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1. INTRODUCTION

1.1. In the usual theory of optimal control of distributed systems
one is given a partial differential equation

(1.1 Ay = B,

where (1.1) is a formal writing; & denotes a partial differential operator,
v denotes the conirol funciion, # is an operator which can be thought of
as introducing boundary conditions, since to (1.1) one has to add boundary
conditions and, in case & is an evolution operator, one has also to add
initial conditions.

The assumption classically made is that (1.1) (subject to appropriate
boundary and initial conditions) defines a well-set problem, i.e., that,
given v in a suitable space, one can find a unique solution y(v) of (1.1),
and that the mapping v—y(v) is continuous for suitable topologies. We
refer for instance to J.-L. Lions [2], [3] and to the bibliography therein.

- The problem of optimal conirol then consists in finding

(1.2) infd (v),

where 2 is subject to some consfraints and where the cost function J(v)
is given by

(1.3) J(v) = S(y(v))+¥ (i),

where |jv|| denotes a norm on a suitable space ¥7, Zz—>¥(4) is a continuous
function for 1> 0 such that ¥(i)->+ oo as i—>+ oo, and where D(y)
is a continuous functional on a space #.
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The “standard” theory (J.-L. Lions [2], [3]) refers to the case where
v—y(v) maps ¥ continuously into #. If this is not the case, one is led
(J.-L. Lions [4]) to introduce new functional spaces (or sets) defined by

(1.4) % ={v|ve¥,y(v)e¥}.
Examples of these situations have been studied in J.-L. Lions [4].

1.2. There is another point of view, which is more general and enabdles
one to consider situations where (1.1) 8 not well-posed. We adopt a different
notation in order to avoid confusion. Let us present the idea on a simple
example. We consider in a cylinder

(1.5) Q = 2x]0, T[
the backward heat equation:

(1.6) %+Az=v in @,

where v ¢ L*(Q) and where z € L*(Q). It is then possible to verify (see
Section 3 below) that one can define the traces of z on 2 = I'x 10, TV,
I' =02 and on t = 0. We add to (1.6) the initial and boundary condi-
tions

(1.7) 2=0 on N2 for ¢t =0,
(1.8) 2=0 on X,

Of course, given v, (1.6), (1.7), (1.8) do not define 2z; we consider instead
the couples {v, 2z} which are related by (1.6), (1.7), (1.8).
We then consider the functional (the cost function)

(1.9) J(v,2) = [(z—2z)dodt+N [vrdodt,
Q Q

where z; is given in L*(Q) and where N is given > 0, and we look for

infd (v, 2),

(1.10) .

v, z € L*(Q) subject to (1.6), (1.7), (1.8).
We easily show that this problem admits a unique solution and we show
in Section 3 that one can dertve an optimality system.

1.3. Actually there is, so to speak, an “intermediate case” between
the situation of 1.1 and the situation of 1.2; this is when (in (1.1)) & is
actually a “well-posed” operator but some of the boundary (or initial)
conditions are missing.
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Examples are presented in Section 2.

1.4. It is obvious that along the lines of what has been said in 1.2
and 1.3 an almost unlimited number of questions arise. Some of them
are indicated in Section 3.

1.5. For other situations and further details, cf. J.-L. Lions [5].

The idea given in 1.2 has been introduced for Navier Stokes equations
by A. V. Foursikov [1].

1.6. The plan of this paper is as follows:

Section 2. Systems with insufficient data.
Section 3. Non well-posed systems.
Section 4. Other situations,

References

2. SYSTEMS WITH INSUFFICIENT DATA

2.1. Partial information on the initial condition

Let 2 be a bounded open set of R" with boundary I. In the cylinder
Q = 2x]0, T'[, we consider the heat equation

0z

(2.1) & —dz=v in @,
where

(2.2) ve}(Q), =zelL*Q).

It follows from (2.1), (2.2) that(?)

(2.3) %eLz(O,T;H‘z(.Q)),

so that z is a.e. equal to a continuous function from [0, T]—-H '(Q).
Let K, be a set such that:

(2.4) K, = closed convex non-empty subset of H~!(Q).
We suppose that

(2.5) 2(0) e K,

(where 2(0) = 2|,_,)-
We verify that one can also define the trace of z on 2' = I'x]0, T,
I' = 992 (cf. for instance J.-L. Lions [5], Chapter 7), so that it makes

(') H™% = dual of HZ(Q), where H3(Q) is the closure in H2(Q) (Sobolev space
of order 2 for I?(92)) of smooth functions with compact support in £2. Analogously
H Q) = dual of H}(Q).
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sense to impose
(2.6) zlz = O.

Remark 2.1. If K, = {0} (or any given point in H~'(f2)) then (2.1),
(2.5), (2.6) uniquely define z = z(v) = y(») in the usual notation of Section
1.1 of the Introduction and one is led to a standard situation in Optimal
Control, =

The cost function is defined by

(2.7) J(v,2) = [2—245+N [v]3,

where we set

Il = [pdedr,
Q
where 7, is given in L*(@) and N is given > 0.

