MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21
PWN — POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

HOW TO TREAT DECISION PROBLEMS
BY DIFFERENT PROGRAMMING METHODOLOGIES

G. CIONI
A. MIOLA

Institute of Systems Analysis and Informatics, CNR Rome, ltaly

This paper presents an overview of the most relevant programming styles.

In this overview we will consider several classical programming meth-
odologies and discuss their features and their limitations from the point
of view of a specific class of applications, namely the so-called decision
problems.

The main goal is to characterize the fundamental aspects of different
programming approaches in order to describe effective tools for the solution
of problems in the area of applications we have chosen.

In the last section of this paper we will also refer to the main current
research directions devoted to obtaining an integration of different program-
ming styles and of different programming formalisms in a unique program-
ming environment described by a unique semantics.

1. Introduction

The field of applications of computer science has been enlarged in a
tremendous manner in the last few years. However, the impressive signifi-
cance of this enlargement is not only the number of different areas where
the computer science is now applied, but the width and depth of any single
area of applications.

One of the most significant application areas is that of the so-called
decision problems. Such problems can be described, for instance, by the
following elements:

— a set of states S;

— a set of initial states I c §;

— a set of final states F c §;

170 G. CIONI and A. MIOLA

— a transition function T: § =S which describes the evolution of the
system from a state to the next one. Such function is generally not determin-
istic, and a strategy to choose among different next states is necessary.

The most important characteristic of this kind of problems is the
possibility for the system to evolve following several different sequences of
states. The name “decision problem” comes essentially from this intrinsic
need of making different choices at the successive stages of the computational
strategy, in order to achieve in the best way the solution, i.e., the final state

Because of this intrinsic need of heuristics, problems of this kind are
generally very difficult to solve automatically by a purely algorithmic ap-
proach. However, even if the use of the heuristic approach could help very
much, new computational problems arise when using backtracking on the
evolution states graph.

Among the different kinds of decision problems two can be quoted as
interesting examples: the time schedule problems for school classes and the
systems to the on-line control of trains running on highly busy railways.
These two problems are characterized by an initial static and permanent data
base, by a similar dynamic data base and, finally, by a set of rules to be
applied to reach the chosen goal. These rules are generally based on the long
experience of a well-skilled man who operates the system and solves real
problems. Such problems are also characterized by their very big dimensions
in terms of data and rules. Let us consider the very complicated situation
which occurs when a train is on delay and comes into collision with some
other trains, or the confused conditions which are imposed by teachers who
ask for a specific time schedule, may be opposite to that proposed by
students.

These kinds of problems are real, effective problems and must be solved,
hopefully, by a very efficient systera. However, their obvious high complexity
does not allow us to make-clear and simple considerations on the program-
ming methodologies to be used. Therefore for our purpose we will consider
games which have the same characteristics, but are simpler to describe, and
in this paper we will refer to two classical and well-known puzzles: the
Hanoi tower and the cannibals and missionaries problem [9]. In the problem
analysis we will distinguish three different elements:

1. the rules of the problems, which explain what the problem means;

2. the moves or actions executed by the player to solve the problem, i.e,
to reach the solution;

3. the strategies and the tricks which can help the player to reach the
solution in less time.

Note that sometimes it is not easy to distinguish between a general
strategy and specific tricks.

In the following we will discuss how different programming styles can
face these problems. However, some preliminary considerations on hardware

DIFFERENT PROGRAMMING METHODOLOGIES 171

and software environments are necessary to give a more complete frame to
our discussion.

At the present time, machines on the market are generally based on the
classical, well-known von Neumann architecture, with basic operations refer-
ring to the concepts of variables and ol assignment of values to variables,
and purely sequential execution.

New architecture, based on the concepts of function and of related
mechanism of applying functions to arguments, is also available [18]. The
new machines with such an architecture will be easily used also for parallel
computations. Some specific products of this kind are already on the market:
for instance, Symbolics and Lambda LISP-machines. Furthermore, the pro-
jects of the so-called V-th generation [17], [20], [12] should bring faster and
more powerful machines based also on the principles of automatic inferences.

