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1. Introduction

These lectures were addressed to students having as a common background
only a basic course in particle and continuum mechanics. Thus elementary
topics were rivisited at first though with the slant of a scholar in continuum
mechanics, emphasising constitutive laws, requirements of objectivity, etc.; in
fact, Sections 1 to 4 could be intended as the sketch of a modest pedagogical
proposal. The second part of the paper contains a succinct report on balance
laws for continua with microstructure (as proposed in ('), the conciseness
being in part justified by the lengthy introduction.

Section 2 contains a brief reference to the simplest representation
theorems; Section 3 is devoted to some comments on the action-reaction
principle and on the law of moment of momentum: systems of particles
subject to perfect constraints are considered in Section 4, so as to lead in the
following Sections 5 and 6 to a discussion on the allowable rigid velocity
distributions. Thus a necessary, central condition on the Lagrangian compo-
nents of internal forces is derived, a condition which is of the essence in the
developments of the later sections. Section 5 contains also some examples
which should render the reader familiar with the type of implications te be
expected from the condition. Geometry, kinematics and dynamics of con-
tinua with general, finite-dimensional structure are discussed briefly in
Section 7. In Section 8 it is finally shown how some special theories can be
set within the general framework.

(") G. Capriz and P. Podio-Guidugli, Materials with finite-dimensional structure, in:
A. P. 8. Selvadurai (ed.), Mechanics of Structured Media, Eisevier, Amsterdam 1981, 255-268.
The identifications mentioned at the end of Section 8 use notation of a paper by the same
authors published in Ann. Mat. Pura. Appl. (4), 111 (1976), 195-217.
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The scheme of notation is as follows: Greek letters (¢, ¥, ...) stand [or
scalar quantities (and are used also as indices of Lagrangian ‘oordinates and
quantities). Small latin letters (u, v, ...) stand for vectors in th. ~e-dimensional
Euclidean space &4 (and are used also as indices, in particula as indices of
components on an orthogonal system of reference x 1n &: eg. u;, v, i
=1, 2, 3). Capital latin letters (A4, B, ...) stand for second-order tensors, with
components A;;, elc. on x; in particular 1 is the unit tensor; notice also the
tensor product of vectors a®@b, such that (a®@b);,; = a;b;. ¢ is Ricci's third
order permutation tensor; other letters from the same font (a, b, ...) are used
for other third-order tensors. Fourth-order tensors are indicated with capital
letters (A4, B, ...). Repeated latin indices are summed from 1 to 3.

2. Scalar and vector functions ol vectors

Let the scalar ¢ be a function of a vector u. If a cartesian reference x is
assigned, we can think of ¢ as a function of components u,, u,, u3; it is not
a generic function of those variables, however. In fact, if we change the
reference from 1 to ¥’ (and suppose that the matrix of direction cosines be
Q. X, =0Q,x;, r=1.2,3), then u,, u,, u3 change into Q,,u,. Q,, u,, Oy, u,
whereas ¢ must not change. The point is that, in constructing the scalar ¢,
direction and orientation of u have no role to play: ¢ is a function of |u
alone:

(2.1) @ = @(|u]).

Notice that the essential point in the proof is the negation of any preferred
direction; only with that understanding the invariants associated with a
vector are its modulus or functions of its modulus alone.

In this, as in other representation theorems which follow, when we say
that some variable is a function of certain independent variables of vectorial
or tensorial character, we mean that it is a function of those variables alone;
it does not depend on other, non-expressed, vectorial or tensorial vanables
(more precisely, other, not explicitly declared, variables must be either scalars
or constant tensors i.e. tensors whose components are the same in all
Cartesian references). On the other hand, the function is meant to be defined
over the whole space of vectors or tensors. Notice also that, when we speak
of scalars or tensors, we mean absolute scalars and tensors (i.e., objects whose
invariance or rule of variance apply also for changes from night-handed to
left-handed systems) so that e is not a constant tensor.

A representation theorem of Cauchy shows how things stand when ¢
depends on N (> 1) vectors: if ¢ is a scalar function of N vectors u'®, ..., u'™
then it can be represented as a function of (or it depends on those vectors
through) the scalar products w'®-u® (a, b =1, ..., N) alone

(22 9= G a2,
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The proof follows from this remark: think of the geometric hgure
formed by the vectors u, a =1, ..., N all issuing from a common origin 0.
If a rigid displacement is imposed upon the figure, lengths and angles do not
change, nor do lengths and angles change after reflection. Hence any function
of the type (2.2) is a scalar.

Vice versa, suppose that you have two systems of vectors (0, u'®),
a=1,...,N, and (0, v), a=1, ..., N, such that

(2.3) Wy B = @ Va, b;

then the two systems can be superposed through a rigid rotation, followed
perhaps by a reflection. In fact, assume that u'", 4, 4™ do not belong to
the same plane (if all u', a =1, ..., N, belong to the same plane the proof
becomes simpler). By a rotation the plane of v, v'* can be brought to
coincide with the plane of 4!V, u'® and ¢'"" with u'" (notice that, by (2.3), the
length of any '@ coincides with the length of the corresponding u'“); then ¥
either coincides with «'® or can be brought to coincide through a rotation of
T e T T

n around u'" (in fact cos (u'", u'?) = cos (+*V, v'#"; hence, if angles are taken
as usual in [0, n]. (W) = (Em’,—P‘T)). Finally, bringing to bear equality of
angles again, one checks that either +'* already coincides with u'* or can be
brought to coincide through a reflection on the plane of u'", u*®. Once "),
o', 1 are superposed on u'", u'®, u'¥ respectively, any other vector v,
=4, ..., N coincides with the corresponding vector u'' because, by (2.3), its
components on u'!, 4 4> are equal to those of v'“.

