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Introduction

On a smooth, oriented, compact Riemannian manifold M with
a covariant metric tensor field ¢ we have the (positively defined) scalar
laplacian

-1 0 0
4= d'd = Vdet(g,) 9% —
det(g,) 02" 999" 5z
where (g) is dual to the metric tensor (g,5). To emphasize that 4 depends
on g we may write 4, instead of 4.
If @ > 0, then, obviously, 4., = (1/a) 4,, what for the spectra gives

1
(%) Spec(ag) = - Spec(g).

This answers the question how the dilations in the cone .# (M) of metrics
on M influence the spectrum. It is interesting to find both how the spec-
trum changes under a general transformation in .# (M) and how it depends
on a metric itself. However, these are very difficult problems and people
confine themselves either to some special Riemannian manifolds or ask
more special questions about the spectrum. There are two main classes
of such special questions: about the end and about the beginning of the
spectrum. In the first class we ask about distribution on R' of great
eigenvalues; mainly the asymptotic expansion (for £ 0) of the par-

tition funection Z (t)= 3 e~*, t> 0, is considered (see [2], [12]). The second
AeSpeo

class deals with the first few eigenvalues, e.g. [6], [3], but most efforts
have been devoted to the estimation of the first positive eigenvalue 4,
(several bibliographic references are given in [14]).

Because of the subject of the present paper, it :is worthwhile to
recall at least those estimations from below of 2, which require no assump-
tions about the curvature of the Riemannian manifold (M, g). The first
very beautiful result is due to Cheeger [6]. He proved that for dim M
=m=2

1(My _ vol 8
ry 22— M):= -
(+) ! : 0, where I(H) u;i min {vol M,,vol M,}

and the infimum is taken over all (m —1)-dimensional submanifolds S




6 A minorization of the firat eigenvalue of 4

dividing M into two disjoint parts, M, and M,. Let us notice that the
I(M)?

estimating constant behaves under dilations in the same way as

the spectrum, i.e. like (»); moreover, it has a very nice geometrical sense.
But on the other hand, it is not practical for calculations in the case of
anarbitrary Riemannian manifold. Yau [14] estimated from below Cheeger’s
isoperimetric constant I(M); the computability of the new minorization
of A, is a compensation for the loss of the above-mentioned “good” be-
haviour under dilations. Earlier, Aubin [1] obtained another computable
estimation depending exponentially on the curvature.

This paper contains another minorization (Theorem 16), which is
as follows: if dim M =m >3, 8 is the diameter of (M, g) and V is its
volume, then

’5()-1)‘”‘_l
Ay > By———
. T sy 7
where
2—2(2m+l)‘/m_1
3+= (m +1)mz(m+z)+1/2 ’

&(2) := min {(H, + AH,)" ", H,} and the dependence of the constants H; on
the metric g—via the 1st, 2nd and 3rd order derivatives of its compo-
nents in orthonormal charts and an injectivity radius —is explicitly given.
Thuos we have (Corollary 17)

B,

Hm—l BHm-lH 1-m
3 or 1 >——(H,-}-—5’—3—2

(x*4) 4, = B, Y2 12 3y Y7z

This result has neither a geometrical elegance nor the “good” behaviour,
as was the case for (»»). But the estimating constants do not depend
exponentially on curvature-like quantities, i.e. derivatives of ¢; this
feature could be appreciated by Aubin (cf. his Remark [1], p. 368) and
Yau (the case of non-positive curvature).

It is worth mentioning perphaps that in this research I was motiv-
ated by the problems and ideas stated and developed in [7] and [8].

The titles of the sections indicate fairly exactly the content of the
paper. The first three of them are auxiliary to the fourth one. Besides,
an essential use is made of the difference approximations introduced in
[9] and [10]. A more extensive summary of the approach presented here
is given in [11].

Finally, I should like to express my thanks to Professors T. Balaban
and E. M. Stein, whose advice and hints helped me very much. I am
also indebted to Professor K. Maurin for the hopeful —and therefore
helpful —encouragements and his interest in this work.
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1. A parametrix of the laplacian

Let M be a smooth, oriented, Riemannian manifold of dimension
m > 3 and let ¢ denote the covariant metric tensor field on M. So far,
instead of compactness we assume that there exists an r, > 0 such that

for every z € M the ball K (z, r,) is a normal neighbourhood of the point x.
m

Obviously, if M is compact, such an 7», exists. By v we denote the
volume m-form on M, compatible with the orientation.
We use the following definition of the Hodge operator:
m! m
w:=(m_k)!w_|t, o € N*T* (M),
where ~ is the canonical isomorphism A*T*(M)—A*T(M) given by the
Riemannian structure and it maps a k-form dzt A A dz’* onto

Zﬂl‘ 1:13.] ikjk_a- A A _a_ .
g1 g A Ao
jl"""k-l
m m
the interior product _| is defined by <{g, ® _| 1) = (@A g, ) where the
pairings (-, -> between A¥T'(M) and A*T*(M) are so normalized that

7 o 1
J
<a;/\ A%,—‘-,dm"/\ Adm>=ﬁ.
Moreover, if \*T% (M) is endowed with the scalar product (o |w):= k!, o),
then oA 0 =\o|@) (2).
We are interested in the scalar laplacian 4 = dd, where § = —»~'dx.

In order to construct its parametrix, which will be our basic tool, we
define the smooth function

1, t< i,
(1) c(t)y:= F(4t)r,—3), Ir.<t<r,
07 t> Tc’

where 0 < r,<r, and F is a standard function defined as

1, t<< —1,
1

(2) F(t):={afexp(l/(@*—1))ds, |t|<1,
]

where

3) ai= U‘ exp (w=1_1) da,.]-l
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Now, for every z,y € M such that z # y we define

(4) p(@,y):= al(z, y)* "col(z, y),
where [ € O°(M x M) is the distance and

(6) a:

—_ ~m/2
= 2@ —m) I(m[2)n~ ™2,

Obviously, for every z € M, the function p(z, ) € L' (M, u), where u is
the measure on M defined by the canonical form of volume

T := Vdét(g,)dz*A Adz™;

here (o) is a positively oriented chart on M and g, are coordinates of g
_with respect to this chart. Let us check that p is a parametrix of the
laplacian.

PropoSITION 1. If for z,ye M, © # y we define
(6) e(z,y):= Ap(z, )(y),

then e 18 a smooth function ouiside the diagonal of M X M, and for every
x € M both the function e(z, -) and its module belong to L*(M, u). Moreover,
for every p e C*(M) and ze M

m
(M [p(@, ) (4p)r = p(@)+ [e(a, Ygr.
M M

Proof. Let (z") be an orthonormal, positively oriented chart at
apoint z € M and let U > K(z, r,) be the domain of this chart; 2° € C®(U),
gy(w) = 8;. If y € U, then its coordinates with respect to (2°) will also
be denoted by y®:= z°(y).

We begin with a few elementary formulae:

l(wr>=]/2'_"7,<w")2 on T,

(8) dl(z, ) = (=, -)'IZa:"da:" on U\ {z},
a=1
and
0 m
a __ ag
(9) xdz mg amB_Jr

= (—1¥"'Vdet(g,;) g*ds*A 5 Adz™,

Since (2°) is a normal chart, g,,(z) =0 = g () ('), and therefore

(!) We use the notation |y for 8/dz” and |y, ...y, for 87/dz"1 ... dz*r.
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(c')/c’)a;’)l/det(g,-,)g"‘3 | = 0. Hence, by the Taylor Formula, for any y € U,

(10) Vdet(gy (¥)) 9% (%) = 0°+G3(¥)y"y’
where

. - 34(Vdet(g,) g*)
(11) Grg(y) i = !8 ( oz’ amjo (yl—s)ds

and y,_,:=exp,(1—8)z,y, ie. 2%(y,_,) = (1—8)y*(%). It is seen that
each function G2 € C*(U). By (8) we get

(12) di(z, ™ = (2—m)l(z, )™ Y a"da".

Now, using (9) and (10), we have

(13)  sdl(z, ™

= (2—m)l(=z, )‘"‘Z(w’—l—ZG“ﬁm @ )(—1)5‘1dw1/\ £ A da™,

a=1

Hence

(14)  d#dl(z, ) ™

=(2— )61(:1:, )" (w"+ZGv,az )dwlA eee AdT™

a=]

+(2—m)l(z, -)""2(1+ZGM,.® z'z )dmll\ oo Adz™

- 1
=m(m—2)l(z, ) ™2 ((w’)z—{- Ghxz*a’) daa ... A da™+

+m(2—m)l(z, )" "dz*A A dz™ +
m
+(@2—m)l(z, )™ ¥ G’ d’dsA A da™
m

w& (L TV
= (2 —m)l(z, P ™ 2( ;ﬁm—mG;‘g I ‘)2) ;”(‘: :7;2.

a,f=l

(*) If y i3 in a normal neighbourhood of z, then aTy-:= (exp.)~!(v).
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It follows from (13) that for each point £ € M there exists such a constant
a,(z) > 0 that for every y e K(z, r,)\ {z}

{(16) ||(wdl (2, -Y*~™) (3!)”,‘,,._,1,;(1") < ay(@)l(z, ) ™™
Since *¢ = (p"; for ¢ € C® (M),
(16) (A:p)? = #ldp = x(—+"'dudp) = —dudp.

Next, we shall use the Stokes Formula and the fact that wA »p = pArw
for w, p € A*T*(M). So, by (4) and (16) we have

a7 [p(e, )de)i =alim [ I, ¥ "col(z, )(dp)
M

=0 CcR(z,9)

= —alim [ Uz, P ™col(z, )dxdp

=0 R(z,e)

= —alim|{ [ P"™@, Jeol(, )wdp—

=0 “3K(z,6)
- d(l(cv,-)z‘"‘col(w,-))/\*dq)]
CK(z,¢)
=alim [ dpasd(i(z, Y "col(®,")
>0 CKR(z,e)
=alim| [ ged{lz, F ™col(w, )~
0 "ok (z,e)
~ [ gd«d(l(z, P "col(z, )]
CK(z,s)
=alim [ ogedl(z, )™+
>0 3K(z,8)
+alim [ pA(l(z, Y meol(s, ).
=0 CR(z,¢)

Let us consider separately the above two components.