For the purpose of our discussion in this paper, we may underline that
the original rigid dependence of programming languages design on a fixed
given architecture has now been made free. In fact, the actual tendency is to
design architectures on the base of the features and of the evaluation
" mechanisms offered by the programming languages to be made available on
such architectures.

From these brief considerations we derive a further stimulation for
research on programming languages, being aware that in future the hardware
and software problems will be more and more strictly connected.

2. Programming methodologies

In order to attack, and possibly to solve, decision problems we do need
specific and important features from programming languages for computers
of today and of tomorrow.

Such languages must allow to describe several different kinds of know-
ledge. At the same time, the programming style must be more declarative
than imperative, giving to the user the possibility of expressing the given
problem in terms of “what” must be pursued, and not in terms of “how” that
could be performed.

After that, the automatic execution of a request, declaring a given
problem, will be completely hidden to the user, and therefore the program-
ming language we expect must be implemented with specific demands for
security, correctness and efficiency.

We could synthetize these considerations by saying that the research is
being developed toward the effective possibility to transfer, as much as
possible, to a basic automatic level, the work generally done by the program-
mer [24], [2].

172 G. CIONI and A. MIOLA

In the last few years the main research activities in programming
methodologies have been characterized by the following elements [13]:

1. modularity and control abstraction;

2. data abstraction, encapsulation and hierarchy of definitions of objects;

3. expressiveness of the formalism, flexibility and easiness-to-use;

4, efficiency and security.

1. Modularity is absolutely necessary to use a programming language
effectively in the large spectrum of new application fields. Modularity means
having the possibility to decompose a problem into many small subproblems
each of which represents a simple function, and is linked together with the
others by clear and completely defined interfaces.

To speak about abstraction means to isolate in the problem only some
fundamental basic elements, putting aside all the details which can be
specified later. The following step will be the refinement, in which the details,
previously disregarded, are added to complete the specification of the prob-
lem.

Modularity and abstraction are, in some sense, independent of the
programming language used, but can be promoted by some very modular
languages.

The first important feature, which is now present in every modern
language (from Pascal on), is the separation between the declarative and
executive parts; that allows one to use, in a natural way, a top-down
methodology for the development of programs. The declarative part corre-
sponds to program specification and also defines the connections with other
specification parts. The executive part contains, and isolates from the rest of
the world, the way in which the operations are to be executed.

The second feature is the existence of many kinds of units suitable for
different objectives and programming styles. For examples a “block™, which
defines the scope of visibility of objects and separates the different compo-
nents of a program, and a “process”, which realizes the specific unit which
accomplishes a specific task, maybe in parallel with some other tasks which
interact together. These two kinds of units, which we have quoted as typical,
are, for example, present in ADA [1].

2. The second element, if we view a big program as a set of independent
modules, is to think over the data which are an element going from one
module to another and having important and well-defined characteristics.

Data today means abstract data types [19]; i.e, the definition of the set
of elements allowed (which we can regard as the syntax of the data) and of
operations admissible on these elements (which can be viewed as the seman-
tics of the data). That means encapsulation in all different moments of the
software life. If a programming language admits constructs like classes or

DIFFERENT PROGRAMMING METHODOLOGIES 173

packages, the declarative part of these units represents the specification of the
type of objects of our problem.

The implementation level is an extension of this level and can be
realized by a class which is a construct typical to define complex data
structures of our interest, together with the admissible operations.

Strictly connected with encapsulation there is, generally, the requirement
of a hierarchy, which follows directly from the definition of abstract data
types; it is very important to have the possibility to define a data structure
as an extension of a simpler one, whose properties it retains, adding to them
some new ones. We obtain, in this way, a hierarchical structure of abstract
data types, very easy to test and implement. As a typical example of this
point, we quote SIMULA, with its very powerful and flexible constructs,
namely the construct “class” [11].

3. In order to represent several different types of knowledge we certainly
need languages with a very high expressive power. In fact, we do have to
describe facts and their consequences in the most natural way. Furthermore,
the process of making inferences from some given facts must be carried out
in a given contex where the successive implications could be verified. Logic
programming languages [7] offer such characteristics, even if they have still a
main limitation, namely the lack of flexibility. We mean here the possibility,
offered by a programming language, of being adapted to treat several
different objects with different approaches.

All languages must be easy to understand, to learn and to use; for
example, an explicit request of the American Defense Department tells that
ADA has to share all these characteristics.

4. In many real situations efficiency and solvability of a given problem
are essentially the same. In fact, when a problem is very compiex, it is
solvable only if an efficient solution can be obtained by some very efficient
tools. The efficiency of a programming language is strictly connected to the
implementation of different features and constructs, to the quality of control
checks, generally performed at compilation time, and to the way the run-time
system works, in particular, for the memory management.

However, it is important to notice that also security is a crucial
parameter in respect of the quality of a language. It is in fact necessary to
avoid dangling reference, which is frequently present during programming at-
large with dynamic languages and dynamic objects. To obtain a good degree
of security, one can ask for a totally correct semantics and related implemen-
tation. Unfortunately, that is not the case for many of the recently defined
languages (for this topic, see the two papers of the author quoted in the
reference list [4], [5]).

174 G. CIONI and A. MIOLA

3. The main programming styles

Classically two main categories of programming styles are considerated: the
imperative and the declarative one.

The imperative style states how it is possible to solve a problem, i.e.,
how to derive an output from a given input while, generally, what the
problem has to solve is completely hidden.

On the other hand, the declarative style states what a program is
supposed to compute, i.e., what is the connection between the input and the
output and it does not specify how the computer can solve the problem.

A very simple example ol these two styles is given in the following two
programs which compute the minimum between two input data. The first
version is given in BASIC.

10 INPUT NI, N2,

20 IF N1 < N2, THEN GOTO 30 ELSE GOTO 50,
30 PRINT NI,

40 GOTO 60,

50 PRINT N2,

60 END.

The second program is written in a logic language like PROLOG.

lesser —of (—N1 —N2 —NI)

lesser—of (—N1 —N2 —NI) if

less (- N1 —N2)
lesser—of (—N1 —N2 —N2) if
less (—N2 —NI)

Note that in both programs built-in functions are used to compare two
numbers (* <” and “less”). Independently of the syntactical aspects, these two
programs show the main differences between the two styles.

The categories considered are related to the following classes of pro-
gramming languages:

1. functional languages;

2. logic languages;

3. imperative languages;

4. object-oriented languages.

Let us give here, for each of these classes, only some general considera-
tions, together with their main limitations.

Our goal in this paper is to move in the only possible direction, namely
the integration of different programming styles. In fact we do think that is
the only way to guarantee the treatment of sophisticated classes of problems.

3.1. Functional programming languages. The functional programming
approach is an original approach in computing, based on the mathematical

DIFFERENT PROGRAMMING METHODOLOGIES 175

notion of function and on the computing mechanism of applying a function
to some arguments (even functional arguments), mechanism which is typical
of the abstract model of lambda calculus [31], [26].

The simple subproblems which are the functional decomposition of a
complex real application can be seen as corresponding to different modules
implementing different functions. In this sense it i1s natural to regard the
functional programming as the most immediate way to program, with a high
level of modularity and security.

To illustrate the functional programming style, let us consider the
following program which solves the Hanoi tower problem [31].

DEFUN TOWER —OF HANOI (N) (TRANSFER ‘A ‘B 'C N))
(DEFUN MOVE - DISK (FROM TO) ‘
(LIST (LIST '"MOVE 'DISK ‘FROM FROM 'TO TO))
(DEFUN TRANSFER (FROM TO SPARE NUMBER)
(COND ((EQUAL NUMBER 1) (MOVE —DISK FROM TO))
(T (APPEND (TRANSFER FROM
SPARE
TO
(SUB1 NUMBER))
(MOVE —DISK FROM TO)
(TRANSFER SPARE
TO
FROM
(SUBI NUMBER)))))

In order to improve this approach and in order to obtain clear
interfaces between modules, some recent work, has been made to introduce
data types in a functional programming methodology [3].