Consider now a vector f which is a function of a vector u: we can think
of the components f,, f,, f, of f on a cartesian reference x as functions of
the components u,. u,, uy of u: but again the function must be a very
particular one: in fact the relation

(2.4) fi=ftuy uyuy),  i=1,2,3,

must apply also if we change reference, when f; goes into Q;;f; and u, into
Q,.u,; 1.e, the functional relation must apply

(25) Qij_f;(ulv Uy, 143) Zf:-(Ql,.ll,., Q2r U, Q3r ur)-
For instance, take the independent vector u parallel to the first axis of x and
calculate the corresponding values of f,, f,, f; through (2.4)

Ji :.fl (u;, 0, 0), » f =,fz(“1s 0, 0}, /3 =.f3(“l~ 0. 0).

Assume now that ¥’ differs from x only because the orientations of the second
and third axis are opposite (1.e., take, in the orthogonal matrix of reference

change, Q,, =1, Q,, = —1, Qi3 = —1; all other Q,, zero); apply (2.5) to
obtain

.fZ(ub 03 O) = _.fZ(ulw 0-: 0)~ f3 (ula 0, O) = -f3 (ulv Oa 0)
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Hence f must be parallel to u:

f =y {u)u.

Here ¢ must be a scalar function of u, as can easily be checked. In
conclusion,

If the vector f is a function of a vector u, then it must have the form

(2.6) S =v(ul)u,
where  is any function of its argument.

This conclusion can be reached also by a direct, naive reasoning: to
specify the direction of f we do not have at our disposal anything beside the
direction of u, so, by Ockham’s razor, the two directions must coincide.

The theorem just quoted is a special case of another general represen-
tation theorem of Cauchy, which we state below without proof:

If the vector f is a function of vectors u'®, a =1, ..., N, then it has the
form

N
(27) f=3 pu
a=1

where the coefficients W' are scalar functions of the vectors u™® and hence of
the form (2.2).

Sometimes one has to consider a scalar or a vector, which is a function
of places (for.instance of the places occupied by several particles #'“). Places
can be specified by vectors p* issuing from an origin 0, which, however, can
be chosen arbitrarily. Then the relevant variables are not the vectors p', but
rather the differences

dab = par _ g
which remain indifferent to the choice of 0.

ExampLE 1. If f depends only on the places occupied by two particles,
then it must be of the form

(2.8) f=v(dyd, d=p?—ph
This is, for instance, the general law of force in binary interaction.

ExampLE 2. If ¢ is a scalar depending on the places occupied by two
particles, then it must depend on their distance 6 = |d| only

(2.9) ® = ¢(d).
This is the case for potentials in binary interactions.

ExampLe 3. If ¢ depends on the places occupied by three particles,
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then it can be given the form suggested directly by formula (2.2) or,
alternatively, by

(2.10) @ =@M, o'2. 9),

where ') and 3'® are distances of, say, the third particle #? from #! and
AP respectively and 9 is the angle between the vectors p'V’—p'® and p'®
—p. A more symmetric form can be also given to ¢,

(2.11) o = @o, 82, 5(3))’

with ¥ distance of .#'" from %), at the cost of restricting the region of
definition of @ to the range

-

0 < (5(1) < 6(2)+6(3)’ 0 < (3(2) < (5‘3)*{'5(”- 0L 5(3) < 5(l)+5(2)_

Formula (2.11) gives the form of a potential for multiple interactions.
Notice that the potential for multiple interaction need not be the sum of
potentials for binary interactions.

ExampLe 4. If f depends on the place of three particles, then it must
belong to the plane of the particles and can be given the form

(2.12) F o= D @ gt g,
where
d1 = p@_ p3 4 = p® — pi,

and y'V, ¢ are functions of &1, 52, o,

J in (2.12) could be the force on #°' due to the presence of .#1, A2
Notice again that f need not be the sum of forces due to binary interactions.
Consider, for instance, as an exercise, the case when f derives from a
potential of the type (2.11), e.g,

3
F=}1 % 0,079,
5=

with the constants «,, all different from zero.

In dynamics, cases are considered where a scalar or a vector depends on
places and speeds of particles; but then deeper conditions of invariance are
exploited. Consider, as an example, a vector f which depends on the place
and speeds of two particles, p'', p'® and p*’, p'® respectively. Seek the
ccaditions under which the dependence is not influenced if the motion is seen
instantaneously by an observer in arbitrary rigid motion. Then, first of all,
only the difference ot speeds d = p'" — p'? becomes relevant (the origin of the
observer frame can be put in the place occupied by #?, a speed of
translation equal to p'® can be attributed to it, so that the speed of #?
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vanishes and that of %" becomes d). By Cauchy’s theorem (formula (2.7)) it
must be _
[ =ad+fid,

where a and /3 depend on d?, d% d-d; on the other hand the component of d
transverse of d can be made arbitrary by giving the observer frame an
appropriate speed of rotation around an axis through .#%. In conclusion
only the component of d along d counts (hence f# must vanish) and we have

(2.13) f=a(d,0)d, o=|d.

3. Comments on Newton’s Lex Tertia

In the dynamics of a system formed by many particles constitutive hypotheses
are needed to specify the laws of interaction; in most general terms the force
acting on any one particle may depend on the placement of the system (the
place of each particle) and its state of motion (the speed of each particle); but
the dependence must be such as to satisfy a deep condition of invariance:

RULE oF oBsecTivity. The luw of force is invariant to any change of
observer.