(18)  alim [ gxdi(z, )™

2> 5K(£,!)
=alim [ (p—p(@)«di(z, ) "+ap(@)lim [ =dl(z, )™
0 5K (z,9) 0 3K (z,¢)

By the continuity of ¢, for each z € M there exists a constant a,(z) > 0
such that |p(y) —¢(z)| < ax(z)l(z,y) for every y € K(z,r,). Thus, we
infer from (15) that for every y € K(z, 7o)\ {z}

Mo —g@) @@, PO, n-rpg gy < (@) 022, 9)

3I-m
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Hence lim [ (p—o(x))*dl(z, )*"™ =0. Now, using (13), we see that

e—»0 K (z,¢)
m
im [ wdi(z, ™ =(2-m)lime™ [ D'(—1)"'a"dz’a  Ada™
>0 9K (x,e) >0 8K(z,s) a=1

=(2—m)lime ™ f dZ(—l)"“w"dw‘A A dz™
&0 K(z,} a=1

=m@2—m)lime™ [ do'A  Ada"
&—0 K(S,C)

. m
=m@2—m)lime™ [ 7
s-=>0 K(z,%)

because (2°) is an orthonormal chart. But lim e ™(volume of K (z, ¢))

&0

m/2
= volume of K(0,1) in R” = R—%/?)- Thus, returning to (18), we
obtain
m/2
. A2Z—mo _ — )
(19)  alim f pedi(a, " = ap(@) @ —m) o = g(o)

>0 dK(z,9)

Now we pass to the second component of (17), which, via (16), equals

alim [ e@d+d(l(z, )" ™col(z, -)). In order to show that the limit exists,
>0 CK(z,9)

it is sufficient to notice that there exists an ay(z) > 0 such that for every
y € K(z, }r,)\{=}

[axd (i@, P meoll@, ) W] g < 2 (@U2s 97

we made use of (1) and (14). This ensures the absolute integrability of
le(#, )] on M. The smoothness of ¢ outside the diagonal of M x M follows

directly from the smoothness of the distance ! on a normal neighbourhood
of the diagonal. m

Next we shall need the following
LEMMA 2. If y € K (z, 1r,), then

(20) di(z, )(¥) = —l(z, )"y, .
Proof. Let (#°) be an orthonormal chart at the point x; then by (8)

m g
(21) w:=di(z, )y) =z, 9)" D 2°(y)de"(y).

aw]l

The coordinates of the vector y,_—:c e T,(M), with respect to the chart
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(z°) are

(22) @ 1= —a°(y);

. . d
indeed, if t—p(?) is such that 2°(p,) = t="(y), then y, 7 = — a: (p( t))
tex1
Obviously, the form « vanishes on all vectors tangent at v to the sphere

oK (», l(z,y)). By Gauss’ Lemma ([13], p. 201), ¥,  is orthogonal to
those vectors and therefore w must be proportional to y, z, i.e.

(23) w=ay,z

Let us assume the chart (z”) chosen so that z'(y) = l(z, v), z°(y) = 0
for e > 2. By (19) o = dz'(y) and by (21) and (20) we have

A—————

= —al(z, ¥)g,5(y)de’(y).

dzl(y) = ay?c = —ax'(y) P

2

0
- (¥)| . However,

d
Thus 1 = —al(z, ¥)gn(y) = —al(z, y)' %(y)H =1

. 0
because if we take the parallel translation of the unit vector e (z)

0
from z to v along the geodesics {—p (t), then we obtain the vector ey (y),

which must also be of the norm 1. Hence a = —I(z,y)"'. m

To state and prove further properties of the parametrix p and the
error kernel ¢, we shall use some new notation.

Let E* be a vector bundle over a manifold X,, ¢ = 1, 2; E: is the
fibre of E' over a point z € X;. Then E'[x|E’ is the canonically defined
vector bundle over X, x X, whose fibre over a point (z,y) e X, xX, is
(B'[X|E*) gy := B, QF:. It o, € I'(E'), i =1,2, then we define o,[x|w,
e I'(E'[X|E*) a8

(24) (@:[]@2) (7, 9) : = ©,(2) Bwa(y).

We are interested in the case where E' = A"T* (M), B = -A\*T*(M),
r,8>0.

Let (2”) (resp. (y°)) be a chart at a point =, € M (resp. y, € M). Then
each section fe I'(E'[x|F*) has the form

(25) flz, ) Vf”(m, y)da? (¢) @dy’ (y)

for (z,y) belonging to a respective neighbourhood of (z,, %,);
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here
I =(i,..%), 1<p,<...<t,<m,
I = (Jiyeenyde)y 1<H1<...<j,<m,
de! 1= dzhia ... Ada'r,

dr’ := Az A ... Adals,

(26)

and f;, € 0°(M x M). If r =0, then dz’:=1 and analogously for the
case s = 0. There is a natural definition of operators d, and d, which
on a section f of the form (25) are defined as:

m
W15 2 x dut VT
(27) difi= Y N (da*adat)[X]dy’,
P o
(28) dof : = Z S%{’-{— do'[x] (dy* n dy”).
I,J 1=l y

Analogously, “partial” Hodge star operators may be introduced:
(29) wof 1= D f1,d0Tx] (xdy”);
1,J

*,f i defined in a similar (obvious) way.
In these terms the definition (6) takes the form

(30) e = —kydy,d,D;

notice that » and *~! coincide on m-forms.

If f e C°(M x M), then d,f e I(A'T*(M)XIAT*(M)) = I'(T*(M)X]
[x](M x R)). The bundle T*(M)[x[(M x R)—~M x M is canonically isomor-
phic to the bundle T*(M)x MM x M whose fibre over a point (z, y)
is T2 (). Thus d,f may be considered as a section of the bundle 7T* (M) x
XM—->MxM. So, if a point 2 € M is fixed, then d,f(z, ) is a smooth
mapping M—>T%(M). Now we can prove

ProposITION 3. For each x € M the smooth mapping
(31) die(z,): M\ {z}>Te(M)

determines an integrable mapping M—T,(M). Moreover, if (x°) is a posi-
tively oriented orthonormal chart at x, then for every (x,y) e M X M such
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that y € K (x, ro)\ {z}

(32) d,p = of, ) daTx]a”,

Qan]

(33)  die = —afl(m+2)fa+Pf] D daTxi(det(gy)) = a" +

+ 2 de°[x|(det(g,)) M2 (G5,7° +2G%)a” +

+f» de [x](det(g;;)) " [(G 5188° 0%+ 2655 ° -+

o=1

+ ZG,,,:B )m"m"+2G;§m"m°w”] +

+fs Z da;"E(det(gi,))‘”zG;fw“m"w"w"m"},

6,a,0=1
where a and G%; were defined in (B) and (11), respectively, and
fii=(m=2)I""¢col—1""™¢'ol,
(84) fo:= —m(m—=2)I"""2col+4(2m —3)I"" '¢'0l—-1"™¢" 01,
=m(m?—4)l"™ 4ecol—3(m* —m —1)I""3¢'ol +
+3(m—=1)1"""2¢"ol—1"""1¢""0ol.

Proof. The function ! is symmetric. Thus, by Lemma 2 we have
at the point (z, ¥)

m
(35) d;("™eol) = [(m—2)I""eol —U'""¢'0l] ) daTxa
o=1
i.e. (32) is wvalid.
We are going to use the following formula: if 0 # k € N, f e C®(R),
w; € T(\"T*(M)), i =1,2, and the chart (2°) is defined on a neigh-
bourhood @ of z, then for such (z,y) that y € O\ {z} we have

(36) dy (¥ fo lwll—x—lwﬁ)

= (ol 41k lfol)Zw 2% (d2®) A g + FEfolay[Xdw,.

am]

This formula is a direct consequence of (8). Now, applying (36) to (35),
we get

xdpdy (F"mc0l) = f, D) do’[xla"a"xda" +f, D) de[x]*da’.

g,a=l o=1



1. A parametrix of the laplacian 15

Using (36) once more, we obtain

m
dyrydydi (P "col) = f5 D da[X[o"a"a” (do”) A wdo® +

og,a,fi=1

m
+f2 D da(X1 [(a°da” + 27 da°) A wda® + 2”2 d wda®] +

o,a=]

m m
+fa 2 da’] x| 2 (d2°) A wda® + f, 2 dz’] x |d » dz’

c,a=l a=l

= f, D daTx|d«da”+
ge=]
+fe 2 do’|x[[(22° dz’ 4 o° dz) A % da® + 2° 2 d w dz®] +
g,a=1

+fy ) da°

g,a,0m=]

Tx|2°z° 2’ (da®) A % dz®.

By (9) and (10) we know that

m)
do® = (—1)"'da'n  ada™+ Y (—1V7'Gyata’dein b Aada™,
A=l

and therefore, using the notation dz™ := dz'A ... Ada™,

(37)  dy#ydad, (P-™c0l)

V dz[ x| x| (G;fa:”:v d:vM—}—sz dz?]x|(m + 2)a° dz™ +

+fs Z do’[x| [28°G350" 8° + 1G22 07 2° + 2% 0" 857 %) da™ +

c’)(v"(

+f; 2 dzTx |2 (2°)2dz™ - f, 2 dz’[x 2" 0" 2G5 o 2’ d 2™

g,a,f=1

— [(m+2)f, 1] 2 doTX]z" do™ +

o=1

+fi 2 dz°[x | (G752 2’ + 2G5 x7) da™ +

o=]
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+f, 2 dax] [(26°52" + 632" +6% 07 2%) a7 2 + 2G% 2" 2°07) da™ +
g,am=]

m
+fs Z dz’[x|@ 2 o ¥ 2’ dx™ .
g,a,fm1

By (30) we have d,e = —x,d,*,d,d,(al’* ™col) = —axydz,dyd,(IF"™col).
So we must apply —ax, to (37). If we do this and make use of the fact
that xdz™ = (det(g,))~'"% then we obtain (33). The last three components
on the right-hand side of (33) behave —when ¥ is close to z —like I(z, y)*~™,
k> 1, and therefore they are integrable. Meanwhile, when I(z, y) < 3.,
(m+2)f,+1fy = 0, which obviously ensures the integrability of the
first component on the right-hand side of (33). m

Let us formulate the following trivial

COROLLARY 4. For every wu(z) e T,(M) the function
(38) M\ {x} s y—>(u(z), de(z,y)) € R
and its module belongs to L'(M, pu).

