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ON A REPRESENTATION OF GROUPOIDS
AS SUMS OF DIRECTED SYSTEMS

BY

A. MITSCHKE (DARMSTADT)

In [3] J. Plonka characterized the representation of an algebra as
the sum of a directed system of algebras by the existence of a binary
operation of this algebra, called partition function. Moreover, he found
out that the sum of a directed system of algebras satisfies. all regular
cquations which are true in the components and no other ones. He proved
in [4] that under some additional assumptions one can represent the
algebras in the equational class of all regular consequences of a given
axiom system X' as sums of directed systems of algebras of the equational
class given by 2.

In this paper we shall study some classes of idempotent groupoids
which are defined by a finite number of regular equations and are repre-
sentable as sums of directed systems of groupoids.

The author thanks Professor K. Keimel, Professor J. Plonka and
Dr. H. Werner for their helpful suggestions.

First, we recall some notions of the above-mentioned papers which
we need in the sequel. Let (I, (A;)i.1, (®i)ijeri<;) D€ a directed system
of similar algebras, indexed by a join semilattice I and let A; be the carrier
set of the algebra A, and (f});.r its algebraic structure. The ¢;; are homo-
morphisms from A; to A4; for i < j, where, for ¢ = j, ¢; = id,, is the iden-
tity map of A;, and, for ¢ <j <k, ¢09;; = @y. Then, the sum A of this
directed system is defined as an algebra of the same type, the carrier set 4
‘of A is the disjoint union of all carrier sets A4;, 1¢I, and its algebraic
structure is given by

Je(@sy ...y @) = f:o(‘l’ilio(a'l)a ) ‘Pinio(a'n))7

where a;¢A; and 4, is the least upper bound of all ¢;, je{l,...,n}. Here
all algebras have finitary operations but no nullary ones. °

An equation f = g of an algebra is called regular iff all occurring
variables of the terms f and g are exactly the same.
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If A = (4, (fi)i.r) is an arbitrary algebra of type (n,);.r, all n, natural
numbers, we call a binary operation o of A4 a partition function or, shortly,
P-function of A iff the following conditions are satisfied:

1.1. (xoy)oz = zo(yoz),

1.2, zozr = w,

1.3. xo(yoz) = wo(20y),

1.4. fi(@1, ..., @, )0y = fi(w,0y, ..., x,0y) for all teT,

1.5. yofy(®1y ...y @p) = Yof(yo@y, ..., yow,) for all teT,

1.6. fi(®yy ..oy )o@ = fi(®y, ..., @,) for all teT and 1<k < ny,

1.7. yof(y, ..., y) =y for all teT

Let | be an equational class defined by regular equations and let A
be an algebra in K. Let g(z, y) be a term of A and let & be the equational
class obtained from & by adding the equation g(z, y) = 2. Then, theorem
III of [3] states

THEOREM 1. The term ¢(x,y) defines a P-function of Aiff A zs re-
presentable as the sum of a directed system of algebras of |”.

We shall apply this theorem to classes &, , of groupoids G = (G, ),
that means algebras of type 2, where k and n are natural numbers satis-
fying 2 < k. For fixed k and n, ®, , is defined by the equations

2.1. wo'wl' cese 'wk_l'mk = .'I/'k'wl' cee 'wk_l'mo,
2.2, (x-y)z ... z=2x(y2..-°2),
T N—— —— —
n times n times

2.3. z-x = z.

. Here the terms without brackets stand for terms where all brackets
are closed to the left. We shall use this notation throughout the whole
paper. Furthermore, for abbreviation, we shall omit the dot and write xy
instead of z -y and use » instead of » times and omit the bracket.

THEOREM 2. Let G be a groupoid of ®, ,. Then the binary opemtwn o
defined by

oY =Y ... Y

n

i8 a P-function of G.

Before we prove the theorem, we give the following

LEMMA 3. Let G be a groupoid of ®, ,. Then the following equatw'ns
are satisfied:

3.1. (zy)(uv) = (wu)(yv),

3.2. (vy)z = (w2)(y2),

3.3. x(y2) = (2y)(22),

34. yr =y e Y,
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36. y» =xy... 9,

k+n

36. 2y...y ==z(xy...¥),
n n

3.7. 2y ...y = xy ...y for all natural numbers 1> 1.
n in

Proof.
3.1. (zy)(wv)= (v ... zy)(uwv) by 2.3
k—1

= (uvxr...xy)x by 2.1

k—2
= (yvx...zu)r by 2.1
k

-2

=(x...zu)(yv) by 2.1

k-1
= (wu)(yv).

3.2, (zy)2z = (2y)(22) = (vz)(y2) by 2.3 and 3.1.

3.3. x(y2) = (zx)(y2) = (vy)(xz) by 2.3 and 3.1.

34. 2y...y =y...yr = yr by 2.1 and 2.3.
k k- ‘

3.2y ...y =(xy...Y)(y...¥y) =2y ...y = yr by 2.2,2.3 and 3.4.
k

n+k k-1 n+l

36. 2y...y =(xx)y ...y =x(2xy...y) by 2.3 and 2.2.

n n n

.3.7. It is enough to prove the statement for I = 2:

zy...y =y ...9)y ...y by 2.3

n n+1 n—1

=Yy ...yYy ...Y¥y by 2.2.

n n—1

Proof of theorem 2.

(roy)oz =y ...yz... 2

n n
= [(zy ...lyz)(yz)]z...lz by 3.2
= (vyz...2)(y2...2) ... (y2...2) Dby 3.2
n—1
=x(Yz...2)...(y2...2) by 2.2
= xo(yoz),

zox =2 by 2.3.
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Let m be the least multiple of » such that m > k. Then we get

(xoy)oz =oy ... Y2 ...2

=2Y...Y2... 2
=z2(xy...¥)2...2 Dby 2.1 and 2.3
=20y ... Y2 ... 2 by 2.2,

n m-—k

(xoz)oy =x2z...2y ... 9

n n

=02...2Y ... Y by 3.7
m n

=202 ...2Y ... Y by 3.4
m—k n

=xy...Y)2y...Y)...(,y ...y) Dby 3.2.

n _._n n
m—k

We now prove by induction that, for all natural numbers 1,

Ry ... )2y ...Y) ... (Y ...Y) =22y ... Y2 ... 2.

n n i

i
The case I = 0 is trivial. Now, we assume the equation for I and
we get

(2xy ...9)(2y ... ¥Y) ... (2y ... ¥)

n n n
I+1

=(2y...9)

ey ...y ...Y¥) ... (Y ...9)] ... [(2y ...y)(2y ... ¥) ... (2y...9)]

n n n n n n

by 3.4

=(2y ... Y)[(exy ...y)(zy...y)...(zy....y)](z:vy...yz...z)...(za:y...yz.;.z)

n n n n n 1 n

i k21

by hypothesis.
For abbreviation, let

U =22Y ... Y2 ... %;
n
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then we get

(22y ... ¥)(2Y ...Y) ... (Y ... ¥)

n n n
141 .
=@y...9)(xy ... )2y ...Y) ...,y ...¥)u ... v« Dby 3.3 and 2.3
n n n n k-1
!
= (2(20)y ... ¥)(2y ... ¥) ... (2Y ... Y)W ... w by 3.2
n n .n k-1

l
= [2(zzy ... ¥) ][22y ...¥)]) ... [2(y ... y)] ... v Dby 2.2 and 3.6

n n k-1
) l Ve
=z[(zxy ... Y)Y ...Y) ... (Y ... Y)]u ... u by 3.3
n n n k-1
1
=2U... % by assumption
k
=20y ... Y2 ... 2 by 3.4 and the
n I+1

definition of w.
Therefore, we get (xoy)oz = (xoz)oy.

(xy)oz =ayz ... 2

n

= (r2...2)(y2...2) Dby 3.2

n n

= (z02)(yo2),
2o (y2) = x(yY2) ... (y2) ‘

n

= (@Y ...y)(az...2) Dby 3.3 and 3.1

n

= (woy)(moz).
Therefore,
zo[(xoy)(xoz)] = wo(mo(yz)) = (wox)o(yz) = xo(yz),

(ry)ox =xyx...2 =yxr...x =2y by 3.4 and 3.5,

n k+n
(zy)oy =2y ...y
n+1
= (2y)(wy ... y) by 3.6
n+1
=(yx...2)(2y ... Y) by 3.5
n+k n+1
= (zyr...x)(ry...y) by 3.4
n n+1
= (2y) ... (zy) by 3.1
n+-2
=Y by 2.3,

zo(xx) = & by idempotency of - and o.
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Now, let G, be the class of groupoids G* = (G*, -) satisfying the
equations

4.1. ey ... Tp Ty = TpTy ... Tp_, %,

42. 2y...y =2,

n

4.3. rx = @.

It is easily seen that 4.2 implies 2.2. Therefore, we get, as an imme-
diate consequence of theorems 1 and 2,

THEOREM 4. Any groupoid in ©, , is the sum of a directed system of
groupoids in (5,:,,,.

The class G, was studied in [2], where the following result was
Pproved:

THEOREM 5. Let G* be a groupoid of Gy, ,,. Then G* is a full idempotent
reduct of a module over the ring R = Z[X]/(X"—1, X*+ X —1).

If r is the generator of R corresponding to X, then we can express
the groupoid operation in terms of the module operations by axy = rz +
4 (1 —r)y. Conversely, we can express the module operations equationally
by the groupoid operation. Therefore, we have

THEOREM 6. Every groupoid in ©,, is a full idempotent reduct of
a sum of a directed system of modules over the ring R.

Here, an algebra B = (B, @) is a full idempotent reduct of an algebra
A = (A, F) iff A = B and the algebraic operations of B are exactly the
idempotent algebraic operations of A.

Finally, we characterize the class of sums of directed systems of
modules over the same ring with unit. As we mentioned above, the sums
are defined if the algebras have no nullary operations. Therefore, we
have to take a unary constant operation instead of the nullary one,
that means, we consider a module over a ring R as an algebra
M = (M, (4, —, ¢ (").r)) of type (2,1,1,(1),.5) satisfying

Ml (z+y)+2z =2+ (y+2),

M2. 2+y =y+e,

M3. z+(—2z) = c(x),

M4, z+4c¢(z) =z,

M5. c(x) = ¢(y),

Mé6. 12 =z,

M7. (r+8)x = ro+ sz,

MS8. (r-8)x = r(sz),

M. r(z+y) =re+ry, '
where x, y, 2 denote elements of M, and r, s elements of R.



- REPRESENTATION OF GROUPOIDS 17

THEOREM 7. An algebra N = (N, (+, — ¢ (r),,R)) of type (2,1,
1, (1),,3), where R is a ring with unit, is representable as a sum of a direct-
ed system of modules over this ring iff N satisfies M1-M4, M6-M9 and

M5'. (—1)z = —=.
Proof. Let N satisfy these axioms. Then we get
e(—x) = —o+—(—2ux) by M3
= —z+1z by M5’ and M8
= —x+4+2 =c¢(x) by M6 and M3,
¢(—z) =(—1)(x+—2) by M5, M3 and M9
= —c¢(x) by M3 and M9,
c(x)+e(x) =c(x)t+or+—2 by M3
=g+ —2 =c¢(z) by M1, M2, M4 and M3,
¢(e(x)) = e(x)+—c(x) by M3
= ¢(x) +¢(2) = c(a),
cx+y) =r+y+—2+—y by M3, M5’ and M9
= c¢(x)+c(y) by M2 and M3,
0z = (1+—1)z =x+—2 Dby M7 and M5’
= ¢(x) by M3,
c(re) =re+ —re by M3
=0z =c(®) by M5, M8 and M7.

With these equations it is easily checked that the binary function
2oy = x -+ ¢(y) is a partition function of N. If, on the other hand, «+ c(y)
=2 and M1-M4, M5’ and M6-M9 are satisfied, then c(x)+c(y) = c(x)
and ¢(y) =y+—y =y+c(@)+—y = c(x)+c(y); therefore, c(x) = e(y).
Then theorem 1 completes the proof.

Sums of directed systems of groups are studied in [1], theorem 4.11.
The result there is that sums of direcied systems of groups are exactly
the inverse semigroups which are a union of groups. In our special case
we consider abelian groups and a ring with unit operating on them. As
far as I know sums of directed systems of modules over the same ring
are not characterized as previously known structures.
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