We do not pursue here an analysis of various constitutive assumptions,
but make use of results of Section 2 and of the rule just stated to restrict the
range of choices.

Consider a binary system [AY % Then the forces ") anu f®
acting on #" and #'? respectively must obey the restriction ‘2.13)

(3.1) fO =93, d)d.

If the two particles are identical, then requirements of invanance alone lead
to the condition

(3.2) al’ (s, 9) = —a'?(3, d).

[n general, however, there does not seem to be a compelling logical argument
in favour of (3.2). An explicit assumption is needed:

Lex Tertia. Relation (3.2) is valid for all binary systems.

In other words, the resultant force of the system vanishes

(33) j‘(1)+j'(2) =0,
Once account is taken of (3.1), eqn (3.3) is equivalent to
3.4 PO x M4 p!D D = 0,

i.e, to the condition that the resultant moment vanishes. An alternative
version of (3.4), trivial here but of some relevance later, is the condition

(3.5) p ' ®f N+ pPRf P e Sym.
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Let us consider now, within &, a system formed by N (N > 2) particles
#9. Cauchy’s theorem (formula (2.7)) helps little in general; one can say that,
if all particles are in one plane, then the forces must be parallel to that plane,
but not much more. A deeper hypothesis intervenes:

CoroLLARIUM. The actions exchanged by the particles of any isolated system
(1.e., a system which is all we think exists in space) are equilibrated; the
resultant force and the resultant moment both vanish:

(3.6) Y g0 =0,

i=1

N

N
(3.7) Y P xf =0, or Y p®fMeSym.

i=1 i=1

Naturally if all interactions among particles in a system were superpo-
sitions of binary interactions obeying (3.3), (3.4), conditions (3.6) and (3.7)
would be trivially satisfied. On the other hand not all interactions obeying
(3.6) and (3.7) need be in principle superpositions of binary interactions.

The systems & of particles for which the statements above apply, are
isolated systems. Usually one has to deal with subsystems, however. For the
study of the evolution of a subsystem ./ (formed. say by the particles 2,
i=1,2,..., K; K < N) an appropriate classification of forces acting on the
particles of -/ is of the essence: the force [ acting on the ith particle is split
into the sum of the force ™ (internal force) that would act upon it if ./
were isolated (i.e., if ¥ — .«/ were removed) and of the force f™@ = f® 1
(external force). Notice that the vectors f©) must account also for the
alterations, if any. in the interactions among particles of .-/ due to the
presence of the particles of .¥ —.o/. Newton’s Lex Secunda requires for each
particle the validity of the relation

(3.8) ut g = fEA 4 10,

where a' is the acceleration of the ith particle in a Galilean frame and u" its
mass.

But, by the Corollarium, the system of forces f® (i=1,2,...,K) is
equilibrated: thus, if one introduces the resultant force of inertia

K

(39) fM=— % ua®
i=1

and the resuitant moment

K
(3.10) myt = — Y p@ x u®a?,

i=1
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one obtains from (3.8) Euler's equations of balance

(3.11) M+ fE=0, mif4+mE=0,

where
K ) K

(3.12) SE=Y 150, and mh =3 p® xfEO
i=1 i=1

K
If we let p be the position vector of the centre of gravity up = ¥ u p*”

i=1
K

(u =) ) and we introduce the momentum and moment of momentum of
i=1

-/, respectively,

K K

(3.13) pg =y u®ph, pko = ¥ p x p® po,
i=1 i=1

eqns (3.11) yield '

(3'14) "u) =f‘E, [J-i(o = mg,

whenever 0 is fixed or coincides with the centre of gravity.
Other global equations for .o can be deduced, for instance:

(i) The kinetic energy theorem:

(3.15) U =m
where
K
'(3.16) we =143 10 (p")?
i=1
is the kinetic energy and
K
(3.17) m=3 f"p°

i=1
is the power of all forces (external and internal) acting on the particles of .~/.
(n) The virial theorem

(3.18) pla—2x)=p
where
K » . .
(3.19) g = Z pir - gt g
i=1

is the virial of momentum and
K

(3.20) g = Z pi-f
i=1

is the virial of all forces acting on the particles of .o/.



DYNAMICS OF CONTINUA WITH MICROSTRUCTURE 79

To obtain (3.18) multiply both sides of (3.8) scalarly by p* and sum
over |I.

() The equation of balance of generalized (or tensorial) moment of
momentum

(3:21) (Ko—T) = Mi+ M}
where

K o
(322) ”KO — Z p“’@#(”ﬁ(”

i=1

1s generalized (or tensorial) moment of momentum,

K
(3.23) uT = ¥ @ pxp

i=1
is the kinetic tensor and
K K
(324) MF_ - Z p(i)®fE.(i), M:) = Z p(l')®f|.(i)
i=1 i=1

are generalized (or tensoriall moments of external and internal forces
respectively.

It is important to remark that, by the Corollarium, M} is a symmetric
tensor
(3.25) M4 eSym.

Notice that, taking the trace of both sides of (3.21), one obtains (3.18)
again, whereas, equating the vectors associated with the skew parts of right-
and left-hand side of (3.21), one obtains (3.14),.

A final remark: if the kinematic state 1s rigid, there exist two vectors v
(speed of translation) and r (rotational speed) such that
(3.26) PP =v+rxp?.

