Before we show how to derive the corollary, let us introduce some
notation. Let 2 be the class of all C-modules X with * X = 0. Of course,
Z =9 and obwviously there are only finitely many isomorphism classes of
indecomposabie modules in Z (any such module lives on a unique path from
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2
C-modules which live on the path with first index i; they form a wing, see the
shaded region in the tube displayed in Fig. 8).

The left adjoint of j* will be denoted by j,, the right adjoint by j,.

n, . . .
a to b, and there are [' :| isomorphism classes of indecomposable

Proof of the corollary. Let X be in 2, and Y an indecomposable
A-module which is preprojective or regular. Since j*j, = id, the C-module
J1Y is indecomposable and belongs to 2 v 7. Thus 0= Hom.(; Y, X)
=~ Hom (Y, j*X). This shows that j*X is preprojective. If j*X were zero,
X would belong to & < 7, a contradiction. This finishes the proof of (a).
Similar arguments, using also the right adjoint j, of j* (and j*j, = id), give the
remaining two assertions.

There is a natural transformation n: j,—j, with j*(ny) the identity map
Y =j*,Y—j*j, Y =Y where Y is an A-module. Given g e 2 (considered as an
A-module), we denote by E(g) the image of the map n,.

THEOREM 2. The simple objects in I are, first, the simple C-modules which
belong to Z, and, second, the C-modules of the form E(g) with o€ Q. Any tube in
g contains precisely one module of the form E(g), and we denote this tube by
T (@). The rank of 7 (¢) is T(g). Thus, if T(¢) = 1, then E(p) is the only module
on the mouth of 7 (g). For T(g;}) = n; = 2, the mouth of the tube consists of the
module E(g;) and the E(i, j) with 1 <j < n;— 1, and we have tE(i, j)= E(i, j+ 1)
for 0 <j < n,—1, where by definition E(i, 0) = E(g) = E(i, n)).

It follows that the tube 7 (g,) looks as shown in Fig. 8. The shaded part
consists of the modules in 7 (p,) which belong to Z.

Eleg;) Eli,n; —1] E(/,2) Eli1] Elg;)

Fig. 8

4. The squid corresponding to a canonical algebra

As before, A denotes the tensor algebra of the bimodule g,Mgs, and
2;, ..., 0, are the pairwise different elements of Q@ with n, = T(g;) = 2. We
consider g; as an A-module and denote by D; the endomorphism ring of g,.

27 — Banach Center t. 26, cz. |
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Consider the star T, , with the orientation so that the center z is the
unique sink (see Fig. 9). We endow the vertices (i, j) with the division algebra
D, the vertex z with A; the arrow (i, n,—1)— z with the bimodule ,{¢,),, and
the arrows of the form (i, j)— (i, j+ 1) (where 1 < j < n,—2) with the canonical

(1,1 — oo —= {1, ny=1)
(2,1) —= oo —=(2,0,— 1)

N,
/

(£ ) — s s (t,n,—1)

Fig. 9

bimodule , (D,)p,. The tensor algebra obtained from these data will be denoted
by B = B(T).

We can apply the theory of tubular extensions as presented in [ER] (see
also the account in [R2] for the special case of k being algebraically closed).
The algebra B is a tubular extension of A, thus the structure of mod B is
known: The preprojective A-modules form a component 2(B) of mod B. There
is a tubular Q-family 7 (B) obtained from the tubular Q-family in mod 4 by
inserting into the tube with index g, precisely n,— 1 rays, for 1 <i < t. Any of
these inserted rays starts with an indecomposable projective B-module. An
indecomposable B-module belongs to 7 (B) if and only if its restriction to
A has zero defect and is nonzero (and even indecomposable). We denote by
2(B) the module class given by the indecomposable B-modules whose
restriction to A is preinjective and nonzero. And 2 (B) denotes the class of all
B-modules with zero restriction to 4. There are only finitely many indecom-
posable B-modules which belong to Z'(B) (and they form wings). The
indecomposable injective B-module Qg(i, j), 1 <j < n,—1, corresponding to
the vertex (i, j) belongs to 2°(B), the remaining ones, Q4(a) and Qg(b), belong to
2(B). The module class 7 (B) separates #(B) [rom 2(B) v Z(B). Also, Z(B) is
the torsion class, and Z(B) v 7 (B) v 2(B) the torsion-free class of a spht
torsion pair.

