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1. Introduction. Several years ago Joe Stiles, then a graduate student
at Tulane University, asked me the following question (see below for
definitions):

(1.1) Is each member of O (X) segmentwise accessible from 2X —(C(X)%

Stiles’ question was the initial motivation for the work in this paper.

In Section 2 we give answers to (1.1). In view of these answers and
the fact that a segment is a special type of arc, the following question
arose naturally: '

(1.2) When is a singleton arcwise accessible from 2% —C(X)?
Of course, (1.1) and (1.2) are each part of the following question:
(1.3) Which members of C(X) are arcwise accessible from 2% —C(X)%

This paper is concerned with (1.3). Obtaining answers to (1.2) com-
prises the bulk of the paper (Sections 3 and 4). Section 4 gives a detailed
and fairly complete study of which points of 2% arcwise disconnect 2%
(see Section 4 for definition). This topic is directly related to the study
of arcwise accessibility of singletons (see especially Theorem 4.13), and
has not been investigated before.

In our results which give sufficient conditions for arcwise accessibi-
lity from 2% —(C(X), we obtain a stronger conclusion; namely, arcwise
accessibility from C,(X)—C(X) beginning wilh a two-point set. This
means our accessibility takes place in a very small part of 2%, one
which people have investigated before (for example, [7], p. 29, and [15],
p. 191).

In Section 5 we determine characterizations of hereditary indecom-
posability in terms of what sets ares, which begin in 2% —(C'(X) and termi-
nate in C(X), can begin and end with.

In Section 6 we pose some unsettled questions and show that any
AeC(X) is continuumwise accessible from C,(X)—C(X) (see (6.8)).

We will use the following notation and terminology. The adjective
non-degenerate refers to having more than one point. By a confinuum
we will mean a non-empty compact connected metric space. The point
pe X is said to be a cut point of X if and only if X —{p} is not connected.
A continuum is said to be rational if and only if each point belongs to
arbitrarily small open sets whose boundaries are countable. The symbol
-H denotes the Hausdorff metric as defined in [7], p. 23. We consider
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C(X) as canonically embedded in 2% by the inclusion map
it O(X)>2%, i(4)=A forall AeC(X).

The symbol C,(X) denotes {4¢2%*: A has at most two components},
canonically embedded in 2% by inclusion. Thus, in particular, C(X)
c C,(X). The symbol u denotes any continuous function from 2% to
[0, 1] satisfying ‘
~ (a) if A, Be2% such that A =« B and 4 # B, then u(4) < u(B);
(b) p(X) =1 and p({r}) = 0 for all ve X.

In [12], Whitney showed that such a function exists; we will call any
continuous function satisfying (a) and (b) a Whitney map for 2%. Some
recent results on Whitney maps restricted to C(X) appear in [4], [8]
and [11]. By a segment we mean a segment in the sense of Kelley [7],
p. 24 (see below, especially (1.4), for more discussion). An order arc in
2% isan arc a = 2% such that if A, Be a,then A ¢ Bor B c A, Let X = 2%;
a member 4 of C (X) is said to be {a,r(mnse . } accessible from

- segmentwise
2 —C0(X) beginning with K if and only if there is {homeomorphlsm}
segment
o: [0,1]—-X such that ¢(0) =K, (1) = A4, and o(t)e[Z—C(X)] for
all ¢ < 1. In this paper, X will be 2X or C,(X).

The symbol U will denote the closure of U. Other terminology we
use in this paper is either defined in the body of the paper or can be found
in one or more of the references.

We give a brief discussion leading to the formulation of (1.4), a result
we shall use several times. Though the concept of an order arc was not
formulated in [2], the proof given there was, for the most part, devoted
to producing what we call order arcs. Thus, Borsuk and Mazurkiewicz
were the first to discover order ares in 2%. In 1942, Kelley defined the
notion of a segment using the function discovered by Whitney [12] in
1932. Kelley does not relate his notion of segment to the work in [2].
The relationship between these is the following:

(1.4) THEOREM. A subset of 2% is the range of a segment if and only
if it is an order arc or it consists of only one member of 2%.

Proof. We show that an order arc is the range of a segment, the
rest of (1.4) being a simple consequence of definitions. Let a be an order
arc in 2%. Let A, = (e and let 4; = | Ja. It is not difficult to show that
Agea and A,e a. It is then easy to show that u restricted to a, denoted
by g, is a homeomorphism of a onto the interval [x(4,), p(4,)]. Define

o: [0,1] > [u(4d,), u(4d,)]
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by the formula
e(t) = (1—%)-pu(Ay)+1t-pu(4,)

for all te[0,1]. Now, let o: [0,1]—>a be given by ¢ = u~'.p. Clearly,
o is a continuous function from [0,1] onto a such that ¢(0) = 4,,
o(l) = Ay, and u(o(?)) = o(?) for all te[0,1]. Now, let t',¢"e[0,1]
such that #' << t’. Then, '

ulo(t) = o(t') < o) = ulo(")).

Since a is an order arc, o(¥')c a(t'') or o(?”’) = o(¢'). Hence, by (a) above,
o(t') « a(t”’). Thus, o is & segment in the sense of [7] whose range is a. -
This completes our proof of (1.4).

We express our appreciation to B. J. Ball for looking over parts .
of the manuscript and for some helpful suggestions.

2. Segmentwise accessibility. The following two results answer
Stiles’ question (1.1).

(2.1) THEOREM. For any xe X, {x} is nolt segmentwise accessible from
2¥ _0(X).