The power of forces for such a kinematic state involves the resultant
force and moment only. In fact

K K K
= ¥ SO (v4rxp®) =(Zf“")'v+(2 P x f@)-r
. i=1 i=1 i=1
and, because internal forces are balanced,
(3.27) ™ =fFv+mt-r.

Actually the property of internal forces to give null power for all rigid
kinematic states (3.26) could be used instead of the conditions of balance

(3.28) : ffo+m-r=0, Yo, r.
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4. Constraints

In concrete problems a complete analysis of the behaviour of the subsystem
./ can be avoided through the acceptance of special hypotheses inspired by
the physical situation. Drastic simplilications derive. for instance, from the
introduction of geometrical constraints; a typical example i1s the internal
constraint of rigidity.

One assumes Lhat the vectors p" are completely specified once the
values of a limited number n of parameters v, are assigned

(4.1) PO = p" (v Vs, L ). i=1.2,..., K.

The number n is always less and wvsually much less than 3K the
parameters v, (the Lagrangian variables) are taken here to be non-
dimensional. The constraint functions in the right-hand side of (4.1) are
assumed to be defined over a domain of R" and to be there sufficiently
smooth so as to give meaning to the developments which follow. The
parameters v, are assumed to be independent; a way to make this condition
locally precise is to assume that the matrix

42y
A ()
nm=5’£i--, A=3(-0)+j, A=1.2,...,3K. o=1,2,....n,

has everywhere characteristic n, so that in particular the vectors

0 n (".p(l) "
e HZ] (v, t
vanish if and only iIf all v, vanish. More generally, the relations (4.1) are
required to define a differential manifold of dimension n imbedded in &%,
Through (4.1) a partial specification of the physical properties ol </ is
given; it is implied that the system evolves in accordance with (4.1) because
appropriate forces [ (constraint forces) are evoked. To avoid indeter-
mination, specific hypotheses are needed with regard to f<“; a very conveni-
ent assumption requires ") to have null power for any kinematic state p"¥
compatible with (4.1), precisely that

K n o Asti)

Ly X )= Y
i=1 =1 (.vﬂ
then the constraints are called perfecr (or frictionless). This condition implies
K )
o P
) GO =, =1,2,...,n.
(4.3) .-:Zl'f v, d

A new classification of forces is therefore in order: the forces due to the
constraints, already quoted, and the active forces f*:

(4.4) FAD = p_ g0,
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A
If we multiply both members of (3.8) scalarly by — 2— and sum with

l

respect to i, we obtain, in view of (4.3),

“‘(l)

A=
(45) Z #ma(n (P _ ZJA(I) _‘1_

=1 Vg i=1 Y,

If we notice also that

(p(r) aﬁm

¢ : v,
and recall the definition (3.16) of kinetic energy we can derive from (4.5) the
equations of Lagrange

d{ o
6 @Jaﬂ a) Ao

where the Lagrangian components 4, of active [orces are delined by

@) =3 “’”m.
i=1
These forces could depend on placement and kinematic state of the
whole system ., and not only of /. A final simplifying hypothesis is now
accepted: the plucement and kinematic state of & — </ influences i, at most
through an explicit dependence on the time t; each A, is taken to be an
assigned function of v, ..., v,, ¥V, ..., V,. T:

(4.8) Ay = A (Ve ooey Vo Vys onns ¥, T).
If we put
1 K a*(n) (ph)
49 = )
(4.9) Hea #.-221“ &, o,
so that

(4.10) ;

N—

n
L HooVeo:

eqns (4.6) can be put in 4 more exphcnt form

o Oy 4 Opg, . |
4. O _ iV, = — .
( ll) Z“ﬂﬂvﬂ_*_ﬂyz:l((‘;vy ava )‘ﬂ‘/ r z

It is important to notice that the quantities u,, form a positive-definite
symmetric matrix. In fact »x (compare (4.10) with (3.16)) vanishes if and only if
all ¢" vanish, or, in other words, if and only if all v, vanish, in view of the
property of the matrix (4.2).

6 — Banach Center Publicauens 15
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In particular
det p,p > 0;

hence an inversec matrix p,,' exists, so that we can deduce from (4.11) an
equivalent system

" Cllg, ¢
412 v, = ¥ u,;.‘( g--ﬁ-“-'--—’-‘i‘i)v,, v+

|
poro=1 Vs OV,
n

-1 -1 o S . )
+ﬂ Z Hais A&("l,..., Vs Vis vy Yy t).

In conclusion we have given eqns (4.6) the form of a system of n ordinary
differential equations in the n unknown functions v,(t) and the system is in
normal form. Under known conditions ol regularity of the right-hand sides,
theorems of existence and uniqueness of solutions can be applied; our
scheme is predictive: once the initial conditions (i.e., placement and kinematic
state of .c/) are given, we can determine the evolution of the system.

Remark. In the following analysis both classifications of forces encoun-
tered so far (internal-external and active-constraint) are required; for the set
of forces belonging to a class Z we set

K ) (‘\_p(i)
57— '7.(1).,_.
“o ,-;" v,
With this notation, 4, above (and in the following pages) should really be
written A} where A stands for active, and condition (4.3) could be spelled A
=0, or

(4.13) AlC 4 FC — 0,

Having in mind our final goal (which is a theory of continua) we are
interested below primarily in cases where A, coincides with A% and A% with
/E*; this is the case, for instance, when the constraints are purely internal
(fEC@ = 0) or purely external (f'“” = 0); however, we leave the matter open
for the moment.

5. Virtual rigid velocity distributions

In the developments of Section 4, leading to (4.6) or (4.12) no use was made
of the fundamental property (3.28) of internal forces: the Lex Tertia did not
have a role. Let us make up for this deficiency now.