2. An estimation of the differential of
an ecigenfunction of the laplacian

Let ¢ € C*(M) be an eigenfunction of the laplacian, i.e.
Ap = Ap.
Then by Proposition 1

(39) p(@) = [(p—o)lz, ),
M
and therefore, for an u(z) e T (M),

(40) (u(@), dp(@)> = [ (u(), (Myp—dye)(, )gdr.
M

Our goal in this section is to estimate |{u(zx), dp(x)>|. The formulae (32)
and (33) of Proposition 3 suggest starting with esftimations of the
functions G% and their first derivatives. We shall follow this suggestion.

Let us begin with the following definition: if z € M and x = (z°)
is an orthonormal chart at x, then we write

(41)  yii= (@, %)
:=8up (| Foppn,...o,(2)|: 2€ K (@, 70); a5 By 9, 84y, 8 =1, ooy m).
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LEMMA 5. If x = (z%) is an orthonormal chart at a point z € M and
0<r<ry 18 such that

m_
Vi

42 g
(42) L

s 71 =7n(®, %),
then on the ball K(x,r) we have

(43) G251 < 30 my,,

(44) [Grael < (180 m’r +J)m*y; + jmiy,.

Proof. I. Since ¢*’g,, = 4, = const on K(z, r,),

7 . a0 ac
0 = —— (9%00) = 9% 1900+ 9" Gucy-

Multiplying on the right by ¢* and summing over o's, we get

(45) gaﬂly = _gm’gaplygw'
Differentiating both sides and using (45), we obtain

(46) guﬂlyd = gaegfnldgwgaalygeﬂ - gaagvolyd geﬂ + g“gdelv gqegévld gﬂﬁ.
Further differentiation gives

A7) %00 = —0" 00109 9ens 0™ Guery 97 + 9% Gen009™ Goa1y 9% —
—9% 960109™ 9 op109"° Goory 9% + 9% 96018 9™ Goeryed®” —
0% 90109™ Gooty 9 Tovied"”” +9% 9en09™ Toerr0 9% —
= 9" 9oe1r209%" — 9% Goo1ys 9% Geno 9™ —
—9°9e0109" Foory 9% Gena 8™ + 97 G 0109 Gens 9™ —
~9% Goety 9 Iop169" Jems 9™ + 9°° 9oy 9% Gens0 9™ —
—0° Goe1y 9% 9enie 9™ Gouin 9"

Let us introduce auxiliary notation,

(48)  hy(y) := Max{Igupy,p, D)5 @y By Vay ey 7 = 1y eeey m)

and

(49) H(y):=max{|g*(y): ¢, =1, ..., m)

for every y € K(x,r,); later we shall estimate these functions by y;'s.

Thus (45), (46) and (47) tell us that on K(=x, r,)
(50) |gaﬁiy| < m*H* hy, Iguﬂlyﬁ| < mZHZ(ZmZHh"I"" hy),
19% 00 < MAH? (6m>H2h2+ 6m2Hh, by + hy).

2 — Dissertatlones Mathematlicae CLXXI 8 U
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II. Now, we shall make similar estimates for the first, second and
third order derivatives of the function

1
det'(gd) = ‘m 2 Sgnﬂgl,,(]) cae gﬂlﬂ(‘m)'

s " nell(m)
mce
2 1 =
E;,;det(gi;) =1 Z sgnxn \ gzn(t)l)'gln(l) gma(m)’
nell(n) 1=l
& 1
W det'(gf.") = -m_ 2 sgnn Z [gm(t)wagln(l) gmn(m)"'
nell(m)
)
T+ Ginciyry 2 in()e gln(l)‘:': gmﬂ[m)] y
I
& 1 - ‘
25 0 0" det(g,) = - Z(: sgnnZ[gn(i)woagy.m v ) +
nell(m) i=1

iJ
+Gini)1yo Z GinieT1a() 7% Imnim) +

=
j#t

13
FGinipye Z Ingns Diar) 7% Imam) +
j#i

m

t 4
+ Gintiyry 2 [ Iin(i)66T1201) % Imaim)

j=1
J#L

tfk
+ im0 ngn(k)wgln(l) T gma(m)]}r

Ic#zf
we have on K(z, r,)
0
‘Wdet(yﬁ) < mhy by,
82 2 -2
(51) ‘ pE det(g;) | < m[hyhg ' (m—1) AT,
i - m—

mdet(%) < m{hy BT +3(m —1) hy by B % +(m —1) (m —2) hi kg ~*].
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III. Let us estimate the functions H, h,, ..., h; by expressions in-
volving only y,’s; the result applied to (50) and (51) will give us new
estimations leading directly to (43) and (44).

By the Taylor Formula we have for y € K(x, r,)

9us(y) = dus+ «}gamw(y’)m”(y)x‘(y)
= aaﬂ-l_%( afylé (y )+Fﬂay[d (y ))w)'(y)w (:’/)

for some point y’ belonging to the geodesic interval [#,y]. Thus, on
K(z,r), r <ry, we have

(52) |9ap — apl < MEy 72
Analogously we find that on K(z,r)

(83) |G apiy| < 2my,7.

Finally, just from the relation g, = I'ys, 41T}, We get
(54) 9 apiyel < 291, |G apiyael < 2y,.

Thus, making also use of (42), we have
m —
(38) ho<1l+4+my7*< V3, h<2my;r, hy<2p, hy<2y,.

So, we have yet to estimate the function H. For this purpose we shall
need the following fact: if (a;) and (b;) are n Xn-matrices, then

(56) |det(a;)— det(bu)l

< 'n’ y 2 [Z lam(-.)l] | @ym(s) — Jﬂ(j)l [ 2 lbin(i)l]i

neﬂ(n) =1 =0 i=j+1

where @) : =1 =: b, 1 ;41 fOT every = € Il (n).
Now, from (56) and (52) we infer that on K (x,r)

m
|det(g;) —11 < D) (1+mly,72) " 'miyyr? = (L+mey,r2)™ —1.
i=1
Thus

m,—

(57) (r <

) =(} < det(gy) < 3 on K(z, 7).

Let us use the followmg (standard) convention: if (a;) is an m xXm-
matrix, then 4”7 denotes the (m —1)x (m—1)-minor obtained by can-
celling the ith row and the jth column, i.e. (—1)'*/det A” is the algebraic
complement of the element a;, in the matrix (a;). By (56), (52) and
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(42) we get

m-1

67 — det@*| = |det@” —det 4| < D] (1+miy,r3) " mey, 0
i=1

= (14+m2y, " ' 1< }.
Hence, using (57),

w 07 (—1)"*det@?  (—1)**7§*
9" Taet(gy) det(g;)  det(g,)
1
- det(g,) 187 —detG1 <1
Therefore, 1 —246% < ¢ <1+426% and
(58) 19%°) < 1+26%,
ie.
(59) HL3 on K(z,r).

IV. Applying (55), (59) and —possibly —(42), we obtain
9,1 < 18mly,r,

(60) 19% 58] < 18m2(12my 72 +1)y, < 18m3(2m?+1)y,,
g% 00l < 18m? [36m® (6m* y, 72 +1)pi7 + y,] < 18m?[36m3 (m2 +1)yir + y,]
on K(z,r).

In (61) partial derivatives of the function det(g,) have been esti-
mated. Since we are interested in @jj, it is necessary to have similar

estimations for Vdet(g,). This can be achieved by combining (51), (55)
and (57). Then we find that on K(x, r)

0 1 0
(61) S Vdet(g;) | < o det(gy) ™" | det(g,)

m et 3
Syg Ml S e

and similarly
! 2

(62) |

9 — m — 2 —
e Vdet(g,,){ < TERRED £ L R ()R]

V2 V2

3 5
< = my1[14(5m—2)m2y,7*] < —=m?y,,

Ve 2V2

where the last inequality follows from the fact that

(63) ((42) and m > 3) > (m2y, 2 < 3);
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finally —using also (63) —we obtain

! 3 . L 3m?3 2m
(64) ml/det(gﬁ) <Whih%‘"‘""+ = hoBT
m2
=B BB+ (m L) R4
+V—’T’2_-[haha"-‘+3(m—1)h=h,h::‘—z+(m—1)(m—2)h§hz"-’]
3

< 72:m2y1[(31m2—36m+8)m2y§r“+3(3m—2)ylr+6(m—-1)m°7§r”+r]
+ 5 m
'/‘2— Va
1

3
L —=m? 31m2+18m —28)y,r +6(m —1)my, + 6r]+ — my,.
or2 v1[( Y1 Y1 ] Ve V2

V. Equipped with (60), (61), (62) and (64), we are ready to pass to
the final step of the proof, i.e. to the estimation of functions G2 and
their first derivatives. Let us recall the definition (11):

&’ (l/det (9:) 9%)
" 0x°

1
63w = [ Wi-)ds,  yeK(s,r),

and the coordinates of the point y,_, are z%(y,_,) = (1—s8)a°(y). It is
easily seen that for funectioms ¢,y on K(wz, r,)

& (py)

dxl ... Ox¥k

<S(k) max _3‘4;0—
h ] agens;| 021 ... O

=0

3k_i1p
o1 ... 0xlk—i

] [ max
Aees Sp—t

Hence, using also (57), (69) and (63), we find that on K(z, r)

|

| 62(l/det(g,.j) 9%)

ox” oz

< 3miy, (18V§m37172+ 6|/-6—'m2+ 9l/é-+ 2_'/5'

— — — 5
< 3m? (61/6m2+3l/2'm+91/6 +—)
X Y1 2'/5 '
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& (l/det (94) g"")

= mzylr[108(21/3m+1)m‘+9(24l/—+ 5)m? +

oa” 02° 0°
9
+ 2 m24-9m —11] < 75 m[(m—1)m2y}+(2V3 m +1)y,].
So, on K(z,r)
(85) 1628 < Smey, (sﬁm2+3;/2_m+9;/6—+ mfiz_)
Let us notice that
. _
& (Vdet(gy) 9*) ( )
af _ i l Rl Tl 1A
a) = [+ iy W 0 ) (g)a
. I
& (Vdet(g,;) g%
— [20-nZEIMG) ST a,

0

because z°(:,_,)(¥) := 2°(y,_,) = (1 —8)z°(y). Therefore on K(z, r)

1
(66) 1G5l < l/5mzmtlos(m/zzm+1)m4+9(24»/‘ +5)m3+

+'2—°m2+9m—11]+—3—m[(m—l)m*y§+(2;/3m+1)y.]-
2V

If we apply to (65) and (66) very rough estimates consisting in: 1°
replacing m* by m*+!/3' which is not less because m >3, 2° replacing
irrational square roots by greater rationals, then we arrive at much
simpler inequalities (43) and (44). m

The above lemma enables us to prove the following

PrOPOSITION 6. Let x = (z°) be @ (positively oriented) orthomormal
chart at a point x € M. If the constant r, connected with the function o i3
such that

(67) FES '/7;’:/—1 y 71 =nlz, %),

then for every w(xz) e T, (M)

(68) [ Ku(@), dyp(z, )| < 5m2™ u(@)|r,
M

and

m 1
(69) f IKu(@), die(z, )>|v < 530m!°*+122m [ (Yi+ya)retyire+ r—]’
M

c

where, just as y,, also y, = y,(z, x).
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Proof. For the moment we assume the positive orientation of x.
But this is irrelevant if we look at our assertions (68) and (69).
Let °:= {u(z), dz°) be the coordinates of a vector u(z) e T (M)

in the basis {

m
} Then for p e C*(M) and y € K(z, 7,)

(u(x), (Ao x1p)(, ¥)) = w’p(y).

ox°

Moreover,

(70) D) <V (@)

og=1
It follows from Proposition 3 that for y € K(z, r,.)