Proof. An easy consequence of 2.2 of [7].

(2.2) THEOREM. Every non-degenerate member of C(X) is segmentwise
accessible from C,(X)— C(X) beginning with a two-point set.

Proof. Let M be a non-degenerate subcontinuum of X and let ge M.
Taking R to be {q¢} in Theorem 5 of [1], p. 500, we see that there is a point
pe[M —{q}] such that the union E of all subcontinua of M — {p} which
contain ¢ is dense in M. Let D= {e,, ¢,, ..., é,, ...} be a countable dense
subset of K. For each ¢ =1, 2, ..., let Z; be a non-degenerate continuum

n
in E such that ¢, ¢;¢ Z;. For each n =1,2,..., let M, =J Z,. It is
easy to see that i=1

(1) {M, ., converges to M;
(2) ‘ Mic Myc...c M, c...;
(3) pe[M— () M,].

n=1

Furthermore, we may assume, by passing to a subsequence if necessary,
that

(4) .Mn #Mﬂ-l-l fOI‘ n=1,2,...

Now, by (2) above and 2.3 of [7], there is a segment o, from {q} to M,
and, for each n» = 1,2, ..., there is a segment o,,, from M, to M,,,.
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2m=1_1 2" -1 )
T e ]—>2M be given by

For each n =1,2,..., let f,: [

Ja(t) = 0,(2"1+2 —2") L {p}

(thus, f, is o, ‘‘speeded up” with the point p adjoined). Define f: [0, 1]
—-2¥ by

t i <t 21
fo - lfn< ) g <SPS o
M, t=1.

Note that since o,(1) = ¢,,,(0) for each n =1,2, ..., f is a function.
From (4) it follows that f is one-to-one (the one-to-oneness of f on [0, 4],
i.e. of f,, follows from the fact that M, is non-degenerate). It is routine
to verity, using (1), that f is continuous and, using (3), that f(t)e C(X)
if and only if ¢ = 1. Since 0 < 8 < t < 1 implies f(8) = f(?), our result now
follows from Theorem 1.4 above and the fact that f(0) = f,(0)
= a,(0)V{p} = {q, p}.

(2.3) Remark. The real use of Bing’s theorem in the proof of (2.2)
was to show we could begin with a two-point set (properties of segments
preclude a segment which begins in C,(X) from going outside C,(X)).
It is somewhat easier to show segmentwise accessibility beginning with
a countable set. Let a <« M, let o be a segment from {a} to M, and let

-1
ne[M—c(nn )] for each n =1,2,... (see 2.1, 2.2, and 2.3 of [7]).

The sequence {a,};_, has a convergent subsequence {a, };>,, converg-
ing to a point @, M. Define f: [0,1]>2% by f(t) = o(t)V{a,,:
1 =1,2,...}u{a,} and use Theorem 1.4 above. This argument shows that
M is segmentwise accessible from 2% —C(X) beginning with the countable
set {a, ay, a,, a,,,...}.

3. Arcwise accessibility of singletons. In the previous section we
established in (2.2) that each non-degenerate subcontinuum of X is are-
wise (in fact, segmentwise) accessible from 2* —((X). Thus, we reduced
our study of (1.3) to a study of (1.2). Also, (2.1) ruled out segmentwise
accessibility in relation to (1.2).

We devote this section to giving some answers to (1.2). In (3.3) we
obtain a necessary condition in order that a singleton be arcwise accessible
from 2* — O(X) (also, see (4.13) and (4.14)). This condition enables us
to conclude that no singleton is arcwise accessible from 2% —((X) for
certain continua X ((3.4) and (3.5)). We then obtain a number of sufficient
conditions in order that a singleton be arcwise accessible from 2* — C(X)
((3.7) through (3.9)). We use one of these results, namely (3.9), to show
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that every rational continuum @ has a dense set of points p € Q such that
{p} is arcwise accessible from 2° — C(Q) (for a precise statement, see (3.11)).
In (3.12) we give an example of a rational continuum @, with a dense
set of points qe @, such that {g} is not arcwise accessible from 2% — C(Q,).

The following lemma extends 8.1 of [7] in two directions: first, to
2% instead of C(X) and, second, to locally connected continua instead
of arcs.

(3.1) LEMMA. Let Y be an indecomposable continuum and let A < 2%

be a locally connected continuum. If \JA =Y and if AnC(Y) # @, then
Ye A

Proof. Let k: [0,1]— 4 be a continuous function with £([0,1]) = 4

(see Theorem 3-30 of [5], p. 129). Since AnC(Y) ++ G, there is a {4¢ [0, 1]
such that k(t,)e C(Y). Let

a = lub. ({t<ty: UK([t,1]) = Y}
and let

b =glb. ({t=1t: Uk([a,t]) = Y}).

Notice that, by the continuity of ¥ and of union [7], p. 23, it follows that
Uk([a, b]) = Y. Turthermore, [a@, b] is minimal with respect to the
property of

(*) being a closed interval containing ¢, and having the union of its
images be all of Y.

Assume first that a <i1,. Let s, be such that a < s,<t,. Since

k([sq, b]) is a subcontinuum of 2¥ and since k([s,, b])nC(Y) # @ (note:
k(to)e [k([so, b])nC(Y)]), we have from 1.2 of [7] that (Jk([s,, b]) is
a subcontinuum of Y. Also, by the minimality of [a, b] with respect to

(%), LJEk([86, b]) # Y and, thus, is completely contained in the composant
of Y determined by %(f,). It now follows that

U{UE([s, bD): a < s <t,} = Uk((a, b)

is completely contained in the composant of Y determined by k(¢;). Now,
Y has uncountably many mutually disjoint composants, each dense in Y
[5], p. 140. Thus, it follows from ( jk([a,b]) = ¥ and compactness of
k(a) that k(a) = Y. A similar argument shows that if we assume t, < b,
then we obtain k(b) = Y. Finally, if ¢ = ¢, = b, k(f,) = Y. This completes
the proof of the lemma.