We are going to construct a cotilting B-module with endomorphism ring
C = C(T). We denote by Q,(i, j), Qy(¢), Qg(b) the indecomposable injective
B-modules corresponding to the vertex (i, j), a, and b, respectively. Let B, be
obtained from B by deleting the vertex b. Since b is a sink, the injective
By-modules are injective as B-modules. Observe that B is a hereditary algebra,
thus it has a preinjective component and this component contains all Q,(i, )
and Qg(a). The slice inside this component with Q,(«) as only sink contains
besides Qp(a) the modules " /Qg(i,j), with 1 <i<t and | <j<n—1
The direct sum of these modules is a cotilting module for B,, thus a partial
cotilting module for B. Observe that r""’j_‘QB('i,j) belongs to % (B), thus
Hom(t" /71 Qpl(i, j), Qg(b)) =0, therefore Ext!(Qgz(h), " 7Qp(i, /) = 0. It
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follows that

SB = QB(a)('B(@ T'”_jQB(i’j))('BQB(b)
i,j

is a cotilting module for B.
LemMa 1. End(S,) = C(T).

Proof. We consider first the case ¢t =1, T(0,) =2. Thus, let g =g,:
U® p@yM — V, with endomorphism ring D. In this case Sy = Qg(a)DtQg(1, 1)
@Qp(b). The homomorphism sets between the indecomposable projective
B-modules are

Hom(Q(b), Q(@) = M, Hom(Q(a), (1, 1)) = U,
Hom(Q(b), Q(1, 1)) = V

(where we have dropped the reference to B), and the composition of maps

Hom(Q(a), Q(1, 1))®Hom(Q(b), Q(a))—~ Hom(Q(h), O(1, 1))

is just the map g. The sink map for Q(l,1) is the evaluation map
U®r@ Qa) = Q(1, 1), thus tQ(1, 1) is defined by the following exact sequence:

0—-70(1, ) > U®Fq Q@—0(1, 1)~0.

This is a sequence of D-B-bimodules, in particular End(zQ(1, 1)) = D. Applying
Hom(—, Q(a)) to this sequence, we obtain the exact sequence
0—Hom(Q(1, 1), Q(a)) » Hom(U ® s, Q(a), Q(a)) » Hom(zQ(1, 1), Q(a)) > 0;
here, Hom(Q(1, 1), Q(a)) = 0, and Hom(U®pF,, Q(a), Q(a)) = U*. Also, ap-
plying Hom(Q(b), —) to the sequence, we obtain

0 —Hom(Q(b), 1Q(1, 1))=Hom(Q(b), U®Q(a))£>Hom(Q(b), (1, 1))-0;

this is an exact sequence, since we have started with an Auslander-Reiten
sequence and Q(b) is not isomorphic to Q(1, 1). Now, £ is just the map g:
UM -V, thus we can identify o with ¢*: V" >U®M. In particular,
Hom(Q(b), tQ(1, 1)) = V'*. It [ollows easily that the composition

Hom(zQ(1, 1), Q(a)) ® , Hom(Q(b), tQ(1, 1))- Hom(Q(b), Q(a))

is just g: U*®V ' — M, thus End(Sp) = C(T), in this case. It is straightforward
that the same calculation can also be used in the general case: In case t = 1,
and T(g,) = n > 3, we arrange the indecomposable direct summands of Sy as
follows:

Q(a)’ T"“_1Q(11 1), LR TIQ(la n_l)v Q(b)a

and obtain the presentation of C(T) introduced in Section 1. In case t > 2, we
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observe that the t branches of B give ¢ paths between g and b which can be
handled separately. This finishes the proof of the lemma.

Since we prefer tilting modules to cotilting modules, we deal with the dual
situation: There is given a tubular coextension B’ of the tensor algebra A’ of
a tame bimodule, and the category mod B’ is partitioned as follows: Z°(B') is the
class of modules with restriction to A’ zero, (B’) is the module class given by
the indecomposable B’-modules with restriction to A’ nonzero preprojective,
and #(B’) is the module class given by the indecomposable B'-modules with
restriction to A’ nonzero regular or nonzero preinjective. The projective
B’-modules belong to #(B’), the injective B'-modules to #(B’). In fact, the
restriction of Q. (i, j) to A" is simple regular. There are two torsion pairs: in one
case, (B’) v #(B’) are the torsion modules, and Z'(B’) the torsion-free ones, in
the other case, #(B’) are the torsion modules, and Z(B') v #(B’) the tor-
sion-free ones. The vertices of B’ are labelled as shown in Fig. 10 (the arrows

1) =1, m 1)

(21})—vce —»(2,n-1)

A\

(t,1)—=re—={t,n,~1)

Fig. 10

being endowed with appropriate bimodules: a—b with a tame bimodule,
(i, ))—>(, j+1) with a bimodule of the form ,D,, and so on).
The tilting module which we consider is

Ty = PB'(Q)@(G') T—ni+jPB'(i3j))®PB’(b):
LJ
and, as we know, its endomorphism ring s the opposite of a canonical algebra,
thus a canonical algebra. Now, any canonical algebra arises in this way, thus
we may assume that End(7;) = C(T) = C. Note that we can identify 4’ with
A = End(Pg (a)@® Py (b)). For mod C we will use the notation introduced in
Section 3.