We need to define the subset %'® = {vX! of R” which contains the values
R of v, which give rise to rigid velocity distributions for /. ©® is a linear



DYNAMICS OF CONTINUA WITH MICROSTRUCTURE 83

subspace of R" of dimension not greater than 6; in fact, for all i, any one of
its elements satisfies
n apﬂ')
v,
for some choice of the vectors v and r.

In terms of components, system (5.1) can be written as follows

(5.1)

R _ (i)
Vg =U+rxp?,

a=1

(5.2 Y MgV = va-sja-1ym1 T €a-s1ca- nysmatm P 147 DPD,
=1
where A =1, 2,...,3K and [(A—1)/3] is the integer part of the fraction
between brackets.
System (5.2) can be considered as a system of 3K linear equations in the
n unknowns v® and we have assumed already that the (3K x n)-matrix 1,
has maximal characteristic n. For the compatibility of system (5.2) the

complete (3K x (n+ 1))-matrix

1+[(A—-1)/3
(5.3) (T 4o - 310~ 1331 F €4 - 304~ 1y/31.mon P PR FLATDI3D)

must also have characteristic n. Hence all its minors of order n+1 must
vanish; these conditions can be interpreted as a set of linear homogeneous
conditions on v and r. Introducing a characteristic length 2 to avoid a
mismatch of dimension, we can say that the 6-vector (2~ ' v|r) must belong to
a linear subspace # of R®

(5.4) (x~'v|r)e # = RE.

The dimension of # may range from 0 to 6; either extreme cases # = [0} of
# = R® may occur.

Once condition (5.4) is satisfied, the system (5.2) can be uniquely solved
in terms of v¥, which become necessarily linear functions of ™' v and r, so
that a representation of the following form is possible

(5.5) ¥R = g 1@ p g @y

with each (v'|r'?)e #. Actually one may ask if # can be larger that span
(©'?F). If that were the case non-null 6-vectors (x~ ' v*|r')e # would exist
orthogonal to all (!?|F®) and such that all the corresponding v} would be
zero; hence v +rt x p must vanish for all p. In conclusion all points must
belong to a straight line and r* have the direction of that line. Thus,
generally, (i.e., if the exceptional circumstance is excluded) .4 = span (v!?|F?);
if special mention to the contrary is not made, this 1dentity is presumed valid
from now on.
Going back to (3.28), one is led to require

(5.6) ffo4+m-r=0, V(@ 'vire4,
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which is the only condition relevant now in view of the admissible rigid
velocity distributions. In [act one can introduce, in general, a reduced
resultant force f' and reduced resultant moment /@' of internal forces

(5.7) Sl=a"' Y Ao, m= 3 Ar

a=1 a=1

observe that, by (4.7) and (5.5), eqn (5.6) is equivalent to
ffv4nt-r =0, Vix 'vine #,

which in its turn applies if and only if

(5.8) M1=0, #A=0,

because the 6-vector (xf'|t') belongs to 4. One can easily check that the
result is valid also in the circumstance which we have called exceptional
above.

In conclusion, for the complete direct specification of a constrained
system of the type introduced in Section 4, it is appropriate to choose also
the subspace # (of dimension not greater than 6) of R" and a set of n 6-
vectors (¢'”|r'?) (such that span (v'|r'”) = #, except for one special
circumstance) so as to represent rigid velocity distributions, and require that
the Lagrangian components of internal forces satisly (5.8). The choice of .#
and (v'|r'?) reflects the specific kinematic behaviour of the system.

ExampLe 1. Let #Y, ¥ be two points constrained to move along
an assigned plane curve y (a case of purely external constraint); choose as
Lagrangian coordinates v,, v, the arc lengths measured from a fixed origin
along 7 to 2V, #? respectively, divided by the factor . Suppose that the
only active force derives from a binary interaction. 4, and — A, become the
components along the tangents to ;y at Y, 22 respectively of one vector
representing the interaction multiplied by .

Any virtual rigid velocity distribution, being plane, must have either
translatory or rotatory character. The second instance occurs if the tangents
to y at 2", #? are not parallel: then the virtual rotation is around an axis
(of unit vector ¢) normal to the plane through the point % of intersection of
the normals to ; at 2" #2 and

) =0, r = fc (B arbitrary scalar).

Correspondingly, if we call ag,. xp, the distances of 2!, 2% from %, we
have
v'” =0, " =g,c;

-a 2

then, condition (5.8) requires

(5.9) —AifAy = 02/04-
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A simple geometric construction proves that this equation is satisfied if
and only if 24, and —4, are, as implied in the premises, the components of
the same vector along the tangents to y at A, 22 respectively. The
“advantage™ of (5.9) is in its intrinsic character, not requiring explicit
reference to the properties of binary interactions.

ExampLe 2. Let ¢ be K fixed vectors not all belonging to one plane
and G a non-singular tensor which is a function of one lagrangian variable
v. Consider the system with one degree of freedom constrained as follows
p(l') = G(v) e

Then the kinetic energy and the Lagrangian component of force are
respectively

px = S ul-(HT H)v2, i=H""M
where

L& i dG . _, K
J —— Z #(”P(”@p“', H="--G "', M = Z P(l)®f )
Hi=) dv i=1
Rigid virtual velocity distributions .are possible only with
r=0, r=—1vfe(H).
There is only one 6-vector in the set |(¢'”[r'”)! and it is (0]0) if e(H) =0
. e(H) |
and otherwise (OI -t
“(e(H)Y
are automaltically zero in the first case and otherwise

). The reduced resultant and resultant moment

fi=0, @=—pr 0.

hence, conditions (5.8) do not restrict A" at all if skw H = 0; if this relation is
not satisfied, then A' must vanish,

This example shows that two dynamic systems with one degree of
freedom may have a totally different kinetic behaviour which reflects on the
allowable choice of the lagrangian component of internal forces: two extreme
cases are GeOrth* (when HeSkw and hence 4' is necessarily zero) and
GeSph (when A' is not constrained at all).

