[0] R. D. Anderson, and G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), pp. 347-353.
[1] R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948), pp. 497-506.
[2] K. Borsuk and S. Mazurkiewicz, Sur l'hyperespace d'un continu, Warszawskie Towarzystwo Naukowe 24 (1931), pp. 149-152.
[3] C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), pp. 233-245.
[4] C. E. Eberhart and Sam B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Pol. Acad. Sci. 19 (1971), pp. 1027-1034.
[5] J. Gr. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
[6] J. L. Kelley, A metric connected with property S, Amer. J. Math. 61 (1939) pp. 764-768.
[7] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52, (1942), pp. 22-36.
[8] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), pp. 155-164.
[9] K. Kuratowski, Topology, vol. I, Academic Press, New York-London-Warszawa 1966.
[10] K. Kuratowski, Topology, vol. II, Academic Press, New York-London-Warszawa 1968.
[11] Sam B. Nadler, Jr., Some basic connectivity properties of Whitney map inverses in C(X), Studies in Topology, edited by N. Stavrakas and K. Allen, Academic Press, 1975, pp. 393-410.
[12] H. Whitney, Regular families of curves, I, Proc. N.A.S. 18 (1932), pp. 275-278.
[13] G. T. Whyburn, A continuum every subcontinuum of which separates the plane, Amer. J. Math. 52 (1930), pp. 319-330.
[14] G. T. Whyburn, Analytic topology, Amer. Math. Soc., Providence, Rhode Island, 1942.
[15] M. Wojdysławski, Rétractes absolus el hyperespaces des continus, Fund. Math. 32 (1939), pp. 184-192.