(71) [Cu(@), dip (2, y)| < lal(m—2) lu(@)l(z, y)' ™,
and for y € K(z, r, )\K (z, }r,)

(72) [<u(z), dyp(z, Y| < la“/m Il () ”( ) ('m‘l‘ )

< 2la|m nu(w)u(T) y

By (67) and (57) we know that _‘/_1_ l/det(g,, l/— on K(z,r,), and
therefore for every r <7, and k>1

a mi2 k
(73) 0< fl(x’ )k— m,\ Vﬁm-n: .f_

EG) I'(m[2) Kk
Now, using (71), (72), (73) and (5), we obtain

[Ku(@), dip(@, DIt = [ Kul@), dp(, [T
M

K(z,re)
<lalm=2) (@) [ Uz, )"+
E(z,{re)

2\™ m
+2|a| m*? [ju(z)) (—-) ¥e f T
e K(x,ro)\K(Z,krc)
< l/é—m[ ___(_2_;1l

Aciis +——] (@), < 5m 2™ [u (@)l

which completes the proof of (68).
Let us pass to the proof of (69). By Lemma 5 we know that for
y e K(z, 1)

(74) |Gao(?/)| 30 m'y, =: 4
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and

(78)  16750(¥)] < 180m"yil(z, y) + mE(3mPy}+5y,) =: Bl(z, y)+C.

Next, we shall apply the inequality m* < 3-'m**! resulting from m > 3,
which was already used in the proof of Lemma, 5. If y e K(», 4r,), then
col(z,y) =1, ¢ ol(z, y) = 0 and |2°(y)| <1(z, y). By Proposition 3 and
(70) we get

[<u (), dye(z, y)>|
< |a] V2 m¥ (m —2) ()] [(m* + 2m® 4 Bm2 4+ 2) Al(z, y)' ™+
+m(m?+1) (Bl(z, y) +C)l(z, y)* "]
< L2 lalm (m — 2) | (@) [ & méAL(w, y)"™+
+10m? (Bl(z, y) +C)l(z, y)* ™.
Now, using (73), (8), (74), (75) and the analogue of (63)
(76) M2y, 7e <

following from (67), we obtain

1
6

17 [ Ku(@), dye(w, )<
K(z.§7.)
<L m u(@))| (S Bri 4307, +¥mA )r,

= Lm* O ()] [T6myiri g me (Fme 4+ va) 7+ B10mey, |,

Va m+ V2 [y m)“[“s "+ ( i+ 31 72 ]r

36m0t12 [()’1 +v2) T+ 117y

where the last step consists in very rough simplifying estimations. If
yeK(z,r) \K(z, 4r,), then 0<col(z,y)<1 and all [cDol(z,y),
i =1, 2,3, are estimated when we know that on R

S
<

, 4a 1 9
lo I < - —
e 7, 7.
. 2 1 96
(78) lo”] < -

2%a 1 _ 1725
et rg r

these inequalities will be proved later. Hence, for the functions f,

IIII

le
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i =1,2,3, defined in (34) we obtain

m

rs 2 " 11 2
|filzy )| < (m'{"f) (T) <Tm(7‘) y

. u £m+2 10, ., 2 m+2
lfz(wry)|<(m +Tm 2) r S3m " y

ifa(@, ¥)| < +(2m*+27m2 +108m + & 2\ mga 2
ary)l\z(m+ m?+ m+4)r \24m—r— ’

l(m+2)fa(z, ¥)+ Uz, ¥)*falz, ¥)

2 m+2 2 m+2
< 3 (27m?4-136m 4280+ ) (7) < 22 2 (T)
[+ c

Now, by Proposition 3, the fact that ir. < 2%(y) < r., (70), (74) and (75),
we get

iKu (), die(w, y))|

B g \m1 9 \m—1
<‘/2la’lmslz”u(a;)ll{4:—"’("'—) +§m(7) X

c

X [m(80m2+11)(Brc+0)rc+2(562m‘+200m2+11)A]]

2\™ 413
< B_'— m? (——) llw ()] {_-- +37m*[131(Br, +C)r, + 25 mA] r,,}.
V2 Te Te
Applying (73), (5), and the fact that m2y,r? < ¢+ (cf. (63)), we have
m
(79) [ Ku@,dee, »ie
R(z,0)NE (240
Vi . m*? (2™ —1) {413 1 ., 94666

3 413
< % m*? (2™ —1) ||u ()] {T_ + m’[(14y3 + 3y.) 7.+ 212y1]rc}

c

< 530m0+i (2™ ——1)\ [(?i + )1+ +_1‘1_] )

4

where the last step consists in very rough, simplifying estimations. Now,
adding (77) to (79), we arrive at (69).
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To complete the proof we must show the inequalities (78). Let us
use the fact that, for k¥ =1, 2,

(2 —1)"exp( tZil )’ = (%)k.

Thus for the function F defined in (2) we have

sup
<1

a rt 23a s 29a
(80) <=, PS>, [FUI<
e e e
By the symmetry of the function exp (wz 1) we have
1 _
1 1 1 V2
fexp do > exp( ) 2 — = .
4l #=1/ vy V2 e*

02
Hence a < '/2_, which together with (80) gives (78). m

Let us return to the situation described at the beginning of this
section. The last proposition gives most of the arguments necessary to
prove

THEOREM 7. Let x € M and let » be an orthonormal chart at x. We
denote

m‘/i_-—l 1/2
1= := mi —r _— |1
(81) 0o 1= 0o(T, %) min l"or [ miy,(a, ”)] l
If p € C®(M) i8 an eigenfunction of the laplacian, i.e.
dp = Ap,
then for every u(z)eT_ (M)
(82) [<u (@), dp(z))] < 5m2™[A, +Ag,]|lu(2) sup Ip(y)l,
yeK(z,eq)

where

1
(83) A, i=A,(z, %) 1= 106m’*'" [(?H-ye) 0+ 71 Qu+_]

0

(here both s and o, depend on x and x).

Proof. Let us take the already defined parametrix p (cf. (4)) but
choose the constant 7,—in the definition (1) of the function c¢—equal
to o,; this permits us to use Proposition 6. That Proposition and (40)—
obtained with Proposition 1 —gives (82). m
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3. A normal chart on a neighbourhood of a geodesic

Let
(84) [0, L]as—>q(s)e M

be a geodesic connecting distinct points ¢g(0) and ¢(L); s is the natural
parameter. We are going to investigate the mapping exp from a neigh-
bourhood @ of the zero section of the normal bundle of the geodesic q
onto a neighbourhood of this geodesic. It is known that there exists ¢
so small that exp: 0—M is a diffeomorphism “into”. The neighbourhood
0 has the shape of a tube. Our goal is to find, for each minimal geodesic
connecting two distinct points of M, a positive constant estimating from
below the maximal radius of such a tube.

Let us choose an ordered, orthonormal basis &, : = (u;(0))7 in T ) (M),
assuming that its mth vector is tangent to g, i.e.

i

d
(85) tn(0) = — a(s)

8=0

For every s € [0, L), &, := (u,(s))" is the ordered, orthonormal basis in
T, (M), obtained from #,, by parallel translation along ¢g. Hence

(86) Vum(n) Uy, (8) EE 0.

wn(s)

Upm(S)

Uy (0)

q(0)

Let

(87) Q:= K"'(0,r,)x[0,L] < R™,

where K™~ 1(0, 7,) is the ball in R™~, of the radius r, and the centre at 0.
We define a mapping f: QM as

(88) f(81y eeey8y): =equ(,m,(lzl skuk(s,,,)).

m—1 m-1
The assumption 0 < 3 s; <7; ensures that the vector 3 s,u,(s,) has
k=1 fe=1

the norm not greater than r, and therefore it belongs to the domain on
which exp: Ty, \(M)—>M is a diffeomorphism.
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Let » = (z") be a normal chart at a point z € . We dendte
(89) [Ij:= Iz, x)
= BUP{II'Eﬂal...a,.(z)l: zeK(w,70); ayByyyb1y..0y 6,

= 1, ...’M}.

Moreover, we define two constants to be used in the next proposition:

— [r.,+(4r.,+irl)m]_’, Iy #0,
A, = Ay(z, %) := ml/2(m—1) m
o0, if I, =0,
(90)
Ay:= d4(x, %)

1
— mIT+ T+ 6(m—1) I3+ A, i T, #0,

oo

? i.f Fo=0’

where I'; = I';(z, ) and A4, = 4,(z, x). If we want to avoid a rather
complicated expression defining 4,, we may use

(90)’

Ayi= Ay(z, %) 1= [}%{ [me'§+1‘1+‘|/% pl]-l i T, %0,
00,. & 1o
and then, by simple calculations, we obtain
A < A,

This allows us to replace 4, by A; in requirements of the type: »let ...
be less than or equal to A,«.

