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ON AXIAL MAPS OF DIRECT PRODUCTS, I

BY

ANDRZEJ EHRENFEUCHT (BOULDER, COLORADO)
AND EDWARD GRZEGOREK (WROCLAW)

In this paper we give proofs of the results announced in [2].

1. THEOREMS AND LEMMAS

A function f: A, x ... XA, > A; %X ... xA, is called axial if there
exist ¢ and g: 4,%x ... x4, > A; such that

f( @y .00y @) = (wly ooy By 1y G(Lry ooey Bp)y Bipyy ooy a’n)

for all (4, ...,2,)ed; X ... XA,.

A function f: X — X which i8 one-to-one and onto is called a per-
mutation of X.

Nosarzewska [5] has proved the following theorem:

(0) If |A] < |B| =Ny, then every permutation of A XB can be repre-
sented as a composition of b axial permutations of A X B.

In this note we shall extend this theorem to A and B of arbitrary
finite or infinite cardinality and we shall consider some problems con-
cerning refinements of Proposition 4 of [3].

We shall prove the following results:

(i) If |4] = |B| = ¥,, then every permutation p of A XB can be rep-
resented as a composition

P = P10 ... 0Py,

where all p; (1 =1,2,...,5) are arial permutations of A X B and p,(a, b)
=(g(a, b), b) for all (a,b)eA xB.

(ii) If Ry < |A] # |B| =N,, then every permutation p of A XB can
be represented as a composition

P = P10 ... 0p,,
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where all p; (1 =1,2,3,4) are axial permutations of A xB and p,(a, b)
= (g(a, b), b) for all (a,d)ed xB.

(iii) If |A| <N, (while B may be of arbitrary finite or infinite cards-
nality), then every permutation p of A x B can be represented as a compo-
sition

P = P10P20Ps,
where all p; (1 =1,2,3) are axial permutations of A XxB and p,(a,b)
= (g(a, b), b) for all (a,d)eA xB.

(iv) If A and B are finite, then every function f: A xB —~ A x B can
be represenied as a composition

f=ro...of¢

where f,, [, fs and f, are axial permutations, and f; and f, are axial func-
tions.

In connection with (i) let us mention that Eggleston has studied
in [1] axial homeomorphisms of the plane R x R.
The following problem is open:

Can one decrease the number 6 in (iv)? (P 910)
We can prove only the following
(v) If |A| = |B| = R,, then there exists a permutation r of A X B such

that, for any axial permutations ry, vy, 75, 74 Of A X B, we haver # r,0...071,
whenever r, is of the form r,(a, b) = (9(a,d), b) for all (a,b)eA xB.

(v') If A and B are infinite, then there exists a permutation p of A X B
such that, for any axial permutations p,, p,,ps of A XB, we have
P # P10P:OP;.

(v'") If |A| > 2 and |B| > 2, then there exists a permutation p of A X B
such that, for any axial permutations p,, p, of A X B, we have p # p,0pP,.

We can partially extend (i)-(iv) as follows:

(vi) If A,,..., A, are finite and B,, ..., B, are infinite, then every
permutation p of Ay X ... XA, XB; X ... XB, can be represented as a com-
position

P = P10 --. OPrm,n)s

where all p; (1 =1,2,...,k(m,n)) are axial permutations and
Pi(Byy vvy Tppyy) = (g(wla cey Tmin)y Tay oeny mm+n)

for every (xy,...,%, )eA; X ...xA, XB; X ... xB,, k(m,0) =2m—1
and k(m,n) = 2m-+1l(n) for n>1, with (1) =1 and, for n>1, I(n)
= min {2l(r) + 3l(s): r and s are integers less than n and r+s = n}.
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(vil) If at least one of the sels A,, ..., A, i8 infinile, then every function
fr A, x ... XA, > A, X ... XA, can be represented a8 a composition

f=fio...0fn
where all f; (1 =1,2,...,n+1) are axial functions.
The following fact, obvious for finite sets, will be useful:
(viii) If at least one of the sets A,, ..., A, is infinite, then every function

f: Ay x ... x4, > A, % ... XA, which is onto can be represented as a com-
position

f =f10pa

where f, 18 an axial function onto and p is a permutation of A, X ... xA4,.

If, moreover, |A,| > |A,;| for each 2 < i< m, then f, can be expressed
by the formula

@y ey @) =(9(®ay ey @), By ooy ) for all (@, ...,3,)edy X... X A,.