(3.2) THEOREM. Let A < 2% be a locally connected continuum such
that ANC(X) # Q. Then \JA is a subcontinuum of X such that [U./l]e A
or \JA is decomposable.

Proof. Let ¥ = | J4. By 1.2 of [7] Y is a continuum. Assume Y
is indecomposable. Then, by Lemma 3.1, Y e 4.
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In particular, then, we have the following theorem about arcwise
accessibility of singletons (we refer the reader to (4.14), where we obtain
an additional necessary condition in order that a singleton be arcwise
accessible).

(3.3) THEOREM. Let mge X. If {z,} is arcwise accessible from 2% — O (X),
then x, belongs to arbitrarily small decomposable subcontinua of X. In fact,
if f: [0,1]—=2% is continuous such that f(t)e [2X —C(X)] for all t<1
and f(1) = {x,}, then Jf([t, 1]) is a decomposable subcontinuum of X, with
xzy in it, for all t < 1.

Proof. Let t, < 1. Then f([t,,1]) satisfies the conditions on A in
Theorem 3.2. Hence, | Jf([#,1]) is a subcontinuum of X such that
\Jf([to,11) € f([ta, 11) or LS ([%o,1]) is decomposable. Since f(t) e [2¥ — C (X))
forall t < 1 and f(1) = {&o), Uf([te, 11) ¢ f([%o, 1]). Therefore, (f([ty, 1])
is decomposable. This completes the proof of Theorem 3.3.

As an immediate consequence of (3.3), we have the following result
which the reader should compare with (6.8.1).

(3.4) CorOLLARY. If Y is an hereditarily indecomposable continuum,
then no singleton is arcwise accessible from 2¥ —C(Y).

There are decomposable continua D such that no singleton is arcwise
accessible from 22 — C (D). The following example illustrates this.

(3.5) EXAMPLE. Let D = JUK, where J and K -are hereditarily inde-
composable continua and JnK is a non-degenerate proper subcontinuum
of each. Clearly, D is decomposable. To see that no singleton is arcwise
accessible from 2P — ¢ (D), we first show that any decomposable subcon-
tinuum of D must contain JNK. To see this let M be a decomposable
subcontinuum of D. Since K is hereditarily indecomposable, there is a point
pe U=M — K and, since J is hereditarily indecomposable, U = M. Hence,
by (10.1) of [14], p. 16, the component L of U containing p intersects
U-U. Since UcJ, UcdJ. Also U—U =[(M—EK)—(M—K))c K,
the containment being valid by virtue of the compactness of M. Thus,
[U—-U]c [JnK] and we now have that Ln[JnK] # @. Thus, since
Lc UcdJ, L and JnK, are intersecting subcontinua of J. ¥From the
hereditary indecomposability of J we conclude that

Lo[JnK] or [JnK]>L,

the latter containment being false because pe [L —(JnK)]. Hence,
M > [JnK].

This completes the proof that any decomposable subcontinuum of D
contains J nK. It follows from this that no point of D belongs to arbitrarily
small decomposable subcontinua of D. Therefore, by Theorem 3.3, no
singleton is arcwise accessible from 2” —C (D).
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It was crucial for Example 3.5 that J nK was non-degenerate, as the
next example shows.

(3.6) ExamrLE. If D, J, and K are as in Example 3.5 except that
J nK consists of only a single point w, then {w} is arcwise accessible from
22 — ¢(D). This is a consequence (see Corollary 3.9 below) of the following
general theorem which we will use later.

(3.7) THEOREM. Let pe X. Assume that there exist subcontinua K,,

L,K, L,,...,K,, L,,... such that (M K, ={p} = ( L, and such
n=1 n=1

that, for any i =1,2,..., K;¢ UL, and L, & |J K,. Then {p} is
n=1 n=1
arcwise accessible from Cy(X)—C(X) beginning with a two-pomt set.

Proof For each i =1,2,..., let e [K;— U L,] and let y;
e |L;— U K,] such that the points z; are all dlsmnct and the points
Y; are all dlstmct (this is possible because ﬂ K, ={p} = ﬂ L,). Now,

n=1
since C(K,VK,.,) and C(L,VL,, ) are a,rcw1se connected for all =

=1,2,... ([2] or 2.7 of [7]), there exist ares a, < C(K,VK, ;) and
f, < C(L,VL,.,), a, having non-cut points {z,} and {z,.,} and §, having
non-cut points {y,} and {y,,,}. For each n = 1,2, ..., let

275,—1 _1 2n_
In = [ - ’ 1]1
2n 1 2n

let f,: I,.,_,—>a, be a hbmeomorphism onto a, such that

22-n—2 -1 22-11—1 -1
fn (T) = {mn} and fn(_ém——l_) = {mnl-l-l}a

and let g,,: I,.,—p, be a homeomorphism onto f, such that

2¥n-1_1q 2rr_1q
gn (W) =1{y,y and g, (22—,,) = {Yns1}-

Now define %: [0,1]>2% by

fn(t)u{ynj}7 t€I2-n—l!
k(t) = gt { +1}7 tel,.,,
{p}’ t=1.