Let ¥ = Homg(.Ty., —), and 2’ = Exth (- T, —). Observe that j*% is
just the restriction functor mod B’ — mod 4. On the other hand, j* 2’ = 0, since
Extp (Pp(a), —) = Exty.(Pg(b), —) = O, thus the image of X’ is contained in Z.
Actually, the image of 2’ is all of &; namely, the construction of Ty shows that
F (Ty) = Z(B), and the number of indecomposables in & (B’) and in £ is the
same. This shows that 2'(Tp) = &.

LEMMA 2. If Z is indecomposable in &, the A-module j*tZ is simple regular
or zero.

Proof. The Auslander-Reiten sequences in %' (B’) are carried under X' to
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Auslander—Reiten sequences in 2°(B), and the connecting lemma asserts that
X' Py(i, J) = Qg (i, j). If Z 1s indecomposable in & and not isomorphic to
any X' Py (i, j), then tZ e Z, thus j*1Z = 0, whereas j* 12’ Pg.(i, j) = j*ZQp (i, j)
is simple regular.

By duality, we also have the dual assertion:

LEMMA 2*. If Z is indecomposable in &, the A-module j*t1~ Z is simple
regular or zero.

LEMMA 3. Hom(J v 2, #) =0, and & is closed under t and t~.

Proof. We have 9(Ty) = #(B) v #(B’). Let #' be the image of #(B)
under X, and #' the image of #(B’) under X. Since X: 9(Ty) > % (Tp) is an
equivalence, we have % (Ty) = 2 v #', and Hom(%#', #') = 0. We claim that
Ext!(#, Z(B)) =0. For, given Z in %, there is an exact sequence
0-X-+17Z-Y-0, with XeZ(1Ty) =%, and Ye%(Ty). Application of the
exact functor j* shows that j*t~Z =~ j*Y. According to Lemma 2*, the A-mo-
dule j*Y1s regular. On the other hand, Y = Y,®Y, with Y, €% and Y,e %"
If Y, is nonzero, then j*Y, is a nonzero preprojective A-module. Thus,
FY=j*Y, ®j*Y, shows that Y, =0, therefore Ye®'. Let P’e#. Then
Hom(X, P')=0, since X% (Ty) and P'e%(Ty), and Hom(Y, P') = 0, since
Ye® and P’e#. It follows that Hom(z~ Z, P’) = 0, thus Ext!(P’, Z)=0.

As a consequence, mod C = & (TB:)_L@(TB') =Pv ﬂjl_.@’. For P’ indecom-
posable in &, the A-module j* P’ is nonzero preprojective, thus d(dim P') < 0,
therefore #' < 2. The modules in ﬂﬂ._éi” have nonnegative defect, since they are
extensions of a module in & by a module in %’ (the class of such extensions is
closed under direct summands) and the modules in 2 have zero defect, those in
A’ have nonnegative defect. This shows that ﬂ"[g?’ cJ v 2 Since modC
=P v 3?|_9?’, it follows that 2’ = 2 and ff‘._%’ =97 v 2. Since Hom(Z', #')
=0, Hom(#', #) = 0, we see that Hom(Z v 2, #) = Hom(Z|#', #) = 0.

It remains to show that £ is closed under t and 7~. Let P be
indecomposable in #. If X is an indecomposable C-module with
Hom(X, P) # 0, then X belongs to 2, since Hom(J v 2, #) = 0. Thus P is
in 2. Consider now t~ P. There is an exact sequence 0 - X -1~ P— Y— 0 with
XeZ(Ty) = Z, and Y e % (Ty). Note that P is not relative injective in % (Tg),
since the indecomposable relative injective modules in % (7}.) are the images of
the indecomposable injective B’-modules under X, and therefore belong to #'.
According to Hoshino [H], we know that Y is indecomposable and is the
relative " -translate of P in % (Ty/). Since 2(B') is closed under 1~ in mod B, it
follows that Y belongs to #’. Now Ext!(#”, &) = 0 shows that X = 0, thus
1" P=Ye%. This completes the proof.

LEmMMa 3* Hom(2, @ v 9 ) =0, and 2 is closed under © and t~.

COROLLARY 1. & is closed under t and ©~.
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Proof. Let T be indecomposable in 9. Then tT belongs to # v 7, since
Hom(2, ) = 0. But £ is closed under 7~, thus T belongs to . Similarly,
7~ T belongs to 7.

COROLLARY 2. If X belongs to # v , then proj.dim X < 1. If X belongs
to 7 v 2, then inj.dimX < 1.