ExampLe 3. Let &9 be K constants and ¢?, ¢ =1, 2, 3, three or-
thogonal unit vectors. Consider the system with three degrees of freedom
subject to the constraint

3
p = g Z L

a=1
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We can write

3
p(i) — é(i)d d = Z v. @
[ a .
g=1
Kinetic energy and Lagrangian components of force are respectively
e = % ud?, by =gt ',

where

(i)} AU
S A
1

IIM:-;

L
| = - Z 'um(gm)z, gA —
Ki=1 i
In a rigid velocity distribution ¢ =0 and r is arbitrary, whereas

3
d®R =Y ¥ =rxd or VR =(d x " r

ag=1
hence

v =0, M =d x 2,

This example brings forth one of the circumstances which we have called
exceptional in Section 5. Here .# is larger than span (v'”|A”): all r'” are
orthogonal to d, whereas r is arbitrary.

The first condition (5.8) is automatically satisfied, whereas the second
K

requires that g' = Y £9f"9 be parallel to d.

i=1

ExamprLe 4. We consider here a system with nine degrees of freedom
and interpret the nine Lagrangian coordinates as the components of a
second order tensor G with respect to the usual (rame. In fact we substitute
indices from 1 to 9 with a couple of indices running from 1 to 3

3

G= ) vy

z.f=1

Borrowing notation [rom Example 2, we consider a system constrained
as follows

pu) = Ge'”
and assume for simplicity

K
T 4e = 0.

The kinetic energy becomes

pe =Lputr (GTGT)  or we =3 ptr (WIWT),
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where

K
uT =) p?e®e", W=GG !, I =GTG".
i=1
The Lagrangian components of forces are related with the generalized
moment of forces as follows

K n
(G-l M)T — Z f/\.(i)@e(i) — Z ’:;':lﬂ C‘”@C(m
i=1 1.0=1
and the equations of Lagrange become the equations of generalized moment
of momentum for affine bodies

uGTG =M.

Rigid velocity distributions are possible with v =0 and r arbitrary: the
vectors '¢” vanish, whereas the tth component of #¢” coincides with —e,,.
so that conditions (5.8) require

M'eSym.

6. Systems with unconstrained centre of gravity

For our purposes it is appropriate to consider explicitly the special case of a
constrained system, for which the centre of gravity is allowed arbitrary
placements; in that case the analysis of Section 5 becomes simpler: the
reduced formulae are quoted below.

Let us begin with the general remark that the position vector p of the
centre of gravity is also a function of v,, ..., v, and if we put

(i)

g"' = p—p.

we have also

Now the matrix Ay;_)+,q = a‘—’— contrary to the matrix ITy;_,,+;,. need

[

not have maximal characteristic. Then a set of non-null values ¥, of v, may
exist, such that

as a consequence the corresponding vectors p*' are independent of the index
i and a translatory speed distribution becomes possible. The interest lies here
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with the case when any choice of ¢ is always possible, a case when the matrix
4,4, has characteristic exactly equal to n—3, and it is generally possible
to express ¢ in terms of m=n—3 lagrangian coordinates only, say
Vi, V3, ..., v,. The simple example given below shows that the requirement
that the centre of gravity may take up any placement does not imply
necessarily that any rigid translation speéed is admissible.

However, outside that example, we will restrict our attention to the case
when the vectors ¢\ can be expressed in terms of the first m Lagrangian
variables only; and besides the lust three variables can bhe taken to be
proportional (by a factor a ') to the coordinates of the centre of gravity.

The assumption does not seem to be too heavy in view of our goal and,
on the other hand, allows one to simphfy the formal developments
considerably.

ExampLe. With the usual notation let the constraint relation be
P = p+yipl? e,
where again ¢ are fixed vectors not all in the same direction but with

K

Y e = 0;

i=1
y is a constant scalar. The system has three degrees of freedom; the
Lagrangian variables are the components of p (i.e, the coordinates of the
centre of gravity) divided by «. The kinetic energy is given by

= su(p?+4r72(p- p)P),
where now

K
p=Y ui (e,
i=1
The Lagrangian components of active forces are the components of the
vector

2/ +278" p)

K
on the usual frame: here /" is the resultant active force ) f*® and p* is the
K i=t
virial Y ey,
i=1
The set .# 1s given by all 6-vectors of the type (e x p]0), with ¢ an
arbitrary vector; the quantities v} coincide with the components of the vector
a~'v. The vectors v'” are the vector components normal to p of the unit
vectors of the frame of reference:

) — (1 ﬁp@p)c(,,,.
|pl?
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The reduced resultant moment /' vanishes identically, whereas the first

condition (5.8) requires
|pl
with an obvious notation.
We conclude with the remark that the equations of Lagrange can be
written compactly as follows

n(1+42 p@p) j=f5+ 274" p,

a vector equation which has similarities with the first Euler equation but
involves modifiers both in the right- and left-hand side.

