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SOME ALGEBRAIC ASPECTS OF MULTIGRID METHODS
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In this paper we present a combination of iteration methods with multigrid
steps and discuss some of its properties. It is our goal to solve a nonsymmetric
system of linear equations

(1) Ay =f, AeRV*N  y feR"

We interpret the indices 1, ..., N of the unknowns as the numbers of
points of a fine grid. We perform a permutation of (1... N)to (k... k, Ky 1 ... ky)
so that k,, ..., k, are the numbers of points of a coarser grid. This is only done
for description purposes. We then replace (1) by the equation

(2) Kx=»b
with

K, K
K =(§AET= 1 12
(K21 KZ ’

x=Cy, b=CJ

First we consider a two-grid step; it can be described as follows. Let x be
an actual approximation of the solution K~ 'b and let

X=x+Br with r=b—Kx,
§¢=x¥—%=(I—-BK)e with x*=K™'b,
F=(I-KB)r=K(I—BK)e.

There B = PCR is a two-grid operator with Pe R"*", ReR"*" and rankP
= rankR = n. P is a prolongation matrix and R is a restriction matrix. The
matrix C in the two-grid operator is an element of R*™" and has the form

C = (RKP)™ L.

[517]
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Following the ideas of Greenbaum [1], it can be shown that

(3) (a) the nullspace N(I —- BK) of the matrix I —BK is equal to the range R(P)
of the prolongation matrix P,
(b) R(K(I—BK))< N(R).
(c) the matrices BK and I—BK are projectors,
(d) the direct sum of N(I—BK) and R(I—BK) is the full space
RY: NI—BK)+R(I—BK) =R

In the case where K is a symmetric positive-definite matrix, the choice of the
prolongation matrix P = R” is subject to the following sharper requirements:
(a) BT = B is positive-semidefinite,
(b) I—BK is selfadjoint in the K-inner product,
(c) R(PY®N(R) = RN (@ denoting the orthogonal sum),

(d) R(I—BK)éN(I—BK) =R" (C—I}(—) denoting the K-orthogonal sum),
() R(K(I—BK)) = N(R).

In the sequel we want to combine a two-grid step with a step of an iteration
method

X=x+4+Qr
with a suitable matrix Q. This is possible in two ways:
“pre-smoothing™ x—%—x%, O
“post-smoothing”. x—-xX- %,

We obtain accordingly

¢ = (I—BK)(I—QK)e,
& = (I—QK)(I—BK)e,
7 = K(I—BK)(I—QK)e,
F=(I—QK)K(I—BK)e.
Setting x* = x and x**' = £ or x**! = %, we get for k=0, 1, ... a two-level

iteration process. For

K, 0 \7!
€= (K1 K )
21 2
this becomes a combination of Block-Gauf-Seidel iteration with a two-grid
method. For the Block—-GauB-Seidel iteration we have

0 - Kt 0
C\-K;'K, Ki' K3

-t
I—ox - (° y KitKi, -
O KZ K21K11K12
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First we consider the pre-smoothing. If the relation
R(I-QK) = N(I-BK)
is valid, then é=0. We have
—-K7'Ky, I
R(I—-QK) = . .
(1=0K) Span(KglK“K;'Kn <P _k;ik,,

Consequently, if

I,
@ P= (—K;‘Ku)

then

R(I—-QK)c span(_ ) = span P = R(P) = N(I—- BK),

n
K3' Ky
and therefore é =0, so that % is the exact solution of equation (2).

Following Ruge, Stiiben [3,4], in the algorithm AMG a good choice of
prolongation matrix P for a symmetric positive-definite system in a multi-
grid-iteration process is achieved by

I, . -
P=(_D2K21>= D2=Dlag(d11+1"":dN)s dizkifl;
this is an approximation of the matrix P from (4).

In a similar way we can consider the post-smoothing. If the relation
R(K(I—BK)) = N(I—KQ) is valid, then 7 = 0 and, for a regular K, also & = 0.
We have

K, K;'K, K7t — K, K3!
I—KQ=( 1202 21 55 012 2)’
N(I—-KQ)={xeR":K;, K; ' (=K Ki* Iy_)x =0}.
Hence, for
R=(—K21K1—1 In-n),
we get

N(Rye N(I-KQ)
and therefore, in view of (3b),
R(K(I—BK))<= N(R)= N(I~KQ)

and so é=0. y
In each of the two-grid steps one has to solve a linear system with the
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matrix K = RKP. In the case of pre-smoothing,

~ 1, -1
K, =(I"X)K(_KZ_1 K21) =K, -K;K; K3,

for any X eR"*™W~", therefore we choose X = 0.
Similarly, in the case of post-smoothing

Y

IN—n

K‘rlz(—KZIKl_l IN—n)K( )=K2_K21K1_1K12

for any YeR"*"~"; therefore, we set Y= 0.
The algorithmic realization of the combination of one step
Block-GauB-Seidel method with a two-grid step has the form

X =x+0Qr, %= X+ B,F
with
BV = PVCVRV = PV(RVKPV)_IRVs

I
P, = . R,=(, 0),

C, = (Kl_KuKi-] Kzl)—l = K;l-
Ifr = b—Kx = (] r1)7, then the following algorithm is a good realization:
ryi=K3'r,,
roo=r—Kir,.
ry:=Cy,ry,
rpi=r,—Ky; ' Ky ry,
X:i=X+r.

For the case where K is a symmetric positive-definite matrix, we can
consider as the effect of the post-smoothing the operator

B=RTCR with R=(I,~K K3},
C=(K,—Ki; K"Ky, K, =K1,
We are interested in the K-norm of the error & = (I—-Q0K)(I—BK)e
(I —=QK)I = BK)e| g < (I —QK)I ~BK)| el -
The K-norm of matrix (I—QK)(I—BK) is given by
(I = QKW — BK)ll = max (I(I — QK)yllx: Iyllx = L, yeR(I—-BK)).
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To estimate it, we can use the singular values of the matrix I—QK; in the
K-unitary space these are the roots of the eigenvalues of the matrix

(I—QTK)(I—QK)= (0 _K;1K12K51K21K;1K12)

0 K3 Ky KT Ky,
If o,,..., 6y are the singular values in question, then ¢, = ... =0, =0 and
o2.,,..., 0% are the eigenvalues of the matrix

K3 'Ky Ki'Ky,.
If v,,..., vy are the corresponding singular vectors, ieg,

<v|5 J>K—OIJ? lgi’j=N1
then

N
y=13 {»v v, yeRY
i=1

and
N
I—QK)ylk= Y <y, koi.
i=n+1
First, we see that
{(I-QK)I—BK)|[x = oy.

Further we can show that for y = (y] y7)" and

. —K7'K
=()=( 1 ) for i =n+1,..., N,
Dia Iy,

the properties |y|lx =1 and ye R(I —BK) imply
(Ky,vi) = (1 —aiz)(KZstviZ)

and
N
(K3y2,¥2) = Z 1_‘7 HK3y;5,0 vt =1,
Therefore,
N
IT—0K)yllk = 3, (Kyyy,v2)?(1—af)af
i=n+1
N
< Z (K2)’zavi2)2(1“ )max((l—UI ) 1/2
i=n+1 i
and

I(I = QK)(I — BK)lly < (max (1 —a?)a?)? = (1/2) /2.

i
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The resulting estimate for the error is

Iéllx <Byllele  of  élx = (1/2/2 el

All these considerations have only theoretical meaning. But they can be useful
in estimating an approximate choice of the prolongation or restriction matrices
or of an approximate solution of similar linear equations with K, K,, K,

or Ky.
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