It is easy to verify that k is a function. Using that the points x; and y;
(¢# =1,2,...) are all distinet, it is easy to see that k£ is one-to-one. The
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= <] .
continuity of % follows routinely using that MK, = {p} = M L,. Since
nel

fult) = [E,UE,,,] for each tel,, , and y,¢[E,UK,,.], fa())U{y,} is
not connected for any #» =1, 2,... Similarly, g,(f)v{®,,,} is not con-
nected for any n = 1,2, ... It follows that k(f) is not connected unless
t =1, when k({) = {p}. Finally, we note that %k(0) = f,(0)u{y,} =
{x,} V{y,} = {®1, ¥,}; thus, {p} is arcwise accessible from C,(X)—C(X)
beginning with the two-point set {z,,y,}.

(3.8) COROLLARY. If p is a point of a continuum Y for which there
exist non-degenerate subcontinua A and B of Y such that {p} is a component
of AnB, then {p} is arcwise accessible from C,(Y) —-C(Y) beginning with
a two-point sel.

Proof. By 2.3 of [7] there exist segments o,: [0,1]—>C(4) and
gy: [0, 1] O(B) such that o,(0) = {p} = ¢4(0), 0;(1) = 4, and 0,(1) = B.
For each n =1,2,..., let K, = 0,(1/n) and let L, = o,(1/n). Clearly,
M K, ={p} = (M L,. Also, since {p} is a component of AnB and o;(?)
n=1

n=1
is a non-degenerate continuum with p in it for each j =1 and 2 and

all t>0, K;,¢« B=L, =\JL, and L;¢+ 4 =K, = J K, for any

n==1 n=1

¢ = 1,2, ... Thas, Corollary 3.8 follows from Theorem 3.7.

(3.9) COROLLARY. If p is a cut point of a continuum XY, then {p} is
arcwise accessible from C,(Y)—C(Y) beginning with a two-point set.

Proof. Since Y —{p} is not connected, Y —{p} = UUV, where
U and V are disjoint non-empty open sets. By Theorem 4 of [10], p. 133,
Uu{p} and Vu{p} are connected. Letting A = Uu{p} and B = Vu{p},
the corollary now follows from Corollary 3.8.

(3.10) LEMMA. Every non-degenerate rational continuum contains @ sub-
continuum with a cut point.

Proof. Let @ be a non-degenerate rational continuum, let xe @,
and let U be an open subset of Q such that ze U, U @, and U—TU
is countable. Let V =@ — U and let. W = @ —V. It is not difficult to
verify that [F—V]ec [U— U] and that [V—V] =[W—W]. Thus,
since every compact countable (metric) space has an isolated point, there
is an isolated point p of [V—V] =[W—W]. By Theorem 8 of [10],
p- 185, there is a continuum 4 = [V U{p}]such that pe 4 +# {p} and a con-
tinuum B < [WUu{p}] such that pe B # {p}. Since AnB = {p}, AUB
is a subcontinuum of @ with cut point p.

(3.11) TUEOREM. If Q is a mon-degenerate rational continuum, then
there is a dense subset D of Q such that, for each pe D, {p} is arcwise acces-
sible from C,(Q) — C(Q) beginning with a two-point set. In fact, such a subset
D exists so that Q —D is punctiform.
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Proof. Let D = {pe@: p is a cut point of some subcontinuum of Q}.
The accessibility property follows from Corollary 3.9. Since every sub-
continuum of a rational continuum is rational, it follows from Lemma
3.10 that D intersects every subcontinuum of @; hence, @ —.D is puncti-
form. This implies (using 10.1 of [14], p. 16) that D is a dense subset of Q.

One might suspect that each singleton is arcwise accessible from
2¥Y —C(Y) when Y is hereditarily decomposable. However, this is not
the case even for rational continua, as the next example shows.

(3.12) ExAMPLE. We construct a rational continuum @, with a dense
subset Z, such that, for any ze¢Z,, {z} is not arcwise accessible from
20"—0(()0). The construction of ¢, is similar to that of various continua
in [0].

Our ‘‘basic building block” is

X, = {(z,sin[1/z]): 0 < |2| <1}UY,,

where

Y, ={0,9): lyl <1}.

Let D, = {2, #, ..., 7., ...} be a countable subset of X, which intersects
every non-degenerate subcontinuum of X, (i.e., .D, is continuumwise-dense
in X,). We also assume that the (four) end points of the arc components
of X, are not in D, and that the enumeration of D, is one-to-one. We
now let X, be the continuum obtained by “‘inserting a copy of X, in X,
at @1, as indicated below in Figure 3.13.

VP K

2

Figure 3.13

Letting the ‘“‘newly inserted’ arc be denoted by J, we let f; be a con-
tinuous function from X, onto X, such that (i) fi'(2}) = J and (ii) f,
is a ‘“homeomorphism near the identity” on X,—J.

Next we indicate how to construct X,; and f,. First, let D, be a count-
able continuumwise-dense subset of X, such that the (six) end points of
arc components of X, are not in D,. Let {2}, «7,...} be a one-to-one
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enumeration of D,. Now, let X, be the continuum obtained by ‘‘inserting
copies of X, in Xz, one copy at f;'(w;) and another at a3, as in Figure
3.14 (it f,(2?) = a3, then we “insert” only one copy of X, in X, to form Xj,).

