Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Borel equivalence and isomorphism of coanalytic sets

Seria

Rozprawy Matematyczne tom/nr w serii: 228 wydano: 1984

Zawartość

Abstrakty

EN
CONTENTS
Introduction...............................................................5
1. Coanalytic sets and admissible ordinals...............7
2. The hypothesis of constructibility........................12
3. Ordinal partitions and non-isomorphic sets.........16
4. Thin non-isomorphic sets....................................19
5. The hypothesis of projective determinacy...........22
6. Further results and open questions....................25
References.............................................................28

Miejsce publikacji

Warszawa

Seria

Rozprawy Matematyczne tom/nr w serii: 228

Liczba stron

28

Opis fizyczny

Dissertationes Mathematicae, Tom CCXXVIII

Daty

wydano
1984

Twórcy

Bibliografia

  • [1] A. Blass and D. Cenzer, Cores of $∏^1_1$ sets of reals, J. Symb. Logic 39 (1974), pp. 649-664.
  • [2] G. Boolos and H. Putnam, Degrees of unsolvability of constructible sets of integers, J. Symb. Logic 33 (1968), pp. 497-513.
  • [3] D. Cenzer, Ordinal recursion and inductive definitions, in Generalized Recursion Theory (Proc. 1972 Oslo Symposium, J. Fenstad and P. Hinman, editors), North-Holland (1974), pp. 221-264.
  • [4] D. Cenzer, Monotone inductive definitions over the continuum, J. Symb. Logic 41 (1976), pp. 188-198.
  • [5] D. Cenzer and R. D. Mauldin, Inductive definability, measure and category. Advances in Math. 38 (1980), pp. 55-90.
  • [6] J. P. R. Christensen, Topology and Borel Structure, North-Holland, 1974.
  • [7] K. Gödel, The consistency of the axiom of choice and the generalized continuum hypothesis. Proc. Nat. Acad. Sci. 24 (1938), pp. 556-557.
  • [8] L. Harrington and J. Steel, Analytic sets and Borel isomorphisms (abstract). Notices Amer. Math. Soc. 23 (4) (1976), p. A47.
  • [9] P. G. Hinman, Recursion-Theoretic Hierarchies, Springer-Verlag, 1977.
  • [10] K. Hrbacek, On the complexity of analytic sets, Zeit. Math. Logik Grundl. Math. 24 (1978), pp. 419-425.
  • [11] A. S. Kechris, The theory of countable analytical sets. Trans. Amer. Math. Soc. 202 (1975), pp. 259-297.
  • [12] A. S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1973), pp. 337-384.
  • [13] K. Kuratowski. Topology. Vol. I. Academic Press-Polish Scientific Pub.. 1966.
  • [14] K. Kuratowski and A. Mostowski, Set Theory, North-Holland, 1968.
  • [15] A. Maitra and C. Ryll-Nardzewski, On the existence of two analytic non-Borel sets which are not isomorphic. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), pp. 177-178.
  • [16] D. A. Martin, Measurable cardinals and analytic games. Fund. Math. 66 (1970), pp. 287-291.
  • [17] D. A. Martin, Borel determinacy, Ann. Math. 102 (1975), pp. 363-371.
  • [18] R. D, Mauldin, On nonisomorphic analytic sets, Proc. Amer. Math. Soc. 58 (1976), pp. 241-244.
  • [19] J. Mycielski, On the axiom of determinateness, Fund. Math. 53 (1964), pp. 205-224; 59 (1966), pp. 203-212.
  • [20] G. E. Sacks, Metarecursion theory, in Sets, Models and Recursion Theory (Proc. 1965 Leicester Logic Summer School, J. N. Crossley, editor), North-Holland (1967). pp. 243-263.
  • [21] J. R. Shoenfield, Mathematical Logic, Addison-Wesley, 1967.
  • [22] W. Sierpiński, Les ensembles projectifs et analytiques, Mem. Sci. Math. No. 112, Gauthier Villars (1950).

Języki publikacji

EN

Identyfikator YADDA

bwmeta1.element.zamlynska-b1c26393-99c0-4592-a698-a9d0ebf0591d

Identyfikatory

ISBN
83-01-04904-9
ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki