Introduction.......................................................................................................... 5 1. A parametrix of tho laplacian................................................................................ 7 2. An estimation of the differential of an eigenfunction of the laplacian......... 16 3. A normal chart on a neighbourhood of a geodesic........................................ 27 4. Minorization of the first positive eigenvalue of the laplacian......................... 41 References................................................................................................................. 55
[1] T. Aubin, Function de Green et valeurs propres du Laplacien, J. Math. Pures Appl. 53 (1974), pp. 347-371.
[2] M. Berger, P. Gauduchon et E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer-Verlag.
[3] M. Berger, P. Gauduchon et E. Mazet, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), pp. 129-149.
[4] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.
[5] J. Cheeger, A lower bound for the smallest eigenvalue of the laplacian, in: Problems in Analysis, A symposium in honor of S. Bochner, Princeton University Press, 1970, pp. 195-199.
[6] J. Hersch, Caractérisation variationelle d'une somme de valeurs propres consécutives, C. R. Acad. Sci. Paris 270 (1970), pp. 1714-1716.
[7] J. Komorowski, A continuous change of topological type of Riemannian manifolds and its connection with the evolution of harmonic forms and spin structures, in: Global Analysis and its Applications, I.A.E.A. 1974, vol. II, pp. 329-353.
[8] J. Komorowski, On a global problem of the discrete and continuous potential theories, Proc. of the Carathéodory Symposium 1973, The Greek Math. Society, 1975, pp. 318-327.
[9] J. Komorowski, On finite-dimensional approximations of the exterior differential, codifferential and laplacian on a Riemannian manifold. Bull. Acad. Pol. Sci. 23 (1975), pp. 999-1005.
[10] J. Komorowski, Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian, Diss. Math. 165, 1980.
[11] J. Komorowski, On an estimate from below for the first positive eigenvalue of Δ, Bull. Acad. Polon. Sci. 25 (1977), pp. 999-1006.
[12] T. Sakai, On eigenvalues of Δ and curvature of Riemannian manifold, Tôhoku Math. J. 23 (1971), pp. 589-603.
[13] S. Sternberg, Lectures on differential geometry, Prentice Hall, 1964.
[14] S.-T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. 8 (1975), pp. 487-507.