Figure 3.14

We let f, be a continuous function from X, onto X,, defined in a man-
ner similar to the wa,y we defined f,, so that f, shrinks the ‘“‘newly mserted”
arcs to fy(#3) and 23, respectively.

Now, let D, be a countable continuumwise-dense subset of X,
such that none of the end points of arec components of X,; are in D,. We
obtain X, and f;: X,—»X, by the process used to obtain the previous
continua and maps, this time making sure that copies of X, are “inserted
in X, at (fyof:) " (23), fi'(23), and at the first enumerated point of D,.

Continuing this process we produce an inverse sequence {X,, f}ow:-
Let @, denote the inverse limit space of {X,, f,}o_..

First, let us note that @, is rational. This is a consequence of the
following lemma which is easy to prove using 2.2 of [3].

(3.16) LEMMA. Let Y be the imverse limit of {Y,, fo}or., where Y,
i8 a continuum and f, continuously maps Y, ., onto Y, for eachn =1,2, ...
Also assume that, for each n =1,2, ...,

(3.15.1) Y, has a base B, = {U?: i =1,2,...} of open sets such
that, for eachi = 1,2, ..., U? — U™ is countable and (f,0fp 110 ++. Ofuin) " (2)
consists of only one point for each ze [if?— U?] and each k =0,1,...

Then, Y is a rational continuum.

Next, let Z, = {(P1) P2y ---)€ Qo: Ppe D, for some n}. _

Since D, is a dense subset of X, for each » =1,2,..., Z, is a dense
subset of Q.- Now we show that for any p e Z,, {p} is not arcw1se accessible
from 2% —C(Q,). To do this we will use some of the results in the next
section. First let us observe that since @, is hereditarily decomposable,
it suffices by (4.13) to show that each point of Z, belongs to arbitrarily
small subcontinua of @, each of which arcwise disconnects 2 °. Hence,
by (4.4), it suffices to show that each point of Z, belongs to arbitrarily
small non-degenerate subcontinua of ¢, each of which satisfies (4.4.1).



4. Compdeta in X which arcwise disconnect 2% or O(X) i5

To do this fix p = (p,, Ps, .--)€Z, and fix i. Let F denote the inverse
limit space of {E,, f,|E,+1}ne1, Where

. {Pa} n < 1,
" (fiofiz10 ... Ofn—l)—l(Pi)a n> 4,

and the ‘“‘vertical line” denotes the restriction of f, to E, ,. It is easy
to see from the construction of {X,, f,}>_, that there exists m such that
if n > m, then E, is a non-degenerate proper subcontinuum of X, which
satisfies (4.4.1). Using this and some of the results in Section 2 of [3]
it follows that ¥ is a non-degenerate proper subcontinuum of @, which
satisfies (4.4.1). By using the base for @, exhibited in 2.2 of 3], it follows
by making appropriate choices for ¢ that E can be ‘‘as small as we wish”’.
This completes the verification of the properties of @, promised above.
We mention that @, is a rational chainable continuum which contains
no arec.

4, Compacta in X which arcwise disconnect 2* or O(X). Recall
that 2% and C(X) are each arcwise connected. A point of an arcwise con-
nected continuum is said to arcwise disconmect the continuum if and only
if the continuum without the point is not arcwise connected. This section
gives fairly thorough answers to the question of which points (i.e., com-
pacta in X) arcwise disconnect 2X or C(X).

The following simple lemma will be used many times.

(4.1) LEMMA. If E is a subcontinuum of X, then each of C(X)—C(E)
and 2% — 2% i3 arcwise conmected.

Proof. Let 4¢2%. By 2.3 of [7], there is a segment o: [0, 1]—>2%
sych that ¢(0) = A4 and o(1) = X. Furthermore, if A< C(X), then, by
2.6 of [7], o(t)e C(X) for all te [0,1]. Also, since A4 = ¢(0) = o(t) for all
te [0,1] (see 2.2 of [7]), we have that if A 4 FE, then o(t) & E for te [0, 1].
The lemma now follows. .

Note that, as a simple consequence of (4.1), 2X —{z} is arcwise con-
nected for any xe¢ X. This fact will be used without mentioning it in some
of the proofs later on. '

(4.2) THEOREM. Let Ae2%. If 2X —{A} is not arcwjse connected,
then A e C(X).

Proof. Assume 4¢C(X) and let K and L be non-empty disjoint
compact sets such that 4 = KUL. Let Be [2X¥ —{4}]. It suffices to show
there is an arc from B to X missing A. If B ¢ A, such an arc exists by
2.3 of [7]. Hence, we assume B = A. We also assume, without loss of
generality, that BNnK #J and BnL # L. Now, by 2.3 of [7], there is
a segment ¢: [0,1]—>2% from BnK to X. Let

t, = Lub. ({te[0,1]: o(2) c K})
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and let
8y = g.Lb. ({te[0,1]: o(t)nL +# @}).

By 2.2 of [7], 0(t) = K for all t < ¢, and o(t)nL # O for all ¢t > s,. Hence,
there is a number % such that {, < u < s,. Now, o(u) ¢ K and o(u)nL
=@. Thus, o(u)n[X — 4] #0. We now show :
(%) c(t)UB # A
for any fe [0, 1].

Suppose o(t')UB = A for some t'e [0 1]. Since BNL is a proper
subset of L, t’ > s,. Thus, ¢’ > « and we have, by 2.2 of [7], that o(¢') > a(u).