The coordinates of points with respect to », as well as the coordi-
nates of other geometrical objects, are denoted by adding a respective
index, e.g. p°:= z°(p) for a point p from the domain of .

PROPOSITION 8. Let a = (84, ..., 8,,) €Q and let x = (x°) be the ortho-
normal chart at the point q(s,), spanned by the (orthonormal) basis &, _, i.e.

0
W(Q(sm)) = U (8,), k=1,...,m.
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We write
m—1

(91) jal:=( Y )"
k=1

obviously, |a| < |jall.

If

(92) la] < A, (q(85), %)

and

(93) la)* < Ay(q(8m)y %),

then the mapping f,: R™—>T,, (M) has the maximal rank (equal to n)

and therefore f is a diffeomorphism “into” on a neighbourhood of the point a.
Proof. Let (e,)7* be the canonical ordered basis in R™. The proof

consists of few steps. d

1. Let us calculate f,e, for i # m. Obviously f.e; = 7 fla+ze)

But

m-~-1
fla+7e) = equ(am)[Z (3k+taﬁ)uk(sm)]
k=1

m-1 a
= €XPy(s,,) [2 (sk+raki)W(q(8m))]'
k=1
Thus f(a+ ve,)* = 8, +19,;, i.e. (fie;,)* = &, and therefore
, 0 .
(94) fati = 5= (fl@), §i=1,...,m-1.

Since we would like to find f,e,,, we are interested in vectors

m-—1
(95) 0(7) 1= D) 8,Uy(8;+7) € Toein) (M),
k=1
Obviously
, d
(96) Jalm = dr equ(am)v(t)

T=0

II. Let us calculate the coordinates v(7)* of the vector »(r). Each
vector »(r) is the result of parallel translation of »(0) along ¢g. Thus

Vo o +92(t) =0 (for small 7's);
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0 .
(¢(s)). This and

here we have used the simplifying notation 9,(s) : = ppc
z

the fact that »(x) 19,(s,+ 1), ie.

m—1

(97) o("=0 and  o(r) = D o(c)Gh(en+),

k=1
gives
m—1

D [0 0(sn+ ) +0()* T (4(8m + 7)) (s +7)] = 0,
k=1

d
where #(7)* : = 7 »(7)¥ and the summation over a runs through 1, ..., m.

If we put Iy, (7) : = I'my(q(s,,+ 7)), then we see that for k¥ =1,...,m—1

m—1
() + D) v(e)Thi(x) = 0.
i=1 *
Next, the summation convention will be understood as follows: sum-
mations over Latin indices runs through 1, ..., m —1, while summations
over Greek indices runs through 1,...,m. So we have

o(r)f = =TIk (v)v(z)! for Kk =1,...,m—1.

In particular, when v = 0, it follows from the normality of » (I'k,(0) = 0)
and from (97) that

(98) 9(0)0° =0, ae=1,...,m.
II1. Let us calculate f,e, . Because of (96) we introduce
(99) p(T) = equ(am+r)'v(t)'
By the definition of the basis %, ,, we see that d(g(8n+7), (7))
m-1
= [o(z)ll = ( ) s})"* = |a]. For every let a curve [0, |a|]> t—p(r) e M
k=1

be the unique minimal geodesic connecting q(¢, + ) and p(7), i.e.

p(0)

p(T)

Q(Sm+ T)

7 (sm)

(100) () = equ(sm+z)t’”(T)-
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Then obviously py(r) = q(s,,+7) and p,(r) =p(r). If we denote
Pe(7)? :=%p,(r)", then for every (small) r we have the equation of

geodesic
B+ T3, (P =Y BuleY = 0.

Let us notice that py(r)’ = ¢(s, +1)* = 6" and P,(r)* = v(z)" Thus,
by the Taylor Formula, we have

P(7)" =D (7)° 1
= Do(r)" + lal Bo(2)" + |af? [ (1 — O)fy(r)"d6

= 78"+ lav ()" ~ [af* [ (1—6)T%, (ps(7)) Po(z) Bs(z)dB.

It follows from (100) that

LY a d a d k| 2
Pe(0) =d—t(equ(,m)tv(0)) Y = —cﬁw(O) " = 2(0)".
Using this, (96) and (99), we find that
’ a d a am a
(foem)® == P(1)°| = 6™ +E(a),
T =0
where for ¢ =1,...,m
(101)
1
a 2 a d ] B Y
E*(a) := lal* [ (1= 6)] T3 (Par(0) | == Pow (17| 0(0Fv(0)" -
0 T =0

"ng (p0|al (0)) [rgq (p0|a| (O)) '0(0)y +I‘gn (Pam (0)) ”(O)ﬁ] ”(0)6”(0)n}d6'

In other words,
0
7

, 0
(102) Jatm = o (F(@)) +B°(a) 5 (F(a)

This and (94) give us f,.

IV. Now we are going to prove the following

LEMMA 9. If we assume the hypothesis of Proposition 8, then the num-
bers E*(a), a =1, ..., m, defined in (101) satisfy

la]*

(103) @) <
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where Ay = Ay(q(8,,), %) ¢f. (90), and x is the orthonormal chast spanned
by the basis %, .
Proof. From (95) and (97) we have

(104) 0(0)°] = s <lal, a=1,...,m.
Looking at (101) we see that the crucial point of the proof is to estimate

% p,(z)° hofor 0<t< |a]. Let us notice that we have a 1l-parameter
family of geodesics

(105) t—>p,(r), where 7> 0.

We distinguish that for r = 0, denoting it by

(106) t—>o(t) : = p,(0).

(0) P(T)

da(t),

a(t)

\
q(sm)
) d . . .
Let o(t) = @ o(?). We are interested in the vector field X along the
geodesic o, defined by the family (105) as follows:

d
(107) X () ::d—rp'(.t) € Ty (M).

T=0

Thus X is a Jacobi field along o; cf. [4], p. 174, Th. 1. So, it satisfies the
equation

(108) V:V;X = —R;x0,
where R is the curvature tensor.

Using the coordinates, we have X (1) = X (1)° _33;_“ (a(t)). By dots we
shall denote the derivatives of X (¢)* with respect to ¢.
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Since
. i d o - 8. alm,
(109) o()° = —p,(0)* = 9(0)* =
dt y a=m,

equation (108) takes the form (cf. [4], p. 117)

m—1
(110) X (1)°+2X? ) 8,15, (o() +

k=1

m~1
X ()’ 2 88| Tapn (0 (1) +Ta(a (8)) I, (0 (1)) —Ris (o (1))] = 0
k=1
for a =1,...,m.
It can be seen that

d
X(0)= = po()

d 0
== q(8pm+7) = 2 (g(s))5

=0

_o) t=0
d

_ d _ d
o

=0/ =0 dt

=0

moreover, by (98),

d

d
X(0)=E‘,—( p.(7)

= (0) = 0.

=20

Thus the equations (110) are accompanied by the initial conditions:
X(0)* = &,

(111) . a=1,...,m.
X(0)* =0,

Let us denote

@3(t) = —2 ) 8, Tps(0 ()},
k=1
m—1

a(t) := 8,81 [Tapu (0 (1)) + 17, (0 (1)) Ths (o (2) —Rgys (o (®))]

k=1

where a,f =1,...,m. Then (110) has the form
X (1) = Q5(t) X (1) +H(t) X (1)’
¢

Substituting this and (111) into the identity
]
X (1) = X(0)°+ [ X(z)*dr,
0

8 — Dissertatlones Mathematicae CLXXI
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and also taking into account that

X(z)? = 6"”‘+fX(z')ﬂdr',
we obtain ‘ ’
(112)  X()* =[G X’ (v)dr+ f Hi(r) [0+ j X (v dr')d-.
0 0 0
This enables us to estimate |X (t)"|. Indeed, if
W:=sup{X®): 0<t<lal, a =1,...,m)},
G:=sup{|G5(?)|: 0t
H :=sup{|H3()|: 0<
then it follows from (112) that W < m@W +H (1 +mW), i.e.
(113) Wl—m(@+H)]<H.
Since Ry, = Igs,—1Iys0+1y, 18— 13,17, it is easily seen that

<lely ¢y =1,...,m},
<

t<lal, a, f =1,...,m},

G <V2(m—1)I,|al,
H < 3(m—1)(mI5+17)]al2
Let us show that by (92)
1
< —.
(114) G+H < 5
Obviously,
1 — 1
(115) G@+H—— < 3(m—1)(mIi+I})|a*+V2(m—1)T,|a] — —.
2m 2m

If I'y =0, then I, = 0 and (114) holds. Thus we assume that I'y > 0.
The right-hand side of (115) is a polynomial of second degree of the variable
|@]. This polynomial has one root negative and the other positive. Hence,
if |a| is not less than the positive root equal to

1/ iy 2w,
m 1

3V2(m—1)(mI2+I}) =" [(4Po+%1“1)m+1’0]

then (114) holds. But fulfilment of this condition is ensured in (92). Now,
by (114) and (113)

W < 2H < 6(m—1)(m2lg +1)|al2
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Therefore, for every 0 <t < |a] we have
1

=Xy

t=0 ]

d
1d_r pu(7)°

[4
< 1X(0)] + |fX(t')°dt'| <1+tW
0
< 1+6(m—1)(mI5—TIY)lal®
This and (104) applied to (101) give us
(116)  |E*(a)| < m*{I[1+6(m —1)(mIg+1I)lal*]1+2mI5}|al’.

Now (92) and (93) complete the proof of Lemma 9.
V. It follows from (94) and (102) that the matrix of the linear mapping

m

7
fo: R™>Ty, (M), in the ordered basis (e,)]" and (ﬂaa;“ (f(a)))l, equals

1 E\(a) |
0
0
1| E™(a)
0 0|1+E™(a) |

Thus (103) ensures that rank f, = m. m
For the sake of convenience we make a digression. If » is a normal
chart at a point # € M, then we define two constants,

1
Ay:i= A (@, %) := tumiy,’
(117)
A,
A= Ay(@, %) i = ———,
8u(m+-2)
where
(118) w:i=2"m!

and y, = vo(z, %), 43 = Ay(z, »); cf. (41) and (90). The proof of Prop-
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osition 8 gives us all the arguments neccessary to prove the following
theorem, which we shall use in the next section.