3.2. Logic programming languages. Logic programming languages belong
to the category of declarative languages, since they state what the program is
supposed to compute, and they do not explicitly specify how the computer
has to solve the problem. Unlike functional programming languages, they
may give many solutions for a given problem, i.e., they admit non-determini-
stic computations. Another important feature is the reversibility ol logic
programs, while in the other languages the input and output are clearly
distinguished [22], [23].

From the external point of view, the user has only to define his own
problem in terms of facts and rules, without caring of the way the system
could reach the solution of the problem.

If we carefully observe logic programming languages, the most known of
which is PROLOG [30], we can deduce that we deal with an approximation
of logic and that there exist some limitations:

176 G. CIONI and A. MIOLA

1. the unification is not always correct (the occur check is sometimes
missed);

2. the search rule (non-determinism) is unfair because it is based on
backtracking, and on the order of the successive choices which is
determined by the order of the clauses (given by the user);

3. much heuristics, which can be realized by admissible extra-logical
features, is dangerous, because it forces the user to mix declaration
and control, and it does not always maintain a correct backtracking
(as an example, take the “cut” operator);

4. also semantics is not satisfactory, because not completely conforming
to that of the Horn clauses;

5. the original declarative programming style tends to obscure program-
ming, sometimes even more than in the old imperative languages.

As an example, look at the following program which is taken from [8]
and which has to solve the classical Hanoi tower problem.

hanoi (N): — hanoi (N, L, []), NI,

write (L), NI,

hanoi (N) --»put (N, A, B,),

put (0, —, —, =)--»[]

put (N, A, B, C)-»{M is N—1}.

put (M, A, C, B),
move (A, B),
put (M, C, B, A),

move (X, Y)--+[from, X, to, Y].

As you can see, efficiency and readability are completely lost.

However, the main advantage of the actual implementation of logic
programming languages (see PROLOG) is its simplicity and efficiency, at
least on a sequential stack based machine.

Moreover, both at the system and the application level, there exist some
software components which are intrinsically procedural. and also some
primitive data types are procedurally defined. For example, operating sys-
tems and programming tools. A declarative definition of these components
would be very unnatural and less efficient.

3.3. Imperative programming languages. In this section we will not refer
to the old imperative languages, but only to the newest ones: ADA can be
considered the representative of the “classical” line while in the object-
oriented direction we can consider PARAGON [29] and LOGLAN [25].
The features of these languages are taken from several different programming
styles, and therefore they can hardly be classified as strictly imperative.

It is thus important to list their features rather than classify them. In

DIFFERENT PROGRAMMING METHODOLOGIES 177

particular, the following are the characteristics which we believe fundamental

for the

1.
2.

AN

treatment of complex decision problems:

strong typing and consistency checking;

secure and efficient memory management, user-dependent, and
based on system invariants;

hierarchical abstract data types;

dynamically defined operations depending on data structures;

high level clearness and flexible modularity;

primitives for unit activation and deactivation, user-dependent;
separate compilation.

Having in mind these characteristics, we can consider the following

skeleton example to solve the cannibals and missionaries problem using a
LOGLAN-like language.

program

unit

unit
unit
unit
unit
unit

unit

. s s

« v .

unit

backtrack: class
umit node: coroutine

unit virtual leaf: function
virtual answer: function
virtual lastson: function
virtual nextson: function
virtual equal: function
virtual cost: function
unit ok: lunction
unit purge: procedure
unit elem: class
unit virtual insert: procedure
unit virtual delete: function
unit killall: procedure
bestsearch: backtrack class
unit exnode: node class
unit virtual delete: function

......

pref bestsearch block
state: exnode class

178 G. CIONI and A. MIOLA

unit virtnal answer: function

.........

unit display: procedure
Looking at this example we can distinguish three different parts:

— the backtracking class, which we call HR because it corresponds to
the heuristics realized directly by the implementation in logical languages,

— the bestsearch class, which we call MK because it defines a specific
strategy based on a meta-knowledge,

— the main block, which we call KB because it corresponds to the user
problem and it is based on the specific knowledge of the problem, ie., on its
knowledge base.