Therefore, o(')n[X — A] # @, a contradiction. Thus, we have proved ().
Hence, defining f by

f(t) =o()UB, 0<it<1,

we see that f is a continuous function from [0, 1] into 2% —{A4} such that
f(0) = B and f(1) = X. It now follows that 2¥ — {4} is arcwise connected.
This proves Theorem 4.2.

In 8.2 of [7], Kelley proves that X is decomposable if and only if
C(X)—{X} is arcwise connected. The following lemma is the analogous
result for 2%,

(4.3) LEMMA. A non-degenerate continuum E is decomposable if and
only if 2% — {E} is arcwise connected.

Proof. Assume F is decomposable and let Fl and F, be proper sub-
continua of ¥ such that E = F,UF,. Let A¢[2F —{E}]. We will show:

(*) there is an are in 2¥ — {E} with A as one non-cut point and a mem-
ber of C(FE) as the other non-cut point.

To prove (*) we take two cases involving how A sits in E.

Case 1. [(F,—F,)u(F,—F,)] = A. Then, by (10.1) of [14], each
component of A intersects ', n¥,. Hence, by 2.3 of [7], there is a segment
oyt [0,1]1>24 from AA[F,nF,] to A. Again using 2.3 of [7]), there is
a segment gy: [0,1]>2"1 from An[F,nF,] to F,. Clearly, B¢ [0,([0,1])
Uo,([0, 1])] and inside o,([0, 1])V o4([0, 1]) there is an arc with non-cut
points 4 and #,;. We have proved (*) for Case 1.

Case 2, [(F,—F,)U(F,—F,)]¢ A. Without loss of generality
assume (F',—F,) ¢ A. If A < F,, then by 2.3 of [7] there is a segment
o: [0,1]-2"1 from A to F,, and (*) holds. Thus, we assume A ¢ F,.
Hence A nF, # @ and therefore, since ¥, i3 connected, each component
of AU F,intersects A. So, by 2.3 of [7], there is a segment o, : [0, 1]>24VF2]
from A to AUF,. Also, by 2.3 of [7], there is a segment a,: [0, 1]>24VF2
from [AUF,]nF, to AUF, and a segment .oy: [0, 1]>2"1 from

3
[AUF]1NF, to F,. Clearly, since (F, —F,) ¢ A, B¢ [UJ 0;([0,1])]. Since
' =1
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i

U o;([0, 1]) contains an ar¢c with non-eut points A and F,, we have
i=1

proved (x). . :
Using 8.2 of [7] and (), it follows that 2% — {E} is arewise connected.
To prove the converse, assume F is indecomposable. Let z and v
be points of different composants of E. Assume f: [0, 1] 2% is a con-
tinuous function such that f(0) = {«} and f(1) = {y}. We will show that
f(t,) = E for some tye [0,1]. First note that, since f is continuous and

f(0)e O(E), it follows from 1.2 of [7] that [LS([0,t])]e O(E) for each
te [0, 1]. Thus, letting .,

= Uf([O’t])y 0<t<_17

we see that ¢ is a continuous function from [0, 1] into C(Z). Since the
composants of ¥ are mutually disjoint (see Theorem 3-47 of [5], p. 140)
and z, yeg(l), we have that ¢g(1) = E. Let

ty = gLb. ({te[0,1]: g(t) = B}).

Clearly, ¢g(t,) = E and g¢(¢) is a proper subcontinuum of E for all t < ¢,
(note: since ¢(0) = f(0) = {#} and since ¢(f{,) = E is non-degenerate,
t, > 0). Hence, since Z is indecomposable, ¢(?) is nowhere dense in H

for all ¢ < ¢y (see Theorem 3—41 of [5], p. 139). Now, Uf([?, ¢,]) is compact
and

E = g(t) U[Uf ([ to]]
for all ¢ < ¢,. Therefore, |_f([?, t,]) = F for all ¢ < t,. Thus, by continuity

of f, f(t,) = E. We now conclude that 2% — {E} is not arcwise connected.

(4.4) THEOREM. Let E be a non-degenerate proper subcontinuum of X.
Consider the following three statements:

(4.4.1) !f Y is a subcontinuum of X such that
' YnE 0 + Yn[X—E],
then Y o H;
(4.4.2) 2X —(E} is not arcwise connected;
(4.4.3) C(X)—{E} is not arcwise connected.

Then (4.4.1) implies (4.4.2), (4.4.1) tmplies (4.4.3), and, z'f E s decom-
posable, all three statements are equivalent.

Proof. Assume (4.4.1) holds. We simultaneously show that (4.4.2)
f: [0,1]>2%

and (4.4.3) each holds. Let { f: [0, 1]-0( X)} be continuous such that
f(0)e [C(E)—{E}] and f(1) ¢ E. Let ‘
ty = Lu.b. ({te[0,1]: 3 0,1]) < E}).

\4%
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Note that, since f(1) ¢ B, t, < 1. Let ¢, be such that t, < t, <1. We
have:

(i) UF([0, %)) = E;

(i) US([0, t,]) & E;

(iii) UJf([0,?,]) is a subcontinuum of X (this follows from 1.2 of [7]
using that f(0)e C(X)).

Hence, by (4.4.1), (Uf([0,t]) > E. Since ¢, was arbitrarily chosen
in (¢, 1], a simple continuity argument together with (i) gives us that
Uf([0,]) = E. Now, from Theorem 1.4 above, there is a segment
from f(t,) to Uf([%e, t1]). Therefore, by 2.3 of [7], each component of

(S (%, t1]) intersects f(f,). By (ii) above, there is a component K of
(Uf([t, ty]) such that K ¢ E. We have

KnE #0 # Kn[X —E].