THEOREM 10. We assume the hypothesis of Proposition 8. For the
mapping f,: R™>T,, (M) we have:

1° If
(119) laf < Ay = A,(q(8n), %,
then
(120) Ifall < 2m;

2° If, in addition to (119),
(121) lal* < A = A (q(3m), %),
then
(122) (volfe)? : = det((fzealfats)) = 1,

where {e,}T* i8 the canonical orthonormal basis in R™.
Proof. From (94) and (102) we know that

gaa(f(a))! a<< m,
I (f(@) + 9up (f(0)) B*(a) P (a), a =m.

As was done in the proof of Lemma b (cf. (562)), we find —using the Taylor
Formula —that

(124)  |9q5(f(a)) = 8upl < M2y1(q(8m), #)1(2(8n), f(a)* = mPp,[al2
Applying (124), (103) and (119) to (123), we get

(123) Ifatal’ =

(125) 0 < go5(f(a)) E*(a) B’ (a)
8
< [m(14-m?y,lal?) + (m2—m)miy,|al?] l;l,
3
8
< m(l+m3y,la]?) 4] e < 2m lal < 2m

A
m
If we take a unit vector w = 1%,, i.e. D' (4")? =1, then

aml
Ifae0ll2 < m(27)2]|f, e,

<[ 3 gua (1(0) +04p (@) B (0) B (@)

a=1

< m[m(1+ m?y,|a?)+2m] < 4m?,
i.e. (120) holds.
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It follows from (103), (124) and (119) that

jaf* laj*

9. f (@) B? (a)| < [14m?yy a2+ (m—1)m?y, |a)?] 1 1
3 3

If we usc this and (125) together with (94) and (102), we see that

(126)  [(faeulfaes) —guplf(@))] < ' ll
)
|6

+2m
|(fatalfals) — Bapl < 2(2+’tn)—+m’hlal2

4 4
'“' <2(2 +m)l§_‘_

Hence, by (124), (119) and (121

1 1 1
4um  4pm 2um

and obviously
(fieqlfats) <14+D < 2.
Finally, using formula (56), we have

m—1

|det ((faealfaes)) —1| < m! Y 2DI™~! =m! D(2"—1)< }. m

j=0

<2—.

37

Let us now return to the main subject of the present section, i.e.
to an investigation for what subset of @ the mapping f defined in (88)
13 a normal chart on a neighbourhood of the geodesic (84). We define
the set Q' consisting of all @ = (3,,...,5,) €@ which satisfy (92) and
{93). Then Proposition 8 tells us that —after restriction to @' —the mapping

(127) f: Q'>M

is a local diffeomorphism “into”. The question arises whether it is also
a (global) diffeomorphism “into” —in other words, whether it is injective.

In order to answer this question we prove the following
ProposiTIoN 11. Let o > 0 be such that

(128) KE™71(0, ¢) x [0, L] = @".

P{ __________________________ Q ra
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Ifa' =(s},...,8") €@, i =1,2, are such that s}, +# &,

(129) 6l <te, 4=1,2
and
(130) f(a') = f(a?),
then
(131) @t + |a?| < |8;, — 85,1
Proof (a.a.). If (131) does not occur, then, by (129), we have
(132) |83 — 80l < do.

Let us define:
1° D, :=f(E™(0, ) X {8n}),

where 3,, € [0, L]; D, is an (m—1)-dimensional geodesic disc of radius ¢
and centre ¢(s,), which is normal to the geodesic ¢;

2° if peD, , ie. there exists a unique point b e K™~'(0, ¢) such.
that f(b, s,) = p, then

[9(8), P):= {f(th, 8p) € D, : 0 <I< 1)

[¢(8), p] is the minimal geodesic interval in D, , connecting the centre
of D, with p.

We are going to show that for every (small) ¢ > 0 there exist non-
equal 8, 8, € [8,,, 87,] such that |s;, —s,| <& and D, N D, #@. This

obviously contradicts the fact that f: @' —~M is a local diffeomorphism
“into”.
Let p':= f(a,) = f(a,) and

Sm = b8y +85,).
If we take a point p € [¢q(sl,), p!], ¢ =1 or 2, then
Lg(sh)s 2) < U(a(s3)5 9(87)) +1{a(s0), P)
< dsm—sml+ 1o’ < do < @5
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cf. (132) and (129). Thus, there exists a point
p?e D, N([q(sn), P'TVUI4(s3.), P))
and
Z(Q(S:;))Pz) < o.

Without loss of generality we may assume that p? e [q(s?), p!). Then
we define

s:n = %(3311"{"3121:)1

and, as before, we find that, for every point p e [¢(s,), »%], i = 2 or 3,

Lg(sh), p) <1(a(sh), q(si) +1(q(sk), p)

(s, pY), if =2
Ug(sy),py), if =3
%91 if i =2| 5

bo, if i=3[<§9<9'

< 38y, —s5+

<i9+{

Thus, there exists a point
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p*e D, n([q(s}), p*1Vlq(s}y), p%))
and

l(Q(stn)y Pa’ < 29'

Choosing ¢ = 2 or { = 3 such that p? e [q(s’), p?], we define
S 1= }(Sh+ 87)

and we proceed as before.

This construction leads to a sequence s, n» =1, 2,..., such that
|87, — s+ =2""p, and moreover for every n we have Da" n(Da,,_luDo,,_,)

# @, which completes the proof. m ™ ™ m
For our geodesic ¢ introduced in (84) we define the constant
(132) rg:=1 inf {A4,(g(sn), %), 4s(2(8m), %)™ 7o},
8me(0, L)

where A, and A, are defined as in (90) and x, occurring next to q(s,,),
is the orthonormal chart at ¢(s,), spanned by the basis 4, —ecf. the
beginning of the present section. (Thus r, depends not only on ¢ but
also on the choice of %,.)

As a simple corollary to Propositions 8 and 11 we have

THEOREM 12. If [0, L]> 8—>q(8) € M i8 a minimal geodesic (conneot-

ing ¢q(0) and q(L)), and %, = (uk(O)}{" i8 an orthonormal ordered basis
in Ty (M) such that (85) holds, then the mapping

(133) f: K™ 10, r)x [0, L]»M

defined by formula (88) is a diffeomorphism “into”, i.e. it 18 an (ortho-)nor-
mal chart on a neighbourhood of the geodesic q; here r, is a constant given
by (132).

Proof. K™~'(0,7,) x [0, L] < @', where Q' was defined before Prop-
osition 11. Thus, by Proposition 8 the mapping (133) is a local diffeo-
morphism “into”. Let us take a' = (s},...,s,)e K™ '(0,r,) %[0, L],
¢ = 1,2, such that s,, # s3,. Then a! and a? satisfy the hypothesis of
Proposition 11. If we assume f(a') = f(a?), then by the minimality of
the geodesic ¢ we have

|8 — 8| = L(q(83.), a(s7,))

< g(sh), f(ah) +1(f(a?), q(sk))
= |a!|+|a?| (contradiction).

Thus (133) is an injection. m
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4. Minorization of the first positive
eigenvalue of the laplacian

From now on we assume that our Riemannian manifold M is compact.
One of the main foundations of this section are Theorems 7 and 12. They
contain estimations of a local character, i.e. the estimating constants
depend on the point (Theorem 7) or on the geodesic (Theorem 2) for
which the estimation is made. To get rid of this dependence we define

:1-771‘ 1= supy;(z, %),
Y= infy;(z, »); cf. (41),
m _
a_

1/2
(134) g0 1= infgo(@, %) = min{ro,(—”"’z_ ) }; of. (81),

1

4;:=supd,(x, x),
A;:=infd,(z, %); cf. (83), (90), (117);
here the bounds are taken over all z e M and all orthonormal charts x»

at these points.
Now, just as a corollary to Theorem 7, we have

THEOREM 3. If ¢ € C*°(M) 18 an eigenfunction of the laplacian, i.e.

Adp = Ap,
then for every x € M and u(x) e T.(M) we have
(135) [<u(w), dp(x))] < By(4) |lu(z)) Sup )Isv(y)l,
yex(x,T
_where ’
(136) B, () : = 5m2™ (B, + Ar,),

, 1 V3 _y\-lz /o
B,:= 1oem°+"2[(>7f+a7z)7% +7atot - +m(Vi-1)"1 1/71].

1 1
Proof. Since (min/{a, b})“g;—i—? for a,b>0, we see that

1 1 m_ " )= . .

e—<-r— +m(l/§—1)"”'l/;71. Using this and the fact that ¢, < r,, we
0 1]

obtain 4, < B,. m

Let us write

1
B, (4)

(137) e(A) := } min { y Toy Asy :/‘_?_3.’ 4'/_;7 4;/25}
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(cf. (136) and (134)), and let
(138) Vi= [z

be the volume of the manifold M.

PrOPOSITION 14. If ¢ € C°(M), Adp = Ap, A > 0, |ipll = 1, then there
exist two points ,y € M such that for every o' € K (z, ¢(1)) and y' € K [y, ¢(2))

1
(139) (") —@(¥') > —=-

2VV
Proof. Without loss of generality we may assume that sup|p|
= supy =:». Since 1 = |lp| = fqa;: < vV,
1
(140) 14 2 —_—
4%

Let z be a point for which ¢(z) = ». Since 41 > 0, (¢|1) = 0. Thus, there
exists such a ¥y e M that ¢(y) < 0, and therefore

(141) p(x)—@(y) > ».

Let us take z’ € K (z, ¢()) and let C be the (unique) geodesic [0,1] > t—
—; € M connecting z' and x, i.e. z, = &', ¢, = . Then |l&| 5 l(z, 2').
Moreover, by Theorem 13 and (137) we have

lp(2) — @ ()] =|Cfd¢l

1
=|[ <@, dp(@)>dY < B.(W)Ua, 2')»
0

< By (Ae(A)yr <v/4.

Analogously, |p(y)—¢(y’)| < »/4 for every y' € K (y, £(A)). Combining this
with (140) and (141), we obtain (139). m

Let =,y € M be as in the above proposition. We define the natural
number

(142) ni= E(2Vm—1 l(“”y)).