With this many-level organization the user can obtain a high degree of
efficiency, without caring of the general problems of strategy. As is better
illustrated in [6], a very high level programming languages can be useful for
the solution of decision problems if it has the fundamental features presented
in the previous part. In this case the user can approach his problem with the
same philosophy as in the logic programming languages, having also the
benefits of the imperative style.

3.4. Object-oriented programming languages. This class of languages has
the main feature to be based on the definition of objects to which a specified
behaviour is associated [21]. These objects are represented by data structures
and their behaviours can be described by a given set of operations and
predicates. They can also exchange messages corresponding to operation
requests. In this sense the entire program becomes a set of definitions of
objects and of descriptions of messages among them. Therefore there is no
form of explicit control any more.

If we carefully consider this kind of languages, we may discover that
they have strong qualities, such as modularity, abstraction mechanism,
hierarchization of data and objects.

However, it must be stressed that at the present time, from the imple-
mentation point of view, the general approach that has been followed is the
one of functional programming implementation techniques. See for instance
the well-known case of SMALLTALK [14], [15]. Moreover, the implemen-
tation choices can be different and we can call object-oriented also some
languages ikke LOGLAN and PARAGON.

DIFFERENT PROGRAMMING METHODOLOGIES 179
4. Integration of Different Programming Styles

Many of the elements we have discussed so far go in the direction of an
integration process of different programming styles. Besides, we wish to
notice that the world is integrated, i.e,, real applications can be decomposed
into declarative programs (which would be able to produce informations by
inference on a knowledge base) and algorithms (which would produce results
in a more standard way). We can say in this sense that none of the available
tools (functional, logic, imperative or object-oriented), all considered as
“pure”, is the best or unique tool.

The idea of integrating different programming styles could take several
approaches. Two different possible directions are the following:

1. One is that of admitting an alternation between logic predicates
(typically PROLOG predicates) and functions (typically LISP functions),
mainly to increase efficiency. For example, when the resolution has to treat
predicates with some variables not yet instantiated, a [unctional evaluation is
clearly more efficient. In this line we can consider LOGLISP [27] and
HLOG [28] as effective results. In these cases PROLOG programs are
compiled by the LISP compiler and in this sense we can say that it is as
superimposing different kinds of control on an existing logic language.

In the same context we can also consider POPLOG which is a complete
system with logic and functional tools which are connected and can be
alternately used.

2. Designing a completely new integrated language. In this line we have,
for example, EQLOG [16]. See for the problems which are concerning the
following example to solve with the EQLOG approach the cannibals and
missionaries problem.

module NIGER using NAT, PATH = LIST [trip] is
preds
boat-ok: trip
. solve, safe: path
fns
boat: pérson-set — — trip
I-bank, r-bank; path — — person-set
mis-set, can-set: person-set — — person-set
vars
Q: person-set, L: path, P, person, T: trip
axioms
boat-ok (boat (Q)):-length (Q) =1;
length (Q) = 2;
l-bank (nil) = mis U can.
r-bank (nil) = { }.

180 G. CIONI and A. MIOLA

I-bank (cat (L, boat (Q))) = I-bank (L)-Q:-
even(length) (L)).

r-bank (cat (L, boat (Q))) =r-bank (L) U Q:-
even (length) (L))

.............................

solve(L):- safe(L), I-bank (L) =1{ }.
endmod NIGER

In our Institute we approach the integration problem following two
different directions which we intend to unify in future.

1. The first line starts from the logic approach and has the objective to
extend PROLOG language by the introduction of the typing and of a more
intelligent and flexible control. The purpose of this research is to increase
correctness, readability and efficiency. In this line we can also refer to paper
[16] and to the work which has been developed in ESPRIT-ALPES by
many researchers, for example [10]. Here we have to do with a new way to
approach logic programming, i.e, to see abstract data types as a central
element of logic programming.