Let us return to the main topic of this section. It is obvious that a

translatory speed distribution is possible, because now as a consequence of
the assumption

i - (1 2 3
p(t) — q(l)(vl’ e vm)+a(vn—2(( )+vn— ) C( )+V"C( '),
we have

m Aqt)
=Y o Vot (Voo 2V 49, P +9,c),
=1 g

a

and we need only take v, =0 for 6 =1, 2,..., m to obtain values of p"
independent of the index i. We can think of # as the product # = R® x #,
where # is a linear subspace of R®, where the vectors lie which represent
allowable rotational speeds. The vectors v'® vanish for ¢ =1, ..., m, and
P = D =y = (D i = o) yice versa r"T 2 "D A yanish.

! coincides with the complete resultant of internal forces and the first
eqn (5.8) requires it to be zero. All interest centres on #, the set [r?|c

m
—_ } ~ (o)
=1,...,m} and @' = ) A,r°.
o=1

The equations of Lagrange become
np=r*,

(6.1) vy 57
u{—|—J|—— = A g = 1, 2, cesy "1,
(_dt (6\?, v, Ao

where p# is the reduced kinetic energy

(6.2) Uk =3

a.

Wb

Hoa Vo Ve,
1

which is again a positive definite quadratic form in v, for e =1, 2, ..., m.
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Equations (6.1), (6.2) are the point of departure of the developments of
the following sections.

In conclusion the systems % that interest us are defined by the number
m of “extra” degrees of freedom, by the positive constant u and by the
functions p,,(v,), which form a positive definite matrix. From a kinematic
point of view the specification of the system is complete when the subspace
# of R is given together with the set !r'™ of vectors belonging to #. The
dynamic behaviour of % is the consequence of the choice of the vector
function fF(p; p: v,: V,: 1) and the m scalar functions 4, of the same vari-
ables. Besides, A! must satisfy the condition

(6.3) Y i =0.
a=1

The most interesting special case is when both 45' and 25® vanish, not
only their sum (because the constraints are, for instance, purely internal; see
Remark in Sect. 4); then A, are explicit functions of the variables p, p, v, v,,
T and condition (6.3) must apply for all their values and thus restricts the
allowable choices of /..

Such special case is the basis for the developments of the last two
sections.

7. Continuous bodies with finite-dimensional microstructure

We wish to model here a continuous body ‘B with microstructure. B is a set
of particles Z, which is equipped with a class of one-to-one mappings p(.7)
from ‘B into open subsets .4 of the three-dimensional Euclidean space. Each
mapping p(4") specifies, however, only an apparent placement of B. The
microstate of each particle must still be made precise: it is assumed that the
microstate is determined when a set of m non-dimensional Lagrangian
variables v, (%) is given. Thus a complete placement of B is specified by a
choice of both p(.-7) and v, (.f). Correspondingly a complete motion of B is a
mapping of a time interval [0, 1) into an appropriate set of complete
placements. At the outset there i1s no need to declare the mechanical meaning
of the variables v,, although it must be presumed that they represent a
greater kinematic freedom tempered perhaps by conditionings of purely
internal character (as in the situations envisaged at the end of Section 6). To
respect this requirement a first necessary step is to assign appropriately the
set #(.2) of the rigid rotational speeds r allowed in the microstructure; more
precisely if (v, s) are the vectors which specify a rigid velocity distribution
for B

p=v+sxp,
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then the projector .7 from R® into % must be assigned such that

(7.1) r=.7s, rl =R, Vs,

and this projector must be objective.

Besides a set +? (¢ =1, 2, ..., m) of vectors must be given within #
which determines the kinematic consequences on the Lagrangian variables of
a global rigid rotation of ‘B:

(7.2) \:(lri =p@p = . o= plo

Both .7 and the set [r'”! may depend on the particle, and on the values
of the variables v, as occurs already in the examples of the two previous
sections.

Relations (7.1) and (7.2) connect in a definite manner the microstructure
to the whole body and are thus constitutive in character.

The next step in the definition of B is the specification of the kinetic
energy x, of B associated with a given kinetic state (p; v,). It is assumed
that a smooth density function ¢ of 2 (or of p) exists which represents the
mass per unit volume and which is subject to the condition of conservation
of mass

(7.3 _[Q = const.
7

Besides we need a set of functions p,, of 2" and v,, which are subject to the
condition to be the coeflicients of a definite positive form, such that

m
(7.4) ¥g= [0GP*+A), H=3 Y H,V,7,.
r) g.o=1

We have here an obvious strict analogy with (6.2).

The restriction implied by (7.4) is heavy; much more complex situations
could be envisaged. We are led here by a criterium of simplicity.

The equation of balance of momentum is carried over from the theory
of classical continua. It is assumed that external forces are of two types:
body force of density b per unit mass and surface traction of density r per
unit surface so that the analogue of (6.1); becomes

(7.5) fep=job+ |1t
A A o

The Lagrangian components of external forces are assumed to be

expressed by similar totals of external body force with density f, per unit

mass, and surface traction of density 7, per unit surface. Besides one must

recall that the Lagrangian internal force need not be zero: its density per
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unit volume is called here —¢,. In all, the Lagrangian equations (6.1}, are
adapted for the body # as follows

d (o7 )
(7.6) JQ (E (a‘a) —(:;;) = f(gﬁa —(q) T+ Jta
A A oA

Equations (7.5), (7.6) are assumed to apply also when they are referred
to an arbitrary subbody of B. Then, under conditions of sufficient
smoothness of the fields involved, it is possible to follow a traditional
argument and prove that a tensor field T exists such that

(71.7) t = Th,

where n is the exterior normal to ¢ 4. Similarly one arrives at the prool of
the existence of m vector fields 1 such that

