PARTIAL DIFFERENTIAL EQUATIONS
BANACH CENTER PUBLICATIONS, VOLUME 19
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1987

BRANCHING OF ASYMPTOTICS FOR ELLIPTIC
OPERATORS ON MANIFOLDS WITH EDGES

S. REMPEL and B.-W. SCHULZE

Institute of Mathematics, Academy of Sciences of the G.D.R.
Berlin, G.D.R.

The paper gives a summary of the authors’ results on the asymptotic
behaviour of solutions of elliptic equations on manifolds with edges. It is
part of a program to deal with operators on manifolds with more general
singularities or operators that degenerate at certain points or manifolds. Our
theory contains a complete symbolic calculus which enables us to solve the
problem of solutions with branching asymptotics, i.e. with asymptotic expan-

sion of the form
o M

u(y, t,x)~ . 3 Caly, x) "™ logkt  as 10,
j=0 k=0
where y is the point on the edge Y, ¢ the distance to Y, (p;);.z, a sequence
of complex numbers and x the remaining coordinates. Both p;(y) and m;(y)
may depend on y with a chaotic branching and jumping behaviour in y.

The pattern of couples (p;, m;) depends on the operator, and hence we
have a rather individual sort of regularity of solutions. Roughly speaking,
elliptic regularity for manifolds with edges (being the classical one in C* or
Sobolev spaces away the edge) is expressed here by the asymptotics, and it
is really an urgent problem to give a precise description of this kind of
regularity.

As far as the authors know the problem of establishing the branching of
asymptotics of solutions has never been treated before, even in special cases.
Our results give general answers. In addition we are convinced that the
asymptotic regularity in the sense of Theorem 2 is of principal interest and
that the continuous conormal asymptotics is a natural notion in this context.

Boundary problems in nonsmooth domains are an interesting and
important subject in analysis (cf. {17, [2], [3], [6], [7], [8]). It is not our aim
here to comment on the extensive literature. Let us refer to Kondrat'ev-
Oleinik [2]. Our present work is based to a large extent on a precise
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algebra for the cone [8] and on the treatment of mixed boundary value
problems [5] where the branching of asymptotics already occurs.

Let X be a Riemannian manifold with edge Y. Denote by X the
manifold with boundary which is obtained from X by resolving the singulari-
ty at ¥, X — X. Locally near #X the manifold X has the form Q xR, x M,
Q c R™ open, M a smooth closed compact manifold, » =dim M. It is
convenient to consider operators lifted to X.

Let x be local coordinates on M, teR,, yeQ < R™, and denote by
(1, T, &) the dual variables to (y, t, x). Differential operators on X of order u
are assumed to have near 0X the form

n
A=) t7#7 4,
j=0
Aj(y, Dy’ £, DI’ X, Dx) = Z aak,j(ys t, X, Dx)(tDy)a(tDt)ka
- la| tk<u—j
where a,, ; are differential operators on M, ord a,,; < u—j—|a| —k, smoothly
depending on the parameters ye, reR,. This form is well motivated
because it appears in simplest cases, where the singularity is resolved by
introducing polar coordinates. Using the Taylor expansion of a, ; at 1 =0
we get

aak.j(y’ t, X, Dx) = Z tlw(clt)bahjl(y’ X, Dx)+5ak.j(y’ L, x, Dx)
=0
where 5,,,,] is rapidly decreasing for t = 0, we CP(R,), ® =1 near t = 0, and
{¢t}iez, 1s a sufficiently fast increasing sequence of positive reals. We are
reduced to sums of strongly degenerate operators and converging sums of
operators polynomially depending on ¢ (near ¢ = 0). Then

A(y, Dy, t, D, x, D))

=t“‘i Y [Y ol )byly, x, D)(tD,) (tD,)*

j=0 la|+ksu—j I=0"
+Eak,j(ya [, x, DI)(tDy)a(tD!)h]}'

The Fourier transform with respect to y yields the complete edge symbol
Ay, n, t, D,, x, D)), which is, of course, operator-valued. The Mellin trans-
form M turns D, into multiplication by iz and we can write
A(y.n.t,D,, x, D,) as an infinite sum of Mellin operators of decreasing
conormal orders with operator-valued symbols and a strongly degenerate
operator:

Ay, n, t, D, x, D))

=t Z { Z [Z rj+’w(clt)("?)aopM(bakjl(y’ X, Dx))(lz)k

Jj=0 la|+k<€u—j =0

+5¢k’j(y, t, x, Dx)(”’)a(tDl)k]}'
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This means that the complete edge symbol takes values in the algebra
N*(R, x M) (modulo the unessential factor ¢t #), which was introduced in
[8] for the treatment of conical points. The major advantage of ™ (R, x M)
is that it contains the precise parametrices of elliptic elements. It allows in
the present situation to obtain a strong regularity theory.