Typing the axioms, apart from the well-known advantages in respect of
correctness which are typical of all strong typed programming languages,
also makes it possible to reach a higher degree of efficiency. Consider, as an
example, the cannibals and missionaries problem. It is very easy to under-
stand that if we want to obtain a solution in a less number of steps, a good
“trick” is to carry the maximum number of passengers, conforming to the
boat capacity, going from the left to the right side of the river and the
minimum, not zero, coming back. This consideration can be seen as a
particular strategy for this problem, but it is not at the same logical level of
problem description nor of the general strategy. If the rules of the problem
are typed, the general strategy, realized by the implementation of the logic
programming languages, becomes different because the unification is made
only with the rules of the same type. That means that, depending on the
river bank in which the boat actually is, the rules are instantiated in different
ways. And it is not necessary to add new rules in the problem description to
distinguish the two different situations.

To illustrate the problem of intelligent control, let us start from the
following program which solves the Hanot tower problem.

path (X, X),

path ([A, B, C], [R, S, T]):-
move ([A, B], [D, EJ),
path ([D, E, C], [R, S, T)):
move ([A, C], [D, F]),
path ([D, B, F], [R, S, T]):

DIFFERENT PROGRAMMING METHODOLOGIES 181

move ([B, C], [E, F]),
path ([A, E, F], [R, S, T];
back (A, B, C}, [D, E, F]),
path ((D, E, F], [R, S, T]).
move ([A, B], [C, D]): — nil(B), car(A, Al),
rem (A, C), cons (Al, B, D).
move ([A, B], [C, D]): — car(A, Al), car(B, Bl),
less-than (A1, Bt),
rem(A, C), cons(Al, B, D).
back ([A, B, C], [D, E, F]):-
move ([B, A], [E, D)), F =C;
move ([C, A], [F, D]), E =B;
move ([C, B], {F, E]); D = A.

This program is perfectly adherent to the way of playing with this game. The
data of our problem are lists and represent the states of the computation.
The recursion generates the path which is the sequence of correct moves.
Actions, like nil, car, cons, etc., are performed by the inferential engine
according to the given rules. However, even if this program is correct, it does
not terminate, because we have not imposed any condition to check against
loop. If we want to solve this problem we can follow different directions.

— To redefine the goal, specifying that a correct solution is a path
which terminates:

solution (Probl, Path):-
path (Probl, Path), no-loop (Path).

Unfortunately to use this kind of approach it is necessary to admit a
coroutining mechanism, which allows to activate “no-loop”, to consume
the new Path just produced by “path”, checking in this way for the loop.

— To shift to a lower level the loop check, by the introduction of a new
data structure (a “Done” list) to store the states already visited.

path ([A, B, C], [R, S, T], Done):-
move ([A, B], [D, E)),
no-loop ([D, E, C], Done),
n0_1.0;,12, (].-’.[. j)_
no-loop (T, [T| =] :-!, fail

If a state already visited is reached, “no-loop” forces the “cut” operator to
stop this path. With this kind of solution we introduce between the rules
of the specific problem some others which are effectively at a different level.
At the same time we obtain a decrease of efficiency, because the searching

182 G. CIONI and A. MIOLA

process, executed on the new data structure, is made by a user aljorithm
written in PROLOG, which obviously can be not the best one.

— To operate on the rules base adding new states.

path [(A, B, C], [R, S, T]):-
move ([A, B], [D, E]),
not (just-done ([D, E, C])),
assert (just-done ([D, E, C1])),
path ([D, E, C], [R, §, T])).

This solution must be carefully considered, because if it can give a higher
degree of efficiency, it can also have dangerous effects for what concerns
backtracking.

2. Another research direction starts from the features of very high level
languages, and particularly from LOGLAN. Some elements have been pre-
sented in the previous section and in [6]. Here we add only that the next
step is now the introduction of clauses directly as a new type in the language.
In this way we can encapsulate in a complete way the elements which are
connected with the definition of the problem and which are, generally, the
only ones that the user has to consider.