It follows easily from (vi) and (viii) that

(ix) If A,,..., A, are finite and B,, ..., B, are infinite, then every
Junction

f: Ay X oo XA, XByX ... XB, > A;X ... XA, XB; X ... XB,

which 8 onto can be represented as a composition

f=rfo... ofl(m,n)’

where f, is an awial function onto, fu, ..., fimn are axial permutations,
and
k(m,n) if m =0o0rn=0,
km,n)+1 if m> 0 and n> 0
with k(m,n) defined as in (vi).

To prove our results we need some lemmas.

The following fact is known (see [4], Theorem 10.1.5):

(x) If a is a positive integer and P and Q are two partitions of a set
X into a-element sets, then there exists a set S < X such that |YNnS| =1
for every YePuQ.

From (x) we get immediately the following lemma:

(xi) If a, P, Q and X are as in (x), then there exists a partition R
of X inlo sets such that |YNER| =1 for every ReR and every Ye<PuQ.

In the next section we give proofs of the following Lemmas (xii)
and (xiii).

(xii) If P and Q are two partitions of a set X inlo sets such that |P|
= 1Q| and |PiNQ,| = |P;NQy| for every Py, P,eP and every @, Qz¢Q,

t(m, n) =
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then there exists a partition R of X inlo sets such that |YNR| = 1 for every
Y<PUQ and every ReR.

Nosarzewska has implicite proved in [6] Lemma (xii) in the coun-
table case.

(xiii) If p and q are permutations of A X B, and P, Q are the parti-
tions of X = A XB,

P ={p(Ax{b}): beB}, Q ={g(4x{b}): beB},

then the following two conditions are equivalent:
(a) There exist axial permutations r,,ry, rs of X such that

p = gqor,or,0ory  and  ry(a, b) = (g(a,b),b) for all (a,d)eX.

(b) There exists a partition R of X into sets such that |YNR| =1
for every ReR and évery YePu Q.
Obviously, we can write (xiii) also as follows:

(xiii’) If p and q are permutations of A x B, and P’, Q' are the parti-
tions of X = A xB,

P’ ={p({a}xB): acd}, Q' ={q({a} xB): acd},

then the following two conditions are equivalent:
(a’) There exist axial permutations r,,r,, rs of X such that

P =gqor,or,0ory  and  ry(a,b) = (a,g(a,bd)) for all (a,d)eX.

(b’) There exists a partition R of X into sets such that |[YNR| =1
for every ReR and every YeP'uQ'. ,

Let us note that using the rather simple Lemma (xiii) it is not hard
to see that (xi) (or (x)) and (iii) are equivalent (i.e., each one follows
easily from the other).

2. PROOFS

A matrix D = (d,p)geq,0ep 18 called a permutation of a matriz
O = (¢4 p)ge4,pep 1L there exists a permutation r = (v, ') of A XxB such
that d,, = ), ra,p fOT 2ll acd, beB.

In the sequel we shall use the following definition:

Let A and B be sets, let X = A xB, and let M be the matrix
(@ b))ae 4, be 5~ For every permutation q of X, we put q(M) = (g(a, b))ge_y, pes-
Notice that, for any vertical (horizontal) permutation N of the matrix
q(M), i.e. a permutation such that the set of elements of each column
(row) of the matrix N coincides with the set of elements of the column
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(row) of ¢(M) with the same index, there exists an axial permutation r
of X such that gor(M) = N and r(a,d) = (g(a, b), b} for all (a,d)eX
(r(a, b) = (a, g(a, b)) for all (a,bd)eX). Conversely, for any axial per-
mutation r of X such that r(a, b) = (g(a, b), b) for all (a,b)eX (r(a,d)
= (a, g(a, b)) for all (a,b)eX), the matrix gor(M) is a vertical (hori-
zontal) permutation of the matrix ¢q(M).

First, we prove Lemmas (xii) and (xiii).

Proof of (xii).

SUBLEMMA. If sets Y and Z are of the same cardinality, then there
exists a family F of one-to-one functions from Y onto Z such that

YxZ = fUFgraph(f ) and  graph(f;)ngraph(f,) =0
Jor all fy # fs (f1; feeF).

Indeed, we can assume, without loss of generality, that Y =Z # 0.
It is well known that, for every cardinal number greater than 0, there
exists a group of this cardinality. Hence we can assume that Y is equipped
with the group structure. Let F = {f;: te Y}, where f;(y) = t-y for every
t,yeY. (Here - is the group operation in Y.) It is easy to check that F
is what we need.