Denote by Diff*(X) the space of all differential operators on X of order
< u of the described form. It turns out to be contained, up to a weight
factor, in a larger class 9*(X) of operators which are described near the
edge by operator-valued edge symbols with values in the algebra M™ (R, x M).
One can prove that N™(X) is a =*-algebra. To each .o#ec N*(X) there
is related a complete interior symbol o,(-%/) and a complete edge symbol
c,(=f) which induces a sequence of operator-valued Mellin symbols a;,/(A).
For simplicity we assume the existence of homogeneous principal symbols.

The formulation of the results demands some function spaces on X.
Recall from [8] the definition of the scale of Hilbert spaces #° (R, x M),
seR. o (R, x M) consists of all distributions u(t, x) having in local coordi-
nates finite seminorms

lou(e, > = § [ A+[2*+{E*P M, F (ou)(z, &)I*dE|dz],
F1y2 g#

where I', = |[ze C: Re z = g}, F, is the Fourier transform in x and M, the
Mellin transform in t, and ¢ is a smooth function supported in the
coordinate neighbourhood on M.

Let g* be a strictly positive function on R, x M which equals t* near ¢
=0 and 1 outside some other neighbourhood of t =0. Define ¢
= g® #*, peR, so that #* = #*°. Moreover, define the space H:(X), seR,
as the subspace of those ue Hi_(int X) for which near Y

Ugxp, xME C*(Q, #(R. xM)),
Q c Y an arbitrary coordinate neighbourhood. Set
H*(X) =¢°H*, ¢eR.

For fixed (y, n)e T* Y\0 the operator A(y, 3, t, D,, x, D,) defines a conti-
nuous mapping

A(y,n, t, D, x, D,): #(R, xM)— # """ ¥R, xM)
for each ge R. Therefore near Y we get a continuous mapping
Ay, D,, t, D, x, D,): C®(Q, #™¢ (R, x M))— C™(2, #°~*¢"*(R, x M))
and globally
A: H**(X)— e #(X).

The solvability theory for the differential operators considered above is
formulated in terms of function spaces with asymptotics. Recall some notions
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of [8]. We start from the description of singularity types occurring in the
so-called discrete conormal asymptotics.
A sequence P = {(p;, m;, L)}z, pjeC, Re p; <3—p, 0 R fixed, Re p;
—+ —o0 as j— oo, meZ,, L; = C*(M) finite-dimensional, is called a singulari-
ty type with respect to g. Denote by P? the set of all such P, and P°® =:P.
Then #%3°(R, x M) denotes the subspace of #*¢(R, x M) of all func-
tions v(t, x) possessing for t — 0 an asymptotics of the form

o My
o(t, )~ Y Y Lu(x)t Plogkt
j=0 k=0
where (; eL;. The precise meaning of this asymptotics can be expressed in
terms of a countable number of norms making #%°(R, x M) a Fréchet space
(cf. [8]). We shall also need the inductive limit #3¢:= li_r,n HEC.
PeP

The topology of this space is so strong that each continuous family of
functions in #3%(R, x M) automatically has exponents in the asymptotics
independent of the parameter. This was the main reason for introducing in
[5] the notion of continuous asymptotics which will allow a general branch-
ing of the exponents with varying parameters. Instead of discrete sets,
multiplicities and finite-dimensional spaces, a continuous singularity type
consists just of a closed simply connected set 4 = {ze C: Re z <1 —p] with
the property that 4 njzeC: ¢, < Re z < g,} 1s compact for all g,, g,eR.
Then #5¢(R, x M) is defined as the subspace of #™¢(R, xM) of those
functions whose Mellin image admits a holomorphic extension to C\4 with
certain growth conditions defining the norms (this is a generalization of the
notion in [5]). Denote by C*(X) the subspace of C*(int X) of all functions u
which are near Y, in local coordinates on Q<Y of the form
ue C*(Q, H3 (R, x M)). There is a natural countable system of norms
making CJ (X ) a nuclear Fréchet space. Denote by C “’(X ) the inductive limit
of all C¥(X) for A as described.