Hence, by (4.4.1), K > E from which we conclude that | Jf([¢, {,]) = E.
It now follows from a continuity argument that f(¢,) = E. Thus, by (),
f(t,) = E. This proves that {Eiig;} holds. Next, assume E is decomposable
and (4.4.1) does not hold. We simultaneously show neither (4.4.2) nor

(4.4.3) holds. Since (4.4.1) does not hold, there is a subcontinuum Y,
of X such that ‘

Y,nE #@ # Y,0[X —E]

and
Y,d E.
2f _{E} Lemma 4.3 . . [2F (B}
Let AE{C(E)—{E}}' By {8.2 of [7] }, there is an arc in {O(E)-—{E}}
Y,nE

with non-cut points A and } By 2.3 of [7],

aycomponent L of YonE
. o: [0,1]>27° Y,nE .
there is a segment {a: [0, 1]-C(Y,) from I to Y,. Note that, since
Y, Fand (t) c Y, for all te [0, 1], o(t) = E for any te [0, 1]. Therefore,
. . . [2X—{E)} } . .
it follows that there is an arc in with non-cut points A
- {om ) P
2¥ —{E}
C(E)—{E}

(4.4.2)
(4. 4‘3)} does not

and Y,. Since A was an arbitrary member of { } and

2% _9F .
Y,e {C(X)—C(E)}’ it follows from Lemma 4.1 that {
hold. This completes the proof of the theorem.

The following example shows that without E being decomposable,
(4.4.1) and (4.4.2) are not necessarily equivalent.
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(4.5) ExaAMPLE. Let X' = E'VY, where E’ is a non-degenerate
indecomposable continuum, Y is a non-degenerate continuum, and £'nY
consists of only a single point p. It is clear that X = X’ and E = E'
do not have property (4.4.1). However, (4.4.2) does hold. This can be
verified directly or the next theorem can be used by taking D in (4.6.1)
to be any composant of E’ not having p in it.

Our next theorem shows that arcwise disconnecting 2* is always
equivalent to arcwise disconnecting C(X). It also gives a complete characteri-
zation of subcontinua of X which arcwise disconnect. I am grateful to
B. J. Ball for helping to formulate condition (4 6. 1), which was not in the
original write-up.

(4.6) THEOREM. If E 48 a non-degenerate proper subcontinuum of X,
then the following three statements are equivalent:

(4.6.1) There is a dense subset D of E such that if Y is a subcontinuum
of X satisfying

| YAD #9@ + Yn[X—E],
then Y o E;

(4.6.2) 2% — (B} is not arcwise commected;

(4.6.3) C(X)—{E} is not arcwise connected.

Proof. We take two cases.

Case 1. E is decomposable. By -Theorem 4.4 we need only show
(4.6.1) is equivalent to (4.4.1). Clearly (take D = F), (4.4.1) implies (4.6.1).
So, assume (4.6.1) holds and let ¥ be a subcontinuum of X such that

YnE #0 # Yn[X—E].

Since E is decomposable, there are proper subcontinua 4 and B of E
such that F = AuB. Without loss of generality, assume YnA #@.
Since D is dense in ¥ and A — B is a non-empty open subset of E, [Yu 4]
NnD # @. Thus, by (4.6.1), [YuAd] o E. Hence, Y o [B— A]. Therefore,
since B — A is a non-empty open subset of B, Y nD # @. Thus, by (4.6.1),
Y o E. This proves (4.4.1) holds.

Case 2. F is indecomposable. Assume (4.6.1) holds. We simultaneously
f: [0,1]-2% }
show (4.6.2) and (4.6.3) each holds. Let be con-
(4.6:2) and (1.89) Vi oo
tinuous such that f(0) = {p}, pe D, and f(1) ¢ E. Then, using (4.6.1) and
1.2 of [7], (USf([0,1]) > E. Let

to = g.lb. ({te[0,1]: UF([0,1]) = E}).

Note that #, > 0. Since f(0) = D and {Jf([0, t]) is a continuum (by 1.2
of [7]), it follows from (4.6.1) and the definition of ¢, that () f([0, ?]) is
a proper subcon’inuum of E for all ¢t < ¢, and [ f([0, ,]) = E. The last
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part of the proof of Lemma 4.3 applies giving us that f(f,) = E. Hence

{Eigﬁ;} holds. Next, assume (4.6.1) does not hold. We prove:

*¥) If pe E, then there is a subcontinuum Z of X such that peZ,
Zn[X El#9, and ZD E.

Proof of (). Suppose (*) is false for some point p¢ E. Let Cp denote
the composant of F determined by p, i.e., C,= | J{K: K is a proper sub-
continuum of E and pe K}. Let Y be a subcontinuum of X satisfying

YAC, #0 # YA[X —E].

Let K be a proper subcontinuum of E such that pe K and YnK # 0.
Since we are supposing that (x) is false, [YUK] > E. Since K is nowhere
dense in ¥ (Theorem 3-41 of [5], p. 139), it now follows that ¥ o E.
Thus, since C, is a dense subset of ¥ (Theorem 3-44 of [5], p. 140), we
have that (4.6.1) holds, a contradiction. Hence, () is true.

Now, we simultaneously show that neither (4.6.2) nor (4.6.3) holds.

E

Let Me{g(lz){fng}} Let pe M and let Z be as in (x). By 2.3 of [7]
(also see 2.6 of [7]), there is a segment o: [0, 1]>C(Z) from {p} to Z.

k: [0,1]>2% .
Let {k: [0,1]—>0(X)}.be given by |

k() = Mus(t), 0<t<Ll.