Let P, Q and X be as in (xii). Put ¥ = P, Z = Q, and let F be a
family of functions with the properties listed in the Sublemma. For every
feF, put

X, = U Pnf(P).
PeP

The family {PNf(P)}p.p i8 & partition of X,. From the assumption
of (xii) we have |P,Nnf(P,)| = |PyNnf(P,)| for all fe F and for all P,, P,eP.
Hence, for any feF, we can define a partition R, of X, such that every
Re¢R; is a selector of the family {PNf(P)}p.p. By the property of F we
infer that the family {X}, , is a partition of X. Put

R = U R,.

feF
It is easy to see that R is a desired partition of X.

Proof of (xiii). Let p,q, 4, B, X and P,Q, R be as in (xiii).

(b)=(a). Let M be the matrix ((@,b))scs,bc5- Then P and Q are
the sets of columns of p(M) and ¢(M), respectively. Let R be a partition
of X as in (b). Thus each set ReR has exactly one element in common
with each column of p(M) and one element in common with each column
of q(M). Therefore, there exists a vertical permutation of ¢(M), and
hence an axial permutation r, of X, such that the sets ReR are the rows
of gor,(M). Now, there exists a horizontal permutation of gor,(M),
and hence an axial permutation r, of X, such that the set of elements
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of each column of qor,or,(M) coincides with the set of elements of the
column of p(M) with the same index. Thus there exists a vertical per-
mutation of gor,or,(M), and hence an axial permutation r, of X, such
that qorlorzora(M) = p(M). Hence

P = qOr,07,075.

The additional claim on r, is 2lso visible from the definition of r,.
(&) = (b). Let r,,7r,,7; be as in (a). Hence

ri(a, b) = (g:1(a, b),b) for all (a,b)eX.

Obviously, we can additionally assume, without loss of generality,
that

ry(a, b) = (a, g,(a, b)) for all (a,b)eX
and
rg(a, b) = (gs(a, b), b) for all (a,b)eX.

Let M be the matrix ((a, b)),.4 pen- For every aed, we put R,
= gor,({a} xB). Take R = {R,: acA}. Thus R is the set of rows of
gor,(M). We prove that the partition R of X satisfies (b). The set of
elements of each column of gor,(M) coincides with the set of elements
of the column of ¢(M) with the same index. Thus |[RN@| = 1 for every
Q<0 and every ReR.

Since R is the family of rows of gor,(M), each ReR has exactly one
element in common with each column of gor,or,(M). Since columns in
gor,ory(M) and qor,or,ors(M) have the same sets of elements if they
have the same index, each Re<R has exactly one element in common
with each column of gor,or,or,(M). Hence |[PNR| =1 for every PeP
and every ReR.

Proof of (i). The idea of our proof of (i) is the same as that of the
proof of (0) given by Nosarzewska in [5]. Theorem (i) follows from the
following

THEOREM (0*). If |A| < |B| > N, then every permutation p of A xB
can be represented as a composition

P = P10 ... 0P,

where all p; (1 =1,2,...,5) are axial permutations of A xB and p,(a, b)
= (a, g:(a, b)) for all (a,b)eA xB.

Proof. Let X = A xB and M = ((a, b))sc4,pcp- Assume that X and
B are well ordered. Let T be the set of all ordinals of power less than
m = |B|. Let a function f: T — A be such that |f~'(a)] = m for all aeA.
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First step. We define a permutatioh p, of X of the form p,(a, b
= (a, g1(a, b)) for all (a, b)eX, having the following property:

(*) There exists a transfinite sequence {z,};,., of elements of X such
that each column of p,(M) has at most one element appearing in this
sequence, and each row of p(M) has m elements of this sequence.

First, we define, by transfinite induction, a sequence {(a,, b;)};cp
of elements of X and a sequence {¢},.r of elements of B with the property

(**) ¢ # ¢, whenever t #1t' (t,t'«T) and, for every teT, (a,b,)
appears in the f(f)-th row of p(M),

(a,,, bt) ¢{(at', bt’): t' < t}U{(a", C‘r): t’ < t},
and
Cd{by: ' <tyufe: t' <t}

Let (ao, by) be the smallest element of X appearing in the f(0)-th
row of p(M), and let ¢, be the smallest element of B\{b,}. Assume that
the elements (a,, b.) and ¢, for ' <t have been already defined.

Let (a,, b;) be the smallest element of

XN\({(ay, by): ¢ <tyu{(ay, e): t' <t}

which appears in the f(¢)-th row of p(M), and let ¢, be the smallest ele-
ment of

B\({b: ' <ttu{c.: t <t}).