Proof. Lext X bein Z v . Any injective module Q belongs to 2, whereas
X belongs to v 7, thus Hom(@, 1X) = 0. Similarly, for YeJ v 2, and
P projective, Hom(z~ Y, P) = 0.

COROLLARY 3. Ext} (2, 7 v 2)=0, Ext'(Zv T, 2)=0.

Proof. Let Pe?, XeJ v 2. Then Hom(X, tP) = 0, thus Ext!(P, X) = 0.
Similarly, one shows the second assertion.

COROLLARY 4. For Pe %, the canonical map jj* P — P is injective. For
Qe 2, the canonical map Q —j,j*Q is surjective.

Proof. Let Pe 2. The kernel of B: jj* P — P belongs to 2, since j*(f) is an
isomorphism and j* is exact. On the other hand, j,j* P belongs to £, since j*P
is a preprojective A-module. This shows that the kernel of § is zero. Similarly,
one obtains the second assertion.

Remark 1. The name “squid” has been borrowed from Brenner—Butler
{BB] where they consider some algebras of the form B(T), or, more precisely,
the corresponding opposite algebras.

Remark 2. The reader may have wondered why we have started with the
algebras B(T) in order to find a cotilting module with endomorphism ring
C(T), and later switched to the dual situation. Whereas the notion of
a canonical algebra is fully left-right-symmetric, the presentation which we use
is not. The algebra B’ which tilts to C(T) may be best described as a tubular
coextension of 4 by the modules ®g,,..., g,, where & is a Coxeter
transformation for mod A4 constructed by means of some chosen dual bimodule
(see the remark at the end of Section 1)

5. The structure of I

As usual, it follows from the definition of #, 7, 2 and from Hom(2, 7
v#)=0=Hom(2v 7, #) that 7 is an abelian category:

LEMMA 1. 7 is closed under kernels, images, cokernels and extensions. In
particular, it is an abelian subcategory with exact inclusion functor. Thus, it is
a length category with no nonzero projective or injective object.

Proof. If X is a C-module, we write 0X instead of d(dim X). If T belongs
to.#,and T  is a submodule of T, then T belongs to Z if and only if 6T = 0.



CANONICAL ALGEBRAS 423

For, T' belongs to .2 v .7, thus ¢T" = 0 implies that any indecomposable direct
summand T" of T’ satisfies ¢T” = 0. Let T,, T, be in . If f: T, - T, is a map,
say with kernel T{ and image T,, then /T) <0, 0T, <0, and 0= 2T,
= 0Ty +¢T; shows that ¢Ty =0, ¢T; =0, thus T], T;e.7. Similarly, also the
cokernel of f belongs to 7.

Let 0T, 5T —>T,—0 be an extension, and T” an indecomposable
direct summand of T". If T' is neither isomorphic to a direct summand of T,
nor to one of T,, then there is an indecomposable direct summand 7y of T, and
an indecomposable direct summand T, of T, with Hom(Tj, T') # 0 and
Hom(T’, T) # 0, thus T"e 7. This shows that 7 is closed under extensions.
Let T be indecomposable in 7. Then tT and 7~ T belong to 7. In particular,
the Auslander-Reiten sequence ending with T belongs to .7, thus T cannot be
projective in 7, and the Auslander—Reiten sequence starting with 7 belongs to
g, thus T 1s not injective in 7.

LEMMA 2. The Auslander—Reiten translation 1 on J is a self-equivalence.

Proof. Let Te 7. Since proj.dim T < 1, it follows that tT = Hom, (Ext¢(Tg,
C¢), k). Thus the restriction of z to .7 is an equivalence from 7 to 7.

LLEMMA 3. Let .of be a length category with Auslander—Reiten sequences and
without nonzero projective or injective objects. Assume there is a self-equivalence of
o/ which gives the Auslander—Reiten translation. Then ./ is a serial category of
global dimension 1, its Auslander—Reiten components are quotients of ZA , , and an
indecomposable object belongs to the boundary of a component if and only if it is
simple.

Proof. Let E be simple in /. Since 7 is a self-equivalence, also tE is simple.
Let 0 »1E — X — E—0 be an Auslander—Reiten sequence. Then X is of length 2,
thus indecomposable, thus E and tE belong to the boundary of the correspon-
ding component. If E' is simple with Ext!(E, E') # 0, then clearly E' = tE.
Also Ext'(E, tE) is one-dimensional both as an End(E)-space and as an
End(tE)-space. This shows that ./ is serial. Since there are no nonzero projective
objects in o, there exist indecomposable objects of arbitrary length with E as
top composition factor, and since there are no nonzero injective objects in .o/,
there exist indecomposable objects of arbitrary length with E being the socle. It
follows that the Auslander—Reiten components are quotients of ZA | with the
boundary consisting of simple objects.