Clearly, k is continuous, k(0) = M, and k(1) = [MVUZ] ¢ E. Suppose
there exists s, such that k(s,) = K. Then, since Z $ E, o(s,) would be
a proper subcontinuum of E. Hence, o(s,) would be nowhere dense in E
(by Theorem 3-41 of [5], p. 139). Therefore, since M is compact and
Muyo(s,) = E, M = E, a contradiction. Thus, k() # E for any te [0, 1].

E —_—
Since M was an arbitrary member of {2 {E} }, it follows from Lemma

C(E)—{E}
4.1 that !Eigg;} does not hold.

(4.7) Remark. By choosing pe D one shows easily that (4.6.1)
implies

(4.7.1) There exists a point pe F such that if Z is a subcontinuum
of X such that peZ and Zn[X — K] # @, then Z o K.

Eagsy examples show that (4.7.1) does not imply (4.6.1). However,
as shown in the proof of Theorem 4.6 (see (*)), (4.6.1) and (4.7.1) are
equivalent when F is indecomposable.

The next result gives relationships between the arc components
of 2*¥ —{E} and those of C(X)—{E}. In particular, it shows that if I’
is an arc component of 2X — {E} and I'nC(X) # @, then I'nC(X) is an
arc component of C(X)—{E}.
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(4.8) CorROLLARY. Let E, A, and B be subcontinua of X. Then, the
following two statements are equivalent:

(4.8.1) If a 18 an arc in C(X) such that A, Be a, then Ee a;
(4.8.2) If a is an arc in 2% such that A, Be a, then Ee a.

Proof. Throughout the proof agssume A # F # B. Assume (4.8.1)
holds. Then, by Lemma 4.1, at least one of A and B, say A, is contained
in E. We take two cases.

Case 1. F is decomposable. Then, by 8.2 of [7] and (4.8.1), B ¢ E.
Also, by (4.8.1), C(X) —{£} is not arcwise connected (recall: A # E # B).
Hence, by Theorem 4.6, 2X — {E} is not arcwise connected. Therefore,
since A « ¥ and B ¢ E, (4.8.2) follows using Lemma 4.1 and Lemma
4.3.

Case 2. E is indecomposable. Let f be a continuous function from
[0, 1] into 2% such that f(0) = 4 and f(1) = B. We will show that f{t,)
= I for some t,¢ [0,1]. Since A and B are continua, we have (by 1.2

of [7]) that |_f([0, t]) and | Jf([?, 1]) are each continua for any te [0, 1].
Thus, letting

(o, 7]), 0«1,
Uft-1,1]), 1<t<2,

we see that ¢ is a continuous function from [0, 2] into C(X) such that
g(0) = A and g(2) = B. Hence, (4.8.1) implies that there is a te [0, 2]
such that g(f) = E. Let

t, = g.Lb. ({te [0,2]: g(2) = E}).

If t, < 1, the last part of the proof of Lemma 4.3 applies giving us that
f(t,) = E. If ¢, > 1, then let

8o = Lu.b. ({te[1,2]: g(t) = E});

g(t) =

use the last part of the proof of Lemma 4.3 (except for very minor changes)
to obtain that f(s,) = E. This proves (4.8.2) holds for Case 2 and completes
the proof of the corollary (clearly, (4.8.2) implies (4.8.1)).

We state the next result here for use in the next section.

(4.9) COROLLARY. If E is a' decomposable subcontinuum of X such that
2X _{E} is not arcwise connected, then E is nowhere dense in any subcon-
tinuum of X properly containing E. ‘

Proof. Assume there is a subcontinuum Z of X such that Z properly
contains ¥ and F is not nowhere dense in Z. Let Y be the closure of a com-
ponent of Z —E. By (10.2) of [14], p. 16, Y nE # . Since E is not no-
where dense in Z, Y 3 E. Thus, (4.4.1) is violated and therefore, since E
is decomposable, 2¥ — {E} is arcwise connected by Theorem 4.4.
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(4.10) Remark. See Example 4.5 —though 2* — {E} is not arcwise
connected, # is not nowhere dense in X. '

It is possible to have every non-degenerate subcontinuum of X arc-
wise disconnect 2*. In fact, as the next result of this section shows, the
class of continua X with this property is precisely the class of non-degener-
ate hereditarily indecomposable continua.

(4.11) CorROLLARY. The following three statements are equivalent:

(4.11.1) X s hereditarily indecomposable (and non-degenerate);

(4.11.2) For any mon-degenerate subcontinuum E of X, 2%X —{E} is
not arcwise connected;

(4.11.3) For any non-degeneraie subcontinuum E of X, C(X)—{E}
18 not arcwise connecled.

Proof. Assume (4.11.1) holds and let £ be a non-degenerate subcon-
tinuum of X. If E = X, then 2* — {E} and C(X) — {E} not being arcwise
connected follows from Lemma 4.3 and 8.2 of [7], respectively. So, assume
E # X Then F satisfies the initial conditions of Theorem 4.4. A formu-
lation of hereditary indecomposability is: if two subcontinua intersect,
then one of them is contained in the other. From this we see that F also
satisfies (4.4.1). Therefore, by Theorem 4.4, 2¥ —{E} and C(X)—{E}
are not arcwise connected. This proves (4.11.2) and (4.11.3) each holds.
Next, assume (4.11.1) does not hold and let M be a decomposable sub-
continuvm