The just defined two sequences have property (*#), which implies

(xxx) (a;, b)) + (ay,c,) for ¢,¢"eT, and (ay, b;) # (ay, b) and (ay, ¢)
:/é (at', Ot/) fOI' t ?é t, (t, t’ET).

Now we define a permutation p, as follows:

(a, b) if (a, b)¢{(a;, by): teT}U{(a;, ¢): teT},

Pi(a, b) =1 (ay, by) if (a,b) = (a4, ¢),
(@ ) if (a,b) = (a,b,).

Property (***) shows that the definition of p, is correct, and (**)
implies that p, has property (*) (we put x, = p,(a,, ¢;) for teT).

Second step. Since the matrix p,(M) has property (), there exists
a vertical permutation of p,(M), and hence an axial permutation p,
of X, such that each row of p,op,(M) has m elements in common with
each row of p(M).

Third step. Put ¢ = p,op,. From the property of q (see second
step) and Lemma (xii) it follows that condition (b’) of Lemma (xiii’) is
satisfied for p and ¢, and so does condition (a’) of this lemma. Hence
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p = qor,0r,0ry. Put p; =1y, py =1, and p; = r3. Now p = p,0... 0p;,.
The additional claim on p, is also visible from the definition of p,.

Remark. If in Theorem (0*) we assume additionally that |A| < |B|,
then p, can be the identity.

Proof. Let A, B, p, X, m, M, T, f be as in the proof of Theorem (0*).
By the proof of Theorem (0*), it can be seen that to prove our Remark
it is sufficient to show that if |A| < |B| > NX,, then there exists an infinite
sequence {z,},.p of elements of X such that in each column of M appears
at most one element of this sequence and each row of p(M) has m ele-
ments of this sequence. We define, by transfinite induction, this transfi-
nite sequence. Let x, be the smallest element of X appearing in the f(0)-th
row of p(M). Assume that the elements ;. for ¢ < ¢ have been already
defined. Let x; be the smallest element of X which appears in the f(¢)-th
row of p(M) and such that the column of M containing x; has not any
common element with the set {x,.: t' < ¢}. The defined transfinite sequence
{z};.r has all desired properties.

Proof of (ii). It follows from Theorem (0*) and the Remark that

(I) If |4| < |B| = N,, then every permutation p of A xB can be
represented as a composition

P = P10 ... OPy,

where all p; (¢t = 1,2, 3, 4) are axial permutations of 4 x B and

pl(‘?’b) = (91(a7b)7b)7 ceey Ps(a, b) =(a'7 94(a'7b))
for all (a, b)ed xB.

Now we observe that
(IT) If |A| < |B| > ¥,, then every permutation r of A4 xB can be
represented as a composition

r =7,0...07,,

where all r; (¢ =1, 2, 3, 4) are axial permutations of A xB and r,(a, b)
= (a, g(a, b)) for all (a,b)cA xB. .
Indeed, put p ="' in (I). Let p,, p., Ps, P4 be as in (I). Hence
r!'=p=p0...0p. Thus r =p; ' o...op;". Put r, = p; ', ro = p; ',
ry = p; 'y 4 = p;'. Hence r =r,0...07,. The additional claim on r,
can be easily concluded from the definition of r,.
Theorem (ii) follows almost immediately from (I) and (II).

Proof of (iii). Let A be finite and let p be a permutation of A xB.
Let in Lemma (xiii) ¢ be equal to the identity. By Lemma (xi), condi-
tion (b) in (xiii) is satisfied, and so does condition (a).
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Proof of (iv). Let A = {a,, ..., a,} and B = {b,, ..., b,} with a; # a;
and b, # b, for ¢ #j. Let X = A XB and M = ((@, b)),c4, - We order
X as follows (see Fig. 1):

(@;y b)) < (ay, b;) iff {either it <kor [z =k and ((¢ is odd and j <1)
or (¢ is even and j > 1))]}.

A

Fig. 1

We partition X into intervals I, with respect to < such that
card (I,,) = card(f~'(a,d)) for all (a,d)ef(X).

Let J 4, be the (or one of the) longest intervals in I, which is contained
in one row of M. Let now p be a permutation of X such that (a, b)ep(J,)
for every (a, b)ef(X). Hence there exists a horizontal function g over the
matrix M such that pog(J,) = {(a, b)} for every (a, b)ef(X). Therefore,
since every column of p o g(M) which has elements with indices in I, has
also elements with indices in J,,, there exists a vertical function % over
M such that pogoh(Il,) = {(a, d)} for all (a, b)ef(X). Now, of course,
there exists a permutation ¢ of X such that pogohogq(M) = f(M). Now,
since both A and B are finite, by (iii) we can represent p as f,of,ou and ¢
as vof,of,, where f, f:, u, v, f;, f¢ are axial permutations, « is a hori-
zontal permutation, and v is a vertical permutation. Thus, putting f,
= uog and f, = how, the functions f, and f, are axial, and f,0 ... of, (M)

= f(M).