LeMMA 4. The simple objects in  are, first, the simple C-modules which
belong to &, and, second, the C-modules of the form E(g), with peQ.

Proof. Let T be simple in 7. If Te Z, then T is a simple C-module, since
Z 1s closed under subquotients. Thus, assume T does not belong to 2. Consider
the adjunction map «: T —j j*T It is a nonzero map, and j,j*T is in , thus
o is a monomorphism (since T is simple in 7). Let Z be the cokernel of «. Since
j¥a is the identity of j* 7T, and j* is exact, we see that Ze Z. In particular,
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Hom(T, Z) =0, since T is simple in 4 and not in . Let ¢ be an
endomorphism of j* T. The endomorphism j_ ¢ of j, j* T induces an endomor-
phism ¢’ of T, with a@’ = (j,@)a. If ¢’ =0, then j, ¢ factorizes through Z,
but Hom(Z, j,j*T) = Hom(j*Z, j*T) = 0, thus j, ¢ = 0. Note that End(j, T)
= End(j, j*T), since j, is a full embedding. We have shown that this ring
embeds into End(T) via the restriction along a. It follows that together with
End(T), also End(j*T) is a division ring, thus j*T is a simple regular A-module.
We denote j* T by ¢, and we recall that a: T —j_ e is a monomorphism, with j*a
the identity map.

Similarly, the adjunction map f: ji¢ =jj*T — T is an epimorphism, with
j*B the identity map of ¢. The composition of a and B is just 7,. therefore
T = E(g).

Conversely, we have to show that given ¢'e€Q, the C-module E(g’) is
a simple object of 7. Let T be a simple subobject of E(g’) in Z. Since
Hom ,(j* T, ¢') = Hom(T, j, 0"} # 0, it follows that T does not belong to Z.
By previous considerations, there is ge Q2 with T = E(g), and j*T = p. But
Hom ,(g, ¢') # 0 shows that ¢ and ¢ are isomorphic, thus E(g’) is simple in .

Proof of Theorem 2. According to Lemmas 1 and 2, we can apply Lemma
3 to 7. We denote by 7 (g) the Auslander—Reiten component of 7 (or, what is
the same, of mod C) which contains E(g). According to Lemma 3, we know that
J (o) is a quotient of ZA _, and that E(g) belongs to the boundary of 7 (g).

The indecomposable object of 7 of Z -length n and with 7 -top T will be
denoted by [n] T: these modules form the coray ending with 7. Similarly, in
A-mod, we consider a nonsplit exact sequence 0—»9—[2]Jo—0—0 where
ee Q. If we apply the right exact functor j,, we obtain an exact sequence
0—=Z-ji0—j([2]e) =)0 —0, with Ze Z, since j* is exact and j*j, is the iden-
tity. Together with [2]¢ also j([2]e) is indecomposable. Since j,¢ maps onto
E(g), we see that both j,¢ and j,([2]¢) belong to the coray ending with E(g}. If
jie = E(g), then j,o is simple and not in %, thus Z = 0, therefore j,([2] o) is of
J -length 2, thus j([2]e) = [2](E(0)}, and its Z-socle is E(g). Thus
1E(g) = E(9), and 4 () is a stable tube of rank 1.

Consider now the modules E(i, j), 1 <j < n,—1. We fix some i. An easy
calculation using a projective presentation of E(i, j) for 1 <j < n,—2 shows
that for these j, we have t1E(i, j) = E(i, j+ 1). Since E(i, 1) is injective in &, we
see that 1~ E(i, 1) cannot belong to &, thus 7~ E(i, 1) = E(p) for some g€ Q.
Similarly, tE(i, n,—1) = E(¢') for some ¢'€Q. Let jo = [n](E(g)). Since the
kernel of the canonical epimorphism j,¢ — E(¢) belongs to &, we see that
n < n;. Now, j,([2] ¢) 1s indecomposable of 7 -length at most 2n, and it has the
following composition factors in .7, starting from the top: first, E(g), then n—1
factors in &, then again E(g), and finally some in Z. But this is possible only in
case n=n; and E(g") = E(g). This shows that Z (g) is a tube of rank n,
containing on the mouth the modules E(g), and E(i, j) with 1 <j<n,—1. In
order to show that ¢ = g;,, we show that E(i, —1) embeds into jg,, so that
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the indecomposable module j,g;, and therefore also its 7 -top E(g,), belong
to 7 (p).