(7.8) T, =n-t"",
Finally it is possible to state local consequences of (7.5), (7.6) in the form

ep = ¢b+div T,

d[oz\ o7\
— = _ H (a)
0 (d‘t (a‘._a) (3\’0) oB,—C,+div 1!,

A theorem of kinetic energy is now easily derived from eqns (7.9)
multiplying scalarly both sides of (7.9), by p, multiplying both members of
(79), by v, and summing over ¢ from 1 to m and integrating finally over 4.
After integration by parts, one obtains

(1.9)

dt

»

(7.10) 4 j@(%ﬁzﬂ't')

= J (b-p+ Z By iq)+ J'(r-p+ i Ty Vo)~

ag=1
A ¥ ]

— J(T-grad p+ Y Cev.+ Y t-grad v,).

a=1 =1
A

The terms in this energy balance equation are easily interpreted. The term in
the left-hand side is the time rate of kinetic energy; the first two integrals in
the right-hand side give the power of external body force and surface
traction; the last integral must thus be interpreted as an expressnon of the
power of internal actions.
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It remains for us to require that the power density of internal actions be
zero for any rigid velocity distribution when

R
Vg

grad p® = es, = r.5,

where s i1s any constant vector. The condition 1s easily deduced by substitu-
tion in the relation

T-grad pR+ Y {08+ % 17 -grad v§ = 0,

c=1 =1

leading to

(7.11) eT+ 3, (( " +(grad #7) ") =0,

a=1

or alternatively to
(7.12) skw T+4e( Y (L, r' +(grad r') ) = 0.
o=1

Needless to say this condition requires T to be symmetric when the

microstructure is absent; in general it states a necessary link between macro-
and microbehaviour.

8. Examples of microstructures

(1) One degree of freedom. The governing equations are Cauchy’s
balance equation (7.9), and a scalar equation

N

(8.1) Q(#ni”]*‘%%:% \"i")=9/31—f§|+div .
1

Two important simple subcases come to mind. In the first case one tries
to picture rigid particles which can spin around a materially fixed axis. Then:
(1) r is the vector component of s in the direction of F¢, where F is the macro
position gradient and ¢ an appropriate constant unit vector; (ii) hence .7 is
given by (¢ F"Fe) ' F(e®c)FT; (i) 1V is given by (c-FT Fe)~'/? Fe.

Finally p,, is a positive constant. In the left-hand side of (8.1) the
second addendum vanishes; besides (7.11) gives

eT ={ (¢ FTFe)" ' Fc+(grad ((c- FT Fe)~ Y2 Fc)e')

which is a restriction on the constitutive prescriptions of T, {, and Y.
In the second case one tries to picture a continuum with expanding and
contracting spherical microstructure: e.g., fluids with inert bubbles. Then .7
vanishes and r'!' is taken to be zero; as a consequence T is symmetric. If a
suggestion deriving from a formula of Rayleigh (on expanding bubbles in an
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indefinite incompressible medium) is taken up, one can choose pu,, = av}
(¢ a constant) and the left-hand side of (8.1) becomes gavi/?(vi/2v,).

(i) Three degrees of freedom. Suppose that v,, v,, v; are the compo-
nents with respect to a fixed cartesian reference of a vector d, as in Example
3 of Section 5.

Then it is convenient to think also {, and S, as the components of two
vectors - and [ respectively and to introduce also the tensors

k)
M = Z Uoo CO R,
(8.2) o=t '

3
H = Z C(ﬂ)®r(o)_
a=1

Then the balance equation (7.9), can be given the form

. [o(Md M\ | .
(8.3) Q(Md+( (add)_%( (ad )) )d)=gl—z+d|v H,

which appears in many theories of structured materials.

As we have not given d any specific significance so far, we can proceed
to many different choices of .7 and the vectors r'. If we are inspired by
Example 3 of Section 5 we can choose

d®d
ld|? °

57 __ Jdo).
F=1- MO = x '

introduction of these vectors in (7.12) and use of (8.2), leads to the condition
(already appearing in Ericksen’s theory of liquid crystals)

skw (T+d®z +(grad ) HT) = 0.
As an alternative we may think of using the three Lagrangian variables
to specify a rigid rotation
Q = ¢, Qe Orth.

This assumption implies that 4 may be interpreted directly as the vector r
assigning an arbitrary angular velocity:

# =R, 7 =1, d® =r, Ho = ¢,

Reference to (7.12) leads to the condition ¢T—:z = 0.

(i1) Nine degrees of freedom. Assume that m =9 and, as in the
Example 4 of Section 5, that the Lagrangian coordinates are the components
with respect to the usual orthogonal basis of a second-order tensor G. Then
it is again convenient to think of {, and f§, as the components of two tensors
X and B respectively, the components of the vectors ' as the components
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of a third-order tensor ¢ and y,, as the components of a fourth-order tensor
M so that

7 =31G-(MG).
Correspondingly eqn (7.9), becomes

o6+ (2294 (A9 )i

oG oG

This equation can be brought to coincide with the balance equation of
genecralized moment of momentum of continua with affine microstructure:
The identifications are

M= ]?— (i.e., Ml'jhk = 5“' -‘7”‘), B = (G_ ! L)T, tijk = Gj_ll hlik‘

There are many possible choices for the vectors '™, the components of
which can be set as components of a third-order tensor. In the theory of
alfine bodies one takes

G® = SG, Seskw.
As a consequence one finds that condition (7.12) requires that the tensor
Zij=T;+ XinGj+ G 1y,

be symmetric.
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