CONTENTS Introduction..........................................................................................................................................................5 Preliminaries........................................................................................................................................................7 1. Linear spaces and linear operators..............................................................................................................7 2. Right and left invertible operators................................................................................................................8 3. Algebraic operators....................................................................................................................................12 4. Singular integral operators.........................................................................................................................15 I. Characterizations of right inverses and interpolation problems.......................................................................16 5. Operations on Volterra right inverses.........................................................................................................16 6. Characterization of polynomials in right inverses with algebraic operator coefficients................................18 7. Algebraic exponentials................................................................................................................................23 8. Property (c).................................................................................................................................................28 9. Interpolation problems................................................................................................................................32 II. Generalized almost invertible operators.........................................................................................................45 10. Properties of generalized almost invertible operators...............................................................................45 11. Equations with generalized almost invertible operators.............................................................................54 12. Generalized almost invertibility of paired operators...................................................................................62 III. General equations with right invertible operators..........................................................................................68 13. Pre-resolving operators............................................................................................................................68 14. Initial value problems................................................................................................................................80 15. Boundary value problems.........................................................................................................................91 16. First mixed boundary value problems.....................................................................................................102 17. Second mixed boundary value problems................................................................................................116 18. First order equations in the noncommutative case.................................................................................127 19. Remarks on general boundary value problems......................................................................................133 IV. Controllability of linear systems..................................................................................................................151 20. Controllability of first order linear systems with right invertible operators................................................141 21. Controllability of general systems with right invertible operators.............................................................151 22. Controllability of linear systems described by generalized almost invertible operators...........................161 References......................................................................................................................................................169
Faculty of Mathematics, University of Hanoi, Hanoi, Vietnam
Bibliografia
[1] G. R. Allan, On one-side inverses in Banach algebras of holomorphic vector valued functions, J. London Math. Soc. 42 (1967), 460-470.
[2] P. M. Anselone and M. Z. Nashed, Perturbations of outer inverses, in: Approximation Theory III, Academic Press, New York 1980, 163-169.
[3] R. Arens, Dense inverses limit rings, Michigan Math. J. 5 (1958), 169-182.
[4] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York 1974.
[5] L. Berg, Randwertsprobleme in der Operatorenrechnung, Wiss. Z. Univ. Rostock 23 (1974), 621-624.
[6] L. Berg, Rechtinverse Operatoren und Randprojektionen, Math. Nachr. 129 (1986), 21-29.
[7] Z. Binderman, Initial operators for generalized invertible operators, Comment. Math., to appear.
[8] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices, Wiley-Interscience, New York 1974.
[9] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London 1979.
[10] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., Kingston, Ont., 1978.
[11] I. H. Dimovski, Duhamel-type representations of the solutions of non-local boundary value problems, in: Proc. Second Conf. Differential Equations and Applications, Rousse 1981, Techn. Univ. Rousse, 1982, 240-247.
[12] I. H. Dimovski and R. I. Petrova, Generalized solutions of non-local problems, in: Proc. 17-th Spring Conf. Bulgar. Math. Union, Mathematics and Math. Education, April 1988, Bulgar. Acad. Sci., Sofia 1988, 161-165.
[13] M. M. Dzhrbashyan and B. A. Saakyan, Classes of formulas and expansions of Taylor-Maclaurin type associated with differential operators of fractional order, Izv. Akad. Nauk SSSR 39 (1975), 65-122 (in Russian).
[14] F. D. Gakhov, Boundary Value Problems, Oxford 1966 (3rd Russian complemented and corrected edition, Moscow 1977).
[15] I. S. Gokhberg and N. Y. Krupnik, Introduction to the Theory of One-Dimensional Singular Integral Operators, Kishinev 1973 (in Russian).
[16] L. Jodar, Algebraic methods for solving boundary value problems, Stochastica 10 (1986), 259-270.
[17] Ch. Kahane, On operators commuting with differentiation, Amer. Math. Monthly 76 (1969), 171-173.
[18] W. Z. Karwowski, Nonlinear boundary value problems with right invertible operators, Ph. D. diss., Institute of Mathematics, Technical University of Warsaw, Warszawa 1988 (in Polish).
[19] W. Z. Karwowski and D. Przeworska-Rolewicz, Green operators for linear boundary value problems with a right invertible operator $D^N$, Math. Nachr. 152 (1991), to appear.
[20] W. Z. Karwowski and D. Przeworska-Rolewicz, Linear boundary value problems for polynomials in right invertible operators, Demonstratio Math., to appear.
[21] H. Kornacki, Linear equations with right invertible operators and their right inverses in spaces of Dirichlet series, Ph. D. diss., Institute of Mathematics, Technical University of Warsaw, Warszawa 1988 (in Polish).
[22] A. Lausch and D. Przeworska-Rolewicz, Pseudocategories, paraalgebras and linear operators, Math. Nachr. 138 (1988), 67-82.
[23] S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Berlin 1986.
[24] D. Milman, The abstract linear boundary value problem ( a nongroup approach), Integral Equations Operator Theory 9 (1986), 11-30.
[25] M. Z. Nashed (ed.), Generalized Inverses and Applications, Academic Press, New York 1976.
[26] M. Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987), 261-325.