Let us consider
(2.8) %,, = closed convex non-empty subset of L*(Q).
The problem of optimal control is now to find
infJ (v, 2),

(2.9) .
ve¥,, v,z subject to (2.1), (2.2), (2.5), (2.6).

It is easily seen that (2.9) admits a unique solution {u,y}, which is
called the optimal couple. We have

THEOREM 2,1, The optimal couple {u,y} which is the solution of (2.9)
€8 characterized by the solution {u,y,p} of

0 0 .
(2.10) 'ﬁy —dy =u, "Wp —-P=Y—2 m @,
(2.11) y =0, =0 on X,

(2.12)  y,p eL*(Q),

(2.13) ((0), k—y(0)) >0 VkekK,, y(0) e K,,
p(T) =0
and
(2.14) (P+Nu,0—u)g >0 Voe#,, we¥,.
Remark 2.2. In (2.14) (p,v)q =6{pvdwdt. In (2.13),, p(0) € H3(R2)

so that (p(0), k—y(0)) means the scalar product between H(£2) and
H'(2). =
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Remark 2.3. If K, = {0}, (2.13) reduces to
(2.15) ¥(0) =0, p(T)=0 in £,
and one obtains the usual optimality system; cf. J.-L. Lions [2]. ®

Remark 2.4. If Ky = H™'(2) (no information at all on 2(0)), then
(2.13) reduces to

(2.16) p(0) =0, p(Th=0 in L. =
Remark 2.5. If one takes
(2.17) K, ={p| pe H(2),¢>0 in 2},
then (2.13) becomes
(2.18) p(0)=>0, (0)=20, p(0)y(0)=0, p(T)=0 in L=

Sketch of proof. One defines p by the second equation in (2.10) and
in (2.11) and by p(T) = 0. Then one transforms by integration by parts
the optimality condition

(Y—24,2—Y)q+N(u,v—u)g =0 Voed,,

(2.19) .
v and z subject to (2.1), (2.2), (2.6), (2.8).

2.2. Partial information on boundary conditions

Let 2 be an open set of R™ with boundary (cf. Fig. 1)
(2.20) 02 =TI = TI,ul,.

Fig. 1

Let us consider the equation

(2.21) —dz=v in Q,
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where
(2.22) v,z e L*(2),
(2.23) z=0 on I,

If z and A4z € L*(R2), then (cf. J.-L. Lions and E. Magenes {6]) one can
define

(2.24) %:—IPI as an clement of H™¥*(I}).

Let us consider

(2.25) K = closed convex non-empty subset of H~¥*(I).
We shall suppose that

(2.26) —Z% PeK.

We are also given

(2.27) %,; = closed convex non-empty subset of L*(Q)

and we consider the cost function
(2.28) J(v,2) = [z —z4l* + N o]’
where |p|? = ‘! p*dz, z; is given in L*(N) and N is greater than 0. The
problem of optimal conirol is now to find

infd (v, 2
(2:29) l'v ef?l(,d,, " v and z subject to (2.21), (2.22), (2.23), (2.26).
The unique solution {u, y} of (2.29) is characterized by

THEOREM 2.2. The solution {u,y} of (2.29) is defined by the unique
solution {u,y, p} of the optimality system

(2.30) —Ay =4, —-Ap=y—2z; n 2,
(2.31) y=p=0 on I,
ﬂeK, p,k—iy—) >0 Vkek,
ar a'p r
(2.32) !
@ =0 on I,
ov
and

(2.33) (p4+Nu,v—u)=>0 Voed,,, uc¥,.
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3. NON-WELL-POSED SYSTEMS

3.1. Backward heat equation

We return to (1.6) in the Introduction. We consider » and z such that

(3.1) v,z e L*(Q)

and

3.2 % dr—v in Q
(3.2) 74— z=9v in X

It follows (as in Section 2) that the following conditions make sense:

(3.3) 2(0) =0 in Q,
(3.4) £2=0 on Z.

We define
(3.3) J(v,2) = l2—2,lu+N v}

and we consider the problem

(3.6) infJ (v, 2),
' v and 2z subject to (3.1)—(3.4).

We have

THEOREM 3.1. The unique solution {u, y} of (3.6) s characterized by the
unique solution {u, y, p} of

%/ +4y =u, p+Nu =0,
(3.7)
~ P iy myzy @
(3.8) Yy=p=0 on 2,
(3.9) y(0) =0, p(T)=0 in Q,
(3.10) v, p e L¥Q).

Remark 3.1. If one replaces 4 by —4, one is led to the usual optimal
system in such problems; cf. J.-L. Lions [2]. Cf. also Section 3.2 below. m

Remark 3.2, The solutions y, p of the optimality system (3.7)—(3.10)
are weak solutions; they become stronger if A is replaced by —4. =

20 — Banach Center t, 14
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Remark 3.3. We refer to J.-L. Lions [5] for the proof of Theorem 3.1.
We use an approximation by a penalty method. It is to be noticed that
P cannol be defined by (3.7), and the conditions on p which appear in (3.8),
(3.9), since the backward problem is not well-posed for d/ot—4.