£(A)

We choose a minimal geodesic [z, y] connecting the points # and y. Let
Y, € [z, y] be the (unique) point for which

e(A)
2Vm—1

(143) Uzyy1) = m
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Then
(144) Uy, y) = Uz, y) Uz, 1)
() [2Vm—11(z,y) _E(Zl/m—l Iz, y) )]
" 2Vm—1 £(4) =(A)
e(4)
L —,
2Vm—1

Let us fix an ordered orthonormal basis Z = (%;)7* in T, (M), such
that %, is tangent to [z, y]. Then the set

m—1
e(A)
(145) 0, :=ex _————{ E'A,-u,-: 4] < }
" p"'2l/m—1 o t

is an (m —1)-dimensional (geodesic) cube in M, with the centre at y,

and the edge £(4)/2Vm —1, orthogonal to the geodesic [, y]. It is easily
seen that

(146) 0, < Ky, e(d).

[xy)

K(x, £(2) A

— A !
Indeed, if y'erl, then I(y,y,) <Vm—1 e = 8(2). Thus, by

2Vm—1
(144), Uy, y) < &(4).

We are going to apply the results of Section 3 to that part of [z, y]

which lays between y, and z. According to the notation of that section
we have

; e(A)
(147) L:=ly,, x) =ﬂ2—}/m—i’

and {0, L]>s->q(8) e M is the natural parametrization of the part of
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[z, y], connecting y, and z, i.e. ¢(0) = y,, ¢(L) = 2. As the ortaonormal
ordered basis #, in T (M) we take the basis 2.

Let
(148) P:={(A,...,4,) e R™ 0< A, <n; A<}, i=1,...,m—1}

and
£(4)

(149) P:=

[ ]
=
s
|
i

€m-1

/ l "
A e e -

e

Then formula (81) defines a mapping
(150) f: P>M,

i.e. P < Q; cf. (87) and (137). The definition (137) of £(41) ensures that
we may use Theorem 12. It tells us that the mapping (150) is a diffeo-
morphism “into”. Thus also the mapping

2Vm—1

(151) P s a—f(a) :=f( e(4) a) eM

is a diffeomorphism “into”.

K(x,£(1) K(y, e(1)

Defining ¢(4), we were careful to make it possible to use Theorem 10,
which gives estimations of |f,il and volf, for each e € P. In this way we



4. Mioorization of the first poeitive cigenvalue 45

obtain
2, me(l)
152) <
(162 Il < ==
and
(153) (volfy2 : = det((feslfie) > 3 e2)
a’ abilJa¥s]) = ———2'/m_1 ,

where {¢,}7 is the canonical orthonormal basis in R™.

Now, let us introduce several notions that appear in paper [10]
(Sections 1 and 2), the results of which we are going to use later.

Obviously, P is the sum of n copies of unit cubes in R™. Let us tri-
angulate the unit cube I™ in the canonical way. The triangulation is defined
inductively with respect to m; if a,, ..., a,,_, are the vertices of an (m —1)-
simplex lying in the base I™~' of the cube I™, then for every k =0, ...
..., m—1 the vertices

Ay oony Cn1y ot €y oony Gyt-€

span an m-simplex, in I, over our (m —1)-simplex. By translations we
get a triangulation of the whole P. This triangulation will be called of
0-th generation. Dividing all the edges of our cubes into 2, 4, 8,...,2% ...
parts, we get partitions of these cubes into 2™, 2*, 2% .. 2™ smaller
cubes (respectively). The triangulation of the cubes we started with
determines —by dilations and. translations —a triangulation of all smaller
cubes. The triangulations of P obtained in this way will be called of 1-t,
2-nd, 3-rd, ..., k-th, ... generation (respectively).

For every k>0 the diffeomorphism f transfers the triangulation

of kth generation, of 15, giving us a triangulation of Imj" c M, which
will also be called of Zth generation. Let

m

m
(154)  8ii= A(agy .vry 8p) 1= {ag + Y a(a;—ap): 0<a;<1, Y <1

T=1 i=1

denote an m-simplex, of kth gencration, in 13, with vertices a,, ..., a
then

.
m)

(155) 8, 1= f(8)
is an m-simplex of kth generation, in Im f We denote

(156) z;:=f(a), §=0,...,m.
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Then we define

r(8) 1= m_aﬂ(wn ),

(157) d
7, 1= Maxr(s,)
S)_.CTg
and
(168) 9(8yy ) : = det ((wov Z; | @, wj));

cf. footnote (), p. 9. If we write
C, : = inf(volf,)’,

aeP
C, := sup|if,ll,
ceB

then Theorem 2 of [10], which we are going to use, states that for suf-
ficiently great k’s —i.e. greater than a certain k,—
9(8ky @) > C,
,'.im = 2(4m02)2m’

which, together with (152) and (153), shows us that for sufficiently great
k's

(159) g(sk:nwo) > 4 1ymm
T
It is easily seen that the points a,:= (0,...,0) and a,:= (0, .
., 0, 27%) belonging to P are neighbouring vertices of the triangulation

of kth generation. Moreover, f maps them into the geodesics q connect-
ing v, and . Thus, by (1567), we have

. o A e(A
(160) r,,zuf(ao),f(al))=Z(q<0),q( ”‘(_’_12-"'))=—L2-".

2Vm — 2Vm—1
Applying (160) to (159), we see that for sufficiently great k’s
(161) g(8y @) = 4~ KHIM—Lgp=am g (yim,

here s, is an arbitrary m-simplex of kth generation in Im f
If we take two vertices 5y T of an m-simplex s, (cf. (155), (166)),
then the difference I(z;, z;) — || fa(a a;)|| decreases to zero more quickly
than |la; —a,ll, as k—oo. More precisely, there exists a sequence
(162) a;—0
k—o0

such that [I(z;, z;) — IIfs,(a;— @)l < a;lla; — a4l
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Thus
Uy, @) < Ify, (0 — @)l + ay g, — a
< (Cat ap) llg; — a,ll < (Cy+ a) 2"V m.
Hence, by (1567), we have

(163) e < (Cy+a)Vm 275,
The estimations (161) and (163) will be used later.

Our triangulation of O0th generation can be extended from the set

Im f to the entire manifold M. Every m-simplex of the extended tri-
angulation is a diffeomorphic image of the canonical m-simplex

(164) A™ = A0, ¢, ...,¢,) (cf. (154))

in R™, where {¢,}7* is the canonical (orthonormal) basis in R™. Such tri-
angulating diffeomorphism determines the family of finer and finer tri-
angulations of the m-simplex; each member of the family is nothing but
the preceding member (triangulation) divided “into halves”. It is not
difficult to ensure that two such families on neighbouring m-simplexes
fit together on the common face; it suffices that the triangulating diffeo-
morphisms coincide on this face. Moreover, we may assume that if for
every m-simplex which we started with we take the %kth triangulation
(i.e. the kth member of the respective family), then the resulting tri-

angulation of M coincides on Im f with the triangulation of kth generation
defined before —see p. 45. This triangulation of M will also be called of
kth generation.

Let X, be the set of vertices (0-simplexes) of the triangulation of
kth generation of M. In X, we have the following relation ~:let z,, z, € X,,
then z, ~ z, iff #, and 2, belong to the same edge (1-simplex). In [10]
the set X, with the relation ~ was called a net. The notion of difference
form on X, was introduce (Chapter II) and some difference operators
were defined. Here we shall use only some of the results of [10] and there-
fore we confine ourselves merely to recalling a few definitions.

Let X be a net, i.e. X = X,, X,, X,,... For every k =0,1,...
we define

A (X):= {(®gy ..., ®,) € X*: 2, ~@; and x; # x; for i # j},
(165)
(X)) : = [{woa vy B} © Xt (Zgy ney Ty) EA,‘(X)I.

A difference k-form on X is a mapping

(166) w: A,(X)>R
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such that for every (z,, ..., ) € 4,(X) and every permutation = € II(k)
of k& elements
K k

(167) @ (Toy Baryy +++y Tagry) = (SERA) @ (T, ..oy ).
We define the (exterior) difference operator

d: T*(X)->T:'(X),
where T*(X) is the space of difference k-forms. Here we shall use d only
in the case k¥ = 0 and

0 0 0
(168) (Aw) (Zoy 71) : = o (2,) — @ (%)

for every (z,, ;) € 4,(X).
The elements of the set «7,,(X) will be denoted by s, which should
not be confused with (155). If s = {z,, ..., z,} € &,(X), then we define

(169) 9:i(8, Bo) 1= <%y, Z; @y, Ty, §(%0)),

where 2,7 =1,...,m, and

g(8, ) : = det (91'}(31 wo)) .
(Thus, if X = X, and s is the set of vertices of an m-simplex s, = f(Sk),
then g(s, z,) = g(8,, %,); cf. (155), (158).) Since the triangulating map-
pings —mapping 4™ into M —are diffeomorphisms, for sufficiently great
k’s we have g(s, z,) > 0.
Now, in every space T*(X) we can introduce a unitary structure.

We shall need it only for k = 1; if o, o e T"(X), then

11 1 < Rl 1 1 _—
@i = > M e, s btan m00(e 5) Vo 5.

sed (X) r=0 t,j=0
a-(zo,’:'f..zm] 1,7#r

Here g¥(s, »,) is the matrix inverse to g,(s, z,), and both matrices are
positive defined. So we have

1 1
(170) lol2 = > ol
e (X)

where, for any 8 = {z,, ..., z,} € &, (X),

m

An) ol = g M| D'e6, ) (o, 0(s., 5) | Vel .

r=0 1,J=0
1,f#r

Since the matrices (g7(s, z,)) are positive defined, each summand of (171)
contained in brackets is non-negative.
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On page 43 we have written about the canonical triangulation of
the unit cube I™ in R™. Let us select one m-simplex of the triangulation,
say A™ defined in (164). By definition, the triangulation of Oth gener-

ation on P contains the m-simplex
Soi= —3(1,...,1,0)+ 4™

Thus the triangulation of kth generation on P contains the m-simplex
S, :=—-3(1,...,1,0)427%4™,

Hence on the base of P we have 2* m-simplexes
8p: =27%u+8,,
where u = (uyy..., #,,) TUDS OVer the set

172) EK,:={ueZ™: p, =0; 0< ;<2-1,4¢=1,...,m}.

3

All these 8} belong to the triangulation of kth generation on P. Thus
also the m-simplexes

(173) S :=(0,...,0,27 %)+ 8%, »=0,1,2,...,02%—1
(cf. (148)) belong to the triangulation of kth generation, of P.