Now we give a slight modification of the “dotted spaces” with asympto-
tics from [5], here in the vector-valued case. Let 23y +— P(y)e P be a family
of discrete singularity types which are continuous in the sense that, roughly
speaking, for each neighbourhood K of the set {,uj(yo)}-j“.,_+ < C there is a

neighbourhood U < Q of y, such that p;(y) belongs to K for all je Z, and
ye U. Then we define C*(Q, CF (R, x M)) as the space of all u(y, t, x) which
belong to Cx, (R, x M) for each fixed y and, when restricted to the above-
mentioned small neighbourhood U, belong to C*(U, Cg (R, x M)). This space
is equipped with the projective limit topology.

Denote by C%(Q, C3(R, xM)) the inductive limit of all spaces
C*(Q, CF (R, x M)) such that all {p;(y)} belong to A. If we define C3(X) in
the same way as C?(X) we get a continuous embedding C%(X) < C%?(X).
We shall also use the space #~ °(X) of all extendible distributions u on X
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which belong in local coordinates near the boundary to H ”‘"(Q, H (R,
x M)).

Now we can state the first regularity theorem.

1. TueoreM. Let o/ e W(X), let the principal interior symbol on the
compressed cotangent bundle be invertible up to the boundary and assume that
the principal Mellin symbol is elliptic in the sense of (R, x M) for a given
weight ge R. Then

AueCy(X) and uc H->2(X) imply uecCZ(X).

This regularity result shows that the branching of asymptotics of the
right-hand side implies the same property of the solution. Of course, in
general, there is a “loss of tangent regularity”.

Note that the operator &/ does not define, in general, a Fredholm
operator. Both the kernel and the cokernel of /: C2(X)— C=(X) may be
infinite-dimensional. ) i

~In order to get also tangent regularity and the Fredholm property we
have to add, to the assumptions of Theorem 1, the bijectivity of the edge
symbol. This is not a consequence of the assumptions of Theorem 1. However,
upon imposing extra trace and potential conditions with respect to Y, the
bijectivity of the edge symbol can be achieved provided a certain topologi-
cal obstruction vanishes.

Let us introduce the class I (X) of operators

AP\ Cc3® R
A = . ® - @D
TQ/) c=(v,c) (v,

where A = A+ W+GeN®(X), Qe LT(Y), T is a trace operator and P a
potential operator with respect to Y with some specific structure. Roughly

ki (W+G P
speaking, T o
tor-valued symbol a(y, 1), a special edge symbol. Each .o/ ¢ * is uniquely
determined by the complete symbol ¢ (.#) consisting of the complete interior
symbol, the complete Mellin symbol and the complete edge symbol modulo
a small space of negligible operators. .o/ ¢ MW* is called elliptic if a() is
invertible in Symb (IW*). The ellipticity can be described on the principal
symbol level.

) is a pseudo-differential operator on Y with an opera-

2. THEOREM. Let of ¢ M be elliptic. Then there exists a parametrix
BeIW™ of o and o/ defines a Fredholm mapping

#: C3(XOC(Y, C) - C(D@C=(Y, C?).
Moreover, sweCZ(X)®C(Y,C?) and we ™ =(X)@H =(¥, C"")
imply we CY(X)®CT(Y, C'").
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Even stronger results can be obtained for the subalgebra I * of W=,
where in all Mellin symbols, Green potential symbols and trace symbols the
dotted spaces are taken. Then we have

3. THEOREM. Let oA c W™ be elliptic. Then there exists a parametrix
BeI™® of o, and .c/we_C_fﬁ()?)@Cm(Y, C?, we ¥ “(X)®H (Y, C'Y
imply we C;’.(X')EDC‘”(Y, c’h.

Clearly the calculus apphes to systems too.

Another variant of this theory gives analogous results for boundary
value problems on manifolds where the boundary is of the form X as in the
beginning. Here we have to apply the results of [6].

The results were formulated here in inductive limits of spaces. Of course,
in any concrete case the precise singularity types of a solution may be
expressed in terms of the associated principal Mellin symbol of .2/. Here the
situation is similar to that for the cone, cf. [6], [8]. The details will be
published in a forthcoming paper.

Added in proof (June 1987). More details on the proofs may be found in [9], [10].
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