Proof of (v). Let X = A xB and M = ((a, b)),. 4,5.5- Let » be a per-
mutation of X such that there is a row of (M) which contains all but
one columns of M. Suppose that there exist axial permutations r,, r,, 75, 7,
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of X such that r,(a, b) = (g,(a, b), d), ..., 74(a, b) = (a, gs(a, b)) for every
(a,b)eX, and r = r,0... or,. Let in Lemma (xiii) ¢ be equal to the iden-
tity and p = ror;'. It is easy to see that condition (b) of (xiii) is not
satisfied for those p and ¢. Hence (a) of (xiii) is not satisfied. But p = ror;!
= r,07,073, & contradiction.

Proof of (v'). Let X = AxB and M = ((a,b)),cq,pc5- Let p be
a permutation of X such that there are two rows of M contained in a row
of p (M), except finitely many elements at most, and there are two ¢columns
of M contained in a column of p(M), except finitely many elements at
most. Obviously, such a permutation exists. Let in Lemmas (xiii) and
(xiii’) ¢ be equal to the identity. It is easy to check that neither (b) in
(xiii) nor (b’) in (xiii’) are satisfied. Hence neither (a) in (xiii) nor (a’)
in (xiii’) are satisfied.

Proof of (v'). Let X = AXB and M = ((6,d))cq,pep- Let p be
a permutation of X such that there are a row of p(M) and a column of
M having at least two common elements, and there are a column of p (M)
and a row of M having at least two common elements.

It is easy to see that p cannot be represented as a composition of

two axial permutations.
L ]

Proof of (vi). From (i) and (ii) we get immediately the following
PROPOSITION. If A and B are sets of arbitrary infinite cardinality,
then every permutation p of A X B can be represenied as a composition

P = P10 ... OPs,

where all p; (+ =1,2,...,5) are axial permutations of A X B and p,(a, b)
= (g(a, b), b) for all (a,b)ed xB.

If m = 0, then (vi) follows, by an obvious induction, from the Pro-
position. Now, on account of (iii), we can prove (vi) by induction with
respect to m.

Proof of (vii). We can assume, without loss of generality, that
card(4,) > card(4;) for i = 2,...,n. Thus A, is infinite and there exists
a one-to-one function g: 4, %X ... x4, - 4,.

Let us define an axial funetion

Joz1(@yy ooy @) = (g(ay, ..., a,), as, as, ..., a,).
Hence there exist functions g;: A, — A; such that
f=(9:99, -1 0,09).
Therefore, we get axial functions
Jilar, ..oy a,) = (@yy vy @1y 95(8y), 81105 ...0a,) for i =1,...,n

which satisfy f = fio...of,.,.



AXIAL MAPS OF DIRECT PRODUCTS, I 11

Proof of (viii). Put X = 4, x ... x4,. From the assumption of
(viii) we infer that there exists an integer ¢y, 1 < i, < n, such that |X|
= |4, >¥,. Hence we can partition X into sets K, , such that

ca’rd(Ea],...,an) = ca'rd(f_l(a’n XES) a’n))
and ,
E,, .4, < {ar} X oo X {a;_y} XAy ¥ {aio+1} X oo X {@,}
for all (a,,...,a,)eX.

Put f,(2) = (ay, ..., a,) if ek, _, . Clearly, f; is a function from
X onto X and

Ji(eyy .y ay) = (a'u -~'7ai0—l’g(a'11 -'-7an)9a'io+17 ---7an)
for all (ay,...,a,)eX.

Since |f~'(ay, ..., a,)| = |E,, .|, there exists a permutation p of
X such that .

p(f (@ .--;a,)) =B, ., forall (ay...,a,)eX.
From the definition of f, and p we have f = f,0p.

Acknowledgement. We are deeply grateful to Professors Edward
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help in establishing its final form. Jan Myecielski has written a part of
this paper and improved our original version of (iv) and (vi).

Added in proof. If |A| = |B| > N,, then also every permutation
of A XxB can be represented as a composition of 4 axial permutations
of A xB (cf. Theorem (i)). The proof is in preparation for Colloquium
Mathematicum.
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