Remark 3.4. A direct solution of (3.7)—(3.10) (i.e., without reference
to optimal control) can be given as follows: We define

(3.11) ¥ = {np

0
o gy —dp € IX@), 9(T) =0, plz =0},

2 )1/2

which is a Hilbert space for the norm

o,

ot

lelly = (qulo+

0
We multiply (3.7), by — -% +Ap. We obtain

(3.12) (f‘i ~ap, 5% —dy), (— +Ay,¢) (zd,-— _4 )
Q

1 0
= (using (3.7),) = —F(P:‘P)O—l"(zd’% —Agv)o-

If we define

0 0 1
(3.13) a(p,p) = ( P —Ap > “‘A‘P) +‘F(P’ ®las

ot "ot

we see that (3.12) is equivalent to

Q

7
a(p, ) =(zd’_ai:"—A‘P) V?’EV’
Q

(3.14)
pe’,

a problem which admits a unique solution. Once p is known, y is given by

7
Y =zd—'5p' +Ap- |

3.2, Completely non well-posed evolution problems

Let m(t) be given as in Fig. 2. The main property we are going to use
is that m is continuous and

m(t) >0 for 1tel[0,1,

(3.15)
m(t)<0 for telt, IT].
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We now consider, instead of (3.2), the equation

(3.16) % +m()dz =v» in @,

conditions (3.1), (3.3), (3.4) being unchanged(?).

Fig. 2

0
Remark 3.5. The operator —a—t+m(t)A is “not well-posed” when

a Cauchy data is given at ¢ = 0 and also when Cauchy data are given
at ¢t = T'; we express this fact by saying that the operator is completely
non well-posed. In the case of Section 3.1, we can think of the problem
as a backward problem with no ¢mformation at ¢t =T and with a state
constraint at ¢ = 0. ®

Let us consider the cost function (3.5). The problem analogous to
(3.6) admits a unique solution {u, y} which is characterized by the solution
{u, y, p} of the following optimality system:

THEOREM 3.2. The optimality system for (3.16), (3.1), (3.3)—(3.6) is
given by

)
— FmO)dy =u, p+Nu =0,

(3.17)
o .
2 msp —y—n i 0,

with conditions (3.8)—(3.10) wunchanged. m

(%) One can verify that (3.4) still makes sense.
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Remark 3.6. Let us mention some other completely non well-posed
systems:

0

(3.18) Ez —dz =,
subject to

oz 0z

. Z_Z 2 z

(3.19) o p. 0 on ’
and

2(0) =0. m

Another example i8 given by the system

o
S —dz,+2, = v,

(3.20) { &
2, =2, =0 on 2,
zteLz(Q))

12:(0) = 2,(0) =0. =

4., OTHER SITUATIONS

4.1. Higher order evolution problems

Let us consider

™z . .
(4.1) o —42 =v» in @, m integer >3,
(4.2) z,v € L*(Q),
(4.3) z = on 2(%)

and without information for ¢ = 0,

am
(3) This condition makes sense when z a.nd—a’; — Az e L*(Q).
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If the cost function is given by
2 2
(4.4) J(0,2) = |z —24lg+N [v]g,

the optimality system is given by

o
[—atml—zly=u, p+Nu =0,
(- E —ap —y—2, in Q,
(4.5) ot
o ! ) .
_a;’_(o)=8£(1')=0, 0<j<m—1, in Q,

L =p=0 on 2.

4.2. Unstable non-linear systems

One can consider systems governed by unstable non-linear models, such as

(4.6) % ~dz—P =v in @
subject . to

(4.7) vel’(Q), zelL%Q),
(4.8) z(0) =0,

(4.9) ¢=0 on I

Again one thinks of the set of couples {v,z} subject to (4.6)—(4.9)
and not of the solution 2 of these equations, once v is given since in general
there i8 mo global (in time) solution of this problem.

One can again solve optimal control problems, for instance for the
functional

1 N
(4.10) J(v,72) -_—E—J(z—zd)‘dwdt-i—-g-éfv’dwdt.
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If u, y is a solution, there exists a p such that

ap azp a_p € L6I5

4.11 —_—
( ) ’ am.i ] am‘awj7 at (Q)!
[ oy
_ﬁ-t__Ay—ya = U,
op , 5
(412) =5 —4p—3¢'p =(y—2), p+Nu=0,
y=p=0 on 2,

| %©0) =0, p(T)=0 in 0.m

4.3. Cauchy systems

Let £2 be given as in Section 2.2 and let us consider

z e L),
Az =0 in 0,
(4.13)
0z
Zlp. = — = on TI,.
I"o 0 av Po 1 0

No information is given on I'y. One can consider
(4.14) I (09, 015 2) = |2 —2,!° +No|”o|§‘o+N1|”1|3‘o

and minimize (4.14) with various constraints on wv,,v,. Cf. J.-L, Lions
[5], Chapter 7, for further details and also for applications in Game Theory.
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