We may assume i = 1, n, = 2, and even T(o) = 1 for ¢ # ¢,. Thus, we deal
with ¢ = 9,1 U®p, M -V, with endomorphism ring D. The kernel of g is
denoted by ¢*: V" >U®p,yM, and we have the adjoint map g:
U*®p,V* - M. We consider representations of the species

Fla) F(b)

M

say (Xp(a), YD’ ZF(b); X®F(a) U* —’D, Y®D V+ —>Z, X®F(u) M—’Z), which sat-
isfy the commutativity condition

XQU*@VT->YRV”

197 !
XM - Z

Now, ji¢ = (U, URraUs, Vrws lvews ¢(1®0), ¢), and we obtain an
embedding of E(1,1)=(0, Dy, 0;0,0,0) into jg as follows: Since U*
= Homp)(Urw)s F(@)r), We can identify U® p,, U* with End(Up,) via u®a
—(u' > ua(w)), for u, u'e U, ae U*, and we denote by e = Y 4,®%;€ U U*
the element which corresponds to the identity endomorphism. We consider
the right D-submodule eD of U®U* generated by e (which is actually
a D-D-submodule of UR®U*). We claim that eD®,V™ is mapped under
0(1®g) to zero, thus we obtain in this way a subobject of j,¢ isomorphic
to E(1, 1). But the composition |

V* =eD®, V' s UQU*QV 2LUQM

is precisely ¢*: V* - U®M, and go* = 0, by definition of ¢*. This completes
the proof of Theorem 2.

The component of mod 4 which contains ¢ will be denoted by Z,(p).

PROPOSITION. If X is a preprojective A-module, both j X and j X belong
to 2. If XeT,(¢) for some o€, both j,X and j X belong to T (p). If X is
a preinjective A-module, both j)X and j, X belong to 2.

Proof. We may assume that X is indecomposable, thus also j, X and j X
are indecomposable. Since j*j, X = X = j*j X, it follows that for X preprojec-
tive or preinjective, j X and j, X are both in 2, or 2, respectively. So assume
XeJ,(0); then j,X and j, X are in .7 . There is a nonzero map X — ¢ = j*E(p)
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in mod A, so since j, is left adjoint to j*, there is a nonzero map j, X — E(g).
However, this means that j, X has E(g) as its J -top. Similarly, there is
a nonzero map j* E(g) = ¢ — X, thus a nonzero map E{g) —j, X, thus E(g} is
the 7 -socle of j, X. It follows that j X and j X belong to J (o).

6. The factorization property

We want to show that any map f: P— Q with Pe 2 and Q € 2 can be factored
through 4 module T which belongs to a prescribed tube 7 (g). First, we deal
with the case of A itself.

LEMMA 1. Let P be a preprojective A-module, Q a preinjective A-module,
and 0 € Q. Given any map [ P— Q, there exists a module T in .7,(0) such that
J can be factored through T.

Proof. By induction on the length of P, we show that P can be embedded
into a module belonging to 7 ,(g). Assume P # 0. There exists a nonzero map
u: P — ¢ (namely, some 17" P, with P, indecomposable projective, and t > 0, is
a direct summand of P, and 0 # Hom(P,, t'¢) = Hom(z ‘P, ¢)). Let P’ be
the kernel of ¢. By induction, there is u’: P"—> T with T'e.7 ,(¢). We form the
induced exact sequence

O—-P ->P->P/P->0

wlo Ll
0-T Y- P/P->0.

If u is surjective, P/P' =9 i1s in .7, (o), thus Y 1s in 7,(¢) and P—Y 1is the
desired embedding. Otherwise, P/P’ is a proper submodule of g, thus
preprojective, and therefore the induced exact sequence splits. But this means
that Y = T'@P/P’ is a submodule of T"®p, and T'P¢ belongs to .7, (¢}, so we
take the embedding P— Y- T'®o.

So consider now a map f: P— Q. Without loss of generality, we can
assume that Q is indecomposable. First, assume that Q is injective. Take an
embedding P— T with Te.7,(0). Since Q is injective. f can be extended to T,
thus we obtain a factorization of f through T If @ is indecomposable but not
injective, Q = t7°Q,, for some indecomposable injective module @, and some
s 20. Then t°f: P —Q, can be factored through some T,€.7,(¢), thus
J factors through t7*T, = T,. This completes the proof.

We now consider C-modules, where C = C(T) is a canonical algebra. In
mod C, we use the notation introduced in Section 3.

LEMMA 2. Let Pe?. Then P can be embedded into a module P' € 2 such
that P'/Pe 5 and Hom(P, &) = 0.