References

[1] J. D. Ichbiah, Preliminary ADA Reference Manual, SGPLAN Notices 14, 6, 1979.

[2] D. R. Barstow, H. E. Shrobe and E. Sandewall, Interactive Programming Environ-
ments, McGraw-Hill, 1984.

[3] R. M. Burstall, Abstract Data Types in Functional Languages, Edinburgh University
Report, 1984.

[4] G. Cioni and A. Kreczmar, Analysis of control structure, modularity and parailelism in
ADA, R. Istituto di Automatica N. 80-30, 1980.

[51 —, —, Programmed deallocation without dangling reference, 1PL n. 18, 179-187, 1984

[6] —, —, How to solve logic programming problems in imperative language, in preparation.

[7] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer, 1981.

[8] H. Coelho, J. C. Cotta and L. M. Pereira, How to solve it with PROLOG, Laboratorio
Nacional de Engenharia Civil, 3rd ed. 1982, 7

[9) K. L. Cooke, R. E. Bellman and J. A. Lockett, Algorithms, Graphs and Computers,
Academic Press, 1970.

{10) J. Y. Cras, The notion of Absiract Data Type in Logic Programming, ESPRIT — ALPES
Techn. Rep., 1984.

[11] O.). Dahl, B. Myhrhaug and K. Nygaard, The SIMULA 67 Common Base Language,
Publ. n. S-2, Norwegian Computing Center, Oslo 1968.

(12] E. A. Feigenbaum, The fifth generation, Addison-Wesley, 1983.

[13] C. Ghezzi and M. Jazayeri, Programming Languages Concepts, Wiley, 1982,

[14] A. Goldberg and A. Kay, SMALLTALK-72 Instruction Manual, Xerox Palo Alto Res.
Center Rep. SSI 76-6, 1976.

[15] A. Goldberg and D. Robson, SMALLTALK-80 the Language and its implementation.
An introduction, Springer, 1979.

DIFFERENT PROGRAMMING METHODOLOGIES 183

{i6] J. A. Goguen and J. Meseguer, Equality, types, modules and (why not?) Generics for logic
programming, J. of Log. Progr. 2 (1984), 179-210.

(171 E. Goto and T. Soma, Design of a LISP Machine-FLATS, ACM 0-89791, 1982,

[18] R. Greenblatt, The LISP Machine, MIT Art. Int. Lab,, Work, Paper 79, 1974.

[19] J. V. Guttag, Abstract data types and the development of data structures, Comm. ACM 20
(1977), 397-404.

[20] K. Hiraki, Design of FLATS Machine, Thesis, Fac. of Science, Univ. of Tokyo, 1984.

[21] F. Horowitz, Programming Languages, 2nd ed. Springer, 1984.

{221 R. A. Kowalski, Predicate Logic as Programming Language, IFIP 74, North-Holland,
1974, 569-574.

[23] —. Algorithm = Logic+ Coritrol, Comm. ACM 22, 7 (1979), 424-436.

[24] G. Levi, Evolution of the Software Development Environment, Software Engineering
Applications, Capn 1980.

[25] Loglan-82, Warsaw 1982

[26] J. McCarthy, Recursipe functions of symbolic expressions and their Compuiation by
machine, Part I, Comm. A.CM. 3 (4) (1960), 184-195.

[27] R. Robinson and E. E. Sibert, LOGLISP: an alternative to PROLOG, in Machine
Intelligence 10, Wiley, 1982, 399-414.

[28] D. Sartini, Integrazione fra programmazione logica e funzionale: il linguaggio H-LOG,
AICA congress Rome, 1984,

[29] M. S. Sherman, Paragon, Lectures Notes in Comp. Science 189, 1982,

[30] D. Warren, Implementing PROLOG, Vol. I and II, DAI Res. Rep. 39 and 40, Edinburgh
Univ,, 1977.

[31] P. H. Winston and B. K. Horn, LISP, Addison-Wesley, 1981.

Presented to the semester
Mathematical Problems in Computation Theory
Seprember 16-December 14, 1985