4 — Dissertationes Mathematlcae CLXXI
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Let us fix a number k labelling the triangulations on M, and hence
on P. If ueK,, then we define

(174) u(t) 1= flutte,), 0<t<n.

(L)
2Vm1.

(0=t ;v=5

Moreover, we denote by s;” the set of vertices of the m-simplex _f(S,’;-').
Thus s;" € o, (X,).

It follows from Proposition 14 that for the eigenfunction ¢

¢ (2,(0)) — e, (n)] >-2%.‘

o (55)) -+ (e (5))]

But since
n2k_1

?loO)—plm) D

r=0
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we have
nzk— 1

N IR e)!

Let us consider one of the summands of the above sum. We denote
by =y, ..., €, the vertices of the m-simplex f(S¢"), i.e. 8" = {=z,, ..., z,}.

1 4
Obviously, z, (2—’;), 2, (%_) €sy’’. So, we may assume that z; = 2z, (1' ;’—cz)’
¢t = 0,1. Thus

(o) ol S

Using (163), we have

(A77) 19,(8%""y To)l = [(@g, T; @0, 2))| < 1Zo2;]] 1Bgy 24|
<7 < (Ca+a)im 47F,

This estimation permits us to make unse of the following

LEMMA 15. Let (a;) be a symmetric, positive defined, real m X m-matriz
such that |a;| < a; then for every (wy,...,w,)e R™

m’ m
D wi < ma 2 a“ww,,

i=1 1=l
where (a”) := (a;)~".
(An easy proof is given in [10], Lemma 50. m ) Thus, by (176), (177)
and then (161) we obtain

(178) [sv (zp (%)) —7 (""‘ ( 3 ))]2

< (Oy+ o) m* 47" Zg”(sk "y %) [p () — @ (o) ] [9 (%)) — 9 (@0)]

T, je=1

< (02+ a )2’m2m+5{2e(),)"'”2k('""2)+4""’1 X

Zg”(s ) 20)[p(2) — 9 (@0) 1 [p (@) — 9 (20) V9 (6E7, o).

i=1

In order to simplify this long expression we introduce the following
notation: let w, € T'(X,) be defined as

(179) @ (7', 2") : = p(2") —p(2'),
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where (z', z'') € A,(X;). Then, according to (171),

2
”wk” p,v
L

(m+1)v Z Zg"(s y @,) [p(@) — @ (,) ] [ (2;) — @ (x,)] Vg (", @,)

r=0 o’ =0
i,j#r

> (mlT)' D97 st 20 [9(0) — 9 ()] [ (37) — 9 (@) V (5E, 7).
t,j=1

This, combined with (178), gives us

as0)  [o(a(55) —o (e ()| <2 B,
8j;

where
(181) B, (4):= (C.+ a, )t (m 1) I mIm+3Egim—1,(2)-m

Now, if we apply (180) to (175), then we obtain

n2k—1

1
— < n2¥m-VB, (4 E 2 .
(182) v S 2.x(4) 2 Hwk!la;‘,,.

Let us notice that the set K, consists of 2¥™~! elements. Then, adding
inequalities (182) for all x e K,, we have

n2k_1

1
(183) +7 < "B 22 ol

#GKk v=

All the sf, appearing in the above inequality form a family of 2k™m—
elements of long chains of m-simplexes belonging to <7, (X;). One such
chain (for a fixed x € K;) is drawn on page 50. The others are “parallel”
to it. This family (of chains of m-simplexes) was determined by our choice
of A™ as an m-simplex of the canonical triangulation of the unit cube
I'™; see p. 49. Of course, that choice was arbitrary. Thus, instead of
A™, we may select any other of the m! m-simplexes of the canonical
triangulation of I™. Every such new choice leads to another family of
“parallel” long chains of m-simplexes belonging to «,(X,) and gives
us an inequality analogous to (183). Let & be the set of all m-simplexes
belonging to the long chains of those m! families. Now, if we add all our
m! inequalities analogous to (183), then, by (170), we obtain

1 n n
(184) A < P 2k (A) E | w2 < Py B, . (2) llo /.
! < !
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In [10], Section 11, there were defined restriction operators
Ryt N(M)>T7(X,),

where A"(M):= I'(A"T*(M)). For r =0,1 they are as follows: if
@ € C®(M), then

(Bip)(®o) := p(m,) for every z, e X; = A4(X);
if we A\'(M), then

(By @) (@gy 1) : = {Zp, Ty, @(2)).
Thus, looking at (179) and (168), we have
w, = AR,
where ¢ is our eigenfunction of the laplacian. Theorem 56 and for-
mula (68) in [10] state that
lloo — Ry dopll 75> 0
and
IR, doll — lldgll 755> 0.

Therefore lim |lw,|* = |[dg|* = (d*dp|p) = 4, because [lp|l = 1. This fact

k-—>o00

combined with (184) and then with (181), (162) and (152) gives

1 n . (m+1)m2(m+2)+1/2
— < — 41 (A) < nd
(185) 4V ~ m! 1;,1232"‘( y<m m—1

If 6 is the diameter of M, i.e.
(186) é:= sup l(z, y),

Z, ”eM

24m—l € (1)2—"0.

then, by (143),

2Vm —1 2¥Vm —1
= — < _ -
This and (185) give us
e(A)™ !

A’>Ba aV ’

where

2—z(zm+1)’/m
= (m 1) mim+D+%

(187) B,:

The above consideration, i.e. those following Proposition 14, can be
summarized in
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THEOREM 16. If 4> 0 i3 an eigenvalue of the laplacian on a compact,
Riemannian, m-dimensional manifold M, then it satisfiés the inequality

8(}»)’"_1
v’

(188) A> B,

where 6 is the diameter of M (see (186)), V is the volume of M (see (138)),
B, is the constant (187) and &(A) is defined in (137).
Let us write

Hl = 5m2m+zB1; cf. (136)’
(189) H, := 5m2™+p,,
4 — —_ 4 —
Hy:= fminfr, A,y VAs, VA, 4VA};  of. (134).
COROLLARY 17. For every o > 0, at least one of the inequalities

S BE
= aV ?

By(H, + cH,)"™™
A>o0, i>- ‘W* ,

(190) A

holds. In particular, if we take ¢ = ByHy |V, then we arrive at (%) on
page 6.

Proof. Let o be fixed. There are two possibilities: A > ¢ and A << e.
Let us analyse the second one. By definition (137), £(1) = min {(H,+
+AH,)™ ', H,). If ¢(A) = H,, then by (188) we get the first inequality of
(190). If s(A) = (H,+AH,)"', then, using the fact that 1< o, we obtain
the third inequality of (190). m

Appendix

When formulas (1562) and (153) are obtained, a shorter way leading
to an even better minorization of 4, than (188) is possible. The difference
between these two minorizations is not essential; they differ on a factor
depending only on the dimension m of the manifold M. However, that
new estimate we are going to present now, is obtained more directly,
i.e. without dealing with difference approximations. But before stating
the theorem I would like to express my gratefulness to Tadeusz Bataban
who substancially contributed to this simplification.

Thus returning back to page 44 we are going to prove the following

THEOREM 17. If 1> 0 is an eigenvalue of the laplacian on a compact
Riemannian m-dimensional manifold M, m > 3, then it satisfies the in-
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equality
: - (A
A>B
(189') >BE
where
(190%) B 1= [2mF 1272 (g —1 )= 121

0 18 the diameter of M (see (186)), V is the volume of M (see (138)), and
e(A) is defined in (137).

Proof. Let ¢ € C°(M), |lgll =1, Adp = Ap. We shall use the local
chart defined by the mapping
(191) f: p—>M; gee (151).
The domain of this chart, i.e. Imf, is a domain connecting the balls

K(z, ¢(4)) and Ky, e(4)); cf. the figure on page 44. Let us take an
interval

[0,n]31—>(4yy ey 2pry ) P, 4] <1/2,
running along P. Then its f-image connects the points
' i=Ff(Ay ey Apoyy 0),

Y 1= Ay cery Apogy M),
laying in the balls K (v, (1)) and K (y, £(4)), respectively. If we denote
this f-image by [«', y'], then, using Proposition 14, we have

2‘,—<«;r’(av) o(y’)

= [ - f3“’°f(al,...,z,,_nzm)dxm.

«.w]
The integration of both sides over the unit (m-—1)-cube: |4, <1/2,
t=1,..., m—l, and the Schwarz inequality give

ogo f

(AYdA, A ... A dA

m

2V— f
[ f QA A .. A d/‘lm]m[ f .%P’_lo_f_( )} QA A A dz,,,]%lz

_ l/n opo f
3 OAn,

<;/;-f2

12
Ay A e A dz,,,]
P i=1

We shall need the following algebraic

(1)

1/2
AALA .. A da,,,]

opo f
o4,

(1)
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LEMMA. If (a,) 18 a symmelric positive defined real m x m-malriw
such that layl < a, then for every (w,,...,w,) e R™

m m
wa < mPa 2 a¥w,w,,
{=1 4,Jml

where (@) i3 the matriz (a;)”"'. (An easy proof is given in [5], Lemma 50.)
We are going to apply this lemma to the matrix of the coordinates

94(F(A) = (frelfz¢)

of the metric tensor, with respect to the local chart f~': Imf—R™ which
we have mentioned at the beginning of the proof. By (152) we have

A)?
o TN < 1f el 1o < 2D

Thus

™ | oo f me(2)? p &pof dpof
%.l oA, ()l —1_”2 (£2) oA, (4) oA, ().

Since 1 = (dpl|p) = |dpl?, we are going to estimate [dp|* from below.
A= ldglt> [ Wde(e)lT(a)

Imf
3«;001’ ¢ of

=f 910 = (act{gy (FD)" ks 4. 2 A,

P i1=

opof [ e
> m’/% ( A)z f 2' (/1)] [det (g £(A)))]™2d2, A ... A dAyy.

By (1563) we have
e(A)"

[det (g,, (f(l)))]uz om+ 1/2 (m 1)ﬂl/2

and therefore, using also (192), we obtain

e(A)™? R
12 2m+1/2m1/2(m_1)(m—2)/z fz

e(l)m—z
2m+1/2m1/2(m_1)(m—2)/2 4Van
To complete the proof it is enough to notice that by (142)
2Vm—11(z, y) - 2Vm—18
e(2) = g(A)

3¢0f

A A ndd,

~
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