Proof. Let X < P be minimal such that P/Xe % Let Z = P/X. Since any
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indecomposable object in .7 .can be embedded into an indecomposable object
in .7 with 7 -top of the form E(p), we can embed Z = T with Te.7. and
Hom(T, Z') = 0. In addition, we can assume that any nonzero submodule of
T which belongs to .7 intersects Z nontrivially. The epimorphism & P—+»Z
induces an epimorphism Ext'(T/Z, P)—»Ext!(T/Z, Z), since proj.dim T/Z < 1.
Thus, we obtain a commutative diagram with exact rows:

0— P &5P"5TIZ-0

el el [
0 Z5HB THT/Z-0

where the lower exact sequence is the canonical one. We show that
Hom(P”, Z'} =0 for any Z'€%. Thus, let «2: P”"—>Z’ be a map. Since & is
closed under submodules, and X was minimal with P/X in &, the map au
factors through ¢, say au = o’e. Since the above diagram is a pushout, there is
p: T>Z' with B¢ =a, ' = o«. But Hom(T, Z) =0, thus p =0, therefore
a=0.

Since P belongs to 2 and T/Z belongs to 7, we know that P’ isin Z v 7.
Let Y be the maximal submodule of P” which belongs to . Then
Y/PnY = (P+Y)/P embeds into P’/P = T/Z, thus PnY is in J (since J 1s
closed under kernels). It follows from Pe £ and PnYeZ that PnY = 0. Let
P’ = P”/Y. Then P’ belongs to 2, we have Hom(P’, 2') = 0, and P embeds into
P’ with factor module P”/P+ Y, but P’/P+Y is the cokernel of the inclusion
map Y =~ (P+ Y)/P into P"/P, thus it belongs to . This completes the proof.

Proof of the factorization property. Let g Q. Let Pe?, Qe 2, and f:
P - Q. According to Lemma 2, we embed P into some P'e # with P'/Pe€ .9 and
Hom(P', Z) = 0. Since Ext'(Q, P'//P) = 0, the map f can be extended to P".
Thus, without loss of generality, we may assume Hom(P, Z) = 0.

Consider now the canonical map f;: j,j* P— P. According to Section 4,
this is 2 monomorphism, and its cokernel Z belongs to 2. Decompose
Z =Z,®Z with Z, the maximal direct summand of Z belonging to 7 (o).
According to Lemma 1, the map j*f: j* P - j*Q can be factored through some
Re J,(0), say j*f = hg, with g: j*P > R, h: R—j*(. We form the commutative
diagram with exact rows

0—jj*P P 5Z ®Z' -0

isl gl I
0— jR - X ->Z &7 -0

Now, j,R belongs to  (g), according to Section 5. Since no 7 -composition
factor of Z’ belongs to .7 (o), we have Ext'(Z’, j,R) = 0, therefore X = X ®Z'
with X, €7 (¢). On the other hand, fBp = Byjij*f = BoUh)(j,9), since B:
j.j*—id is a natural transformation, thus the pushout property of the left
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square yields a map h": X - Q which satisfies k'g’ = f. Since X = X @Z’, we
can write f =h,g,+h,g,, where g,: P>X,, g, P-Z', h,: X,—-Q, h,:
Z'— Q. However, Z'€ Z, thus Hom(P, Z') = 0, therefore f = h,g, is a fac-
torization of f through X, €7 (¢). This completes the proof.
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Appendix

William Crawley-Boevey

The aim of the appendix is to present an elementary definition of the canonical
algebras. In particular, we will not presuppose the structure theory for the
category of representations of a tame bimodule.

Let F and G be division rings, and let (M, be an F-G-bimodule with
(dim ([M)(dim M) = 4. We denote by y the number

_ [dim M
Y= dmM,’
thus y is one of 4, 1, 2.

By an M-triple we mean a triple (N, ¢, Ng) where (N is a finite-
dimensional nonzero left F-module, N a finite-dimensional nonzero right
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G-module, and ¢: [N®,Ng—M; an F-G-homomorphism such that
dim N

1 _
(1) dmN; %

(2) whenever ;X and X§ are nonzero submodules of ;N and Ng, respec-
tively, with o(X®X') = 0, then
di . ,
fm FX+dfm X,G < 1.
dim ;N dim Ng

We call two M-triples (N,, ¢,, N1), (N,, ¢,, N3) congruent provided
there are isomorphisms @: (N,)— {N,) and @': (N); —(N3); such that the
diagram

N, ®N]!

\
eep
/

N, ®N]

M

commutes.

Define the middle D of an M-triple (N, ¢, N’) to be the set of pairs (d, d')
where d is an endomorphism of ;N and 4’ an endomorphism of N§ such that
po(d®1) = po(1®4d). Clearly, D is a ring under componentwise addition and
multiplication, N is an F-D-bimodule, N' a D-G-bimodule, and ¢ induces
a map N®,N' > M which again will be denoted by ¢.

LEMMA 1. D is a division ring.

