EN
CONTENTS
Introduction................................................................. 5
I. HOMOLOGY
1. Preliminaries............................................................. 7
2. Maps in spaces of finite type............................................. 9
3. The Čech homology functor with compact carriers........................... 11
4. Vietoris maps............................................................. 13
5. Homology of open subsets of Euclidean spaces.............................. 14
II. THE LEFSCHETZ NUMBER
1. The (ordinary) Lefschetz number........................................... 18
2. The generalized Lefschetz number.......................................... 20
III. MULTI-VALUED MAPS
1. Upper semi-continuous and compact multi-valued mapB....................... 24
2. Admissible maps........................................................... 26
3. Homotopy and selectors.................................................... 9
4. Lefschetz maps............................................................ 30
IV. ANB-s, AANR-B and w-AANB-s
1. ANR-s..................................................................... 32
2. Approximation Theorem..................................................... 33
3. AANR-B.................................................................... 34
4. w-AANR-s.................................................................. 36
V. THE LEFSCHETZ FIXED-POINT THEOREM
1. The index of coincidence.................................................. 37
2. The Lefschetz Fixed-Point Theorem for open subsets in $R^n$............... 40
3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41
4. Neighbourhood fixed-point property........................................ 45
5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46
6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47
VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE
1. Almost fixed points....................................................... 51
2. Fixed-point property for infinite products................................ 51