[27] Nguyen Dinh Quyet, Controllability and observability of linear systems described by the right invertible operators in linear spaces, preprint No. 113, Institute of Mathematics, Polish Acad. Sci., Warszawa 1977.
[28] Nguyen Dinh Quyet, On linear systems described by right invertible operators acting in a linear space, Control and Cybernetics, 7 (1978), 33-45.
[29] Nguyen Dinh Quyet, On the stability and observability of (D-R)-systems in Banach spaces, Demonstratio Math. 12 (1979), 203-209.
[30] Nguyen Van Mau, Remarks on initial value problems for equations with right invertible operators, preprint No. 451, Institute of Mathematics, Polish Acad. Sci., Warszawa 1989.
[31] Nguyen Van Mau, Generalized Algebraic Elements and Linear Singular Integral Equations with Transformed Argument, Wydawnictwa Politechniki Warszawskiej, Warszawa 1989.
[32] Nguyen Van Mau, Boundary and mixed boundary value problems for equations with right invertible operators, preprint No. 465, Institute of Mathematics, Polish Acad. Sci., Warszawa 1989.
[33] Nguyen Van Mau, On solutions of a system of singular integral equations with analytic kernals and reflection, Ann. Polon. Math. 52 (1990), 103-108 (in Russian).
[34] Nguyen Van Mau, On ill-determined equations in right invertible operator of order one in non-commutative case, Math. Nachr. 147 (1990), 81-91.
[35] Nguyen Van Mau, Controllability of general linear systems with right invertible operators, preprint No. 472, Institute of Mathematics, Polish Acad. Sci., Warszawa 1990.
[36] Nguyen Van Mau, Interpolation problems induced by right and left invertible operators and its applications to singular integral equations, Demonstratio Math. 23 (1990), 191-212.
[37] Nguyen Van Mau, Characterization of Volterra right inverses, Opuscula Math. 6 (1990), 21-37.
[38] Nguyen Van Mau, Conditions for polynomials in right inverses with stationary and algebraic coefficients to be Volterra, Comment. Math. 30 (1991), 175-185.
[39] Nguyen Van Mau, Properties of generalized almost inverses, Demonstratio Math., to appear.
[40] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[41] A. Pogorzelec, Initial value problems with ill-determined linear systems with right invertible operators, Demonstratio Math. 16 (1983), 407-420.
[42] A. Pogorzelec, Solvability of linear systems of the first order with right invertible operators, ibid. 18 (1985), 1039-1063.
[43] A. Pogorzelec, Solvability and controllability of ill-determined systems with right invertible operators, Ph. D. Diss., Institute of Mathematics, Technical University of Warsaw, Warszawa 1983.
[44] D. Przeworska-Rolewicz, Equations with Transformed Argument. An Algebraic Approach, Elsevier and PWN, Amsterdam-Warszawa 1973.
[45] D. Przeworska-Rolewicz, Shifts and Periodicity for Right Invertible Operators, Res. Notes in Math. 43, Pitman, Boston 1980.
[46] D. Przeworska-Rolewicz, Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht 1988.
[47] D. Przeworska-Rolewicz, Linear boundary value problems for right invertible operators, preprint No. 413, Institute of Mathematics, Polish Acad. Sci., Warszawa 1988.
[48] D. Przeworska-Rolewicz, Property (c) and interpolation formulae induced by right invertible operators, Demonstratio Math. 21 (1988), 1023-1044.
[49] D. Przeworska-Rolewicz, Spaces of D-paraanalytic elements, Dissertationes Math. 302 (1990).
[50] D. Przeworska-Rolewicz and S. Rolewicz, Equations in Linear Spaces, Monografie Mat. 47, PWN, Warszawa 1968.
[51] D. Przeworska-Rolewicz and S. Rolewicz, The only continuous Volterra right inverses in $C_c[0,1]$ for the operator d/dt are $∫_a^t$, Colloq. Math. 51 (1985), 279-283.
[52] D. Przeworska-Rolewicz and S. Rolewicz, On the spectrum of right inverses, Demonstratio Math. 23 (1990), to appear.
[53] D. Przeworska-Rolewicz and H. von Trotha, Right inverses in D-R algebras with unit, J. Integral Equations 3 (1981), 245-259.
[54] S. Rolewicz, Functional Analysis and Control Theory, PWN and Reidel, Warszawa-Dordrecht 1987.
[55] F. O. Speck, Least squares approximate and least norm solutions of paired singular equations, Math. Nachr. 130 (1987), 47-68.
[56] B. Shekhtman, On some problems of M. Z. Nashed on outer inverses, Linear Algebra Appl. 76 (1986), 149-152.
[57] M. Tasche, Abstrakte lineare Differentialgleichungen mit stationären Operatoren, Math. Nachr. 78 (1977), 21-36.
[58] M. Tasche, Funktionanalytische Methoden in der Operatorenrechnung, Nova Acta Leopoldina 49, Halle 1978.
[59] M. Tasche, A unified approach to interpolation methods, J. Integral Equations 4 (1982), 55-75.
[60] H. von Trotha, Structure properties of D-R vector spaces, Dissertationes Math. 184 (1981).
[61] H. von Trotha, Contractivity in certain D-R spaces, Math. Nachr. 101 (1981), 207-213.