Proof. Let (d, d) be a nonzero nonunit in D. Since ¢(Kerd®Imd') =0
and the pair (Kerd, Imd’) # (N, 0) or (0, N'), it follows that
dim ;Kerd dimimd;

< 1.
dim,N | dimNg

Similarly, we also have

dim [Imd 4 dim Kerdg
dim ;N dim Ng
Adding these two inequalities, we obtain
dim ;N dim Ng
- +— < 4,
dim ;N dim Ng

< 1.

a contradiction.
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DEFINITION. A canonical ring of type (n, ..., n,) where r >0, n;

=2,
a ring isomorphic to a matrix ring of the form

[ F|N,...N/|N,...N,|...|N,...N, |M |
D,...D, N
np—1 0 : O 0
0 D, N
D,...D, NY
ma-1 of o N :
0 D, N’
D,...D, |N;
m= L of o o .| . |:
0 D,|N,
L ol o o ..l o G |

where F, G are division rings, ;M is a bimodule with (dim ;M)(dim M) = 4,
(N,, ,, N1}, ..., (N,, @,, N;) are mutually noncongruent M-triples with
middles D,, ..., D, and the multiplication is given by the action of a division
ring on a module, or by the appropriate o,.

LEMMA 2. The centre k of a canonical ring is field.

Proof. Suppose x # 0 is in the centre of the matrix ring 4. Let e; be the
element of 4 corresponding to the identity of the ith division ring on the
diagonal, and let d; be an element which is nonzero at precisely the (1, i)th
position. Then

X =) exe =) Xee =) xe=) exe,
ij [ i i
so x is diagonal. Also.
di(e;xe)) = d;xe; = xd; = xe,d, = (e, xe,)d,,

so ¢;xe; and e, xe, are zero or nonzero together. Thus x is invertible in A4, and
hence in k.

LeEmMMA 3. The canonical algebras are just the canonical rings which are
finite-dimensional over their centres.

Proof. Let k be a field, let F and G be finite-dimensional k-division rings
and M a bimodule centralized by k. In the notation of § 1 it suffices to show
that the construction

S=Wg Vs, 0: UR Mg Ve)—-T =(U*, g: JU*Q V5 - M, V5)
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induces a bijection between the isomorphism classes of simple regular
representations of .M and the congruence classes of M-triples (N, ¢, N') with
k in their middles and with N and N’ centralized by k, and that it takes the
endomorphism ring D of § to the middle of T.

Note first that

o dim ;U* (2 +8(5)

-1
= +dim(Cokerg); |
dim V' 2y ( Q)C)
so if S is simple regular, condition (1) holds for T Now suppose that X < U*,
X' <V*' and §(X®X)=0. Set X' = {ueU|x(u) =0 VxeX}; then

S = (X% o(X*®M), olx1em)

1s a subrepresentation of S. If § is simple regular then §'=0, §' =S, or
é(8’) < 0. In the first case X+ =0, §(U*®X') =0, so ¢*(X’) = 0 and hence
X' =0;if =85, then X =0; while in the last case, the inequalities §(§') < 0
and dimg(X*®M); < dim X*®M;—dim X lead to the inequality of (2).
Thus T is an M-triple.

Now suppose that T =(;N, ¢, N;) is an M-triple, and let @: Ng
-+ N*® M, be adjoint to ¢; it is injective since ¢(N®Ker @) = 0. Clearly
T comes from the representation S = (N¥*, Coker g, n) where = is the natural
projection. By (3), d(S) = 0. If ' = (U, V, @) is a subrepresentation of S, and
Z = (¢)" " (URM), then ¢(U*®Z) =0, where U* = {ne Nju(n) =0 YueU}.
Thus one of three cases occurs:

1. If Ut =0, then U =N* and S’ =S.

2.If Z=0 and Ut =N, then U =0 and either V=0 so S’ =0, or
d(§') = —m-dim V; is negative.

3. If the inequality in (2) holds, then since dim V; > dimU® M;—dimZ,
the defect of S’ is again negative.

Thus all proper nonzero subrepresentations of S have negative defect, so
S is simple regular.

If (f,g) is an isomorphism (U, V,, ¢,)—>(U,, V,, ¢,) of simple regular
representations of M, then the corresponding M-triples are congruent via
((f ~')*, h), where h is the induced map V;* — V,". Conversely, since the ¢, are
surjective, any such congruence arises this way. Finally, (f, ¢) i1s an endomor-
phism of (U, V, ¢) if and only if (f*, h) is in the middle of (U*, g, V*).

Remark. In case the division rings and modules are finite-dimensional over
a central field, a triple (N, ¢, Ng) satisfying (1) and whose middle is a division
ring, also satisfies (2). In general this is not clear, but the M-triples should be
regarded as the more natural objects since they correspond to the simple

o-torsion modules in the sense of [S, § 1], where g is the rank function obtained
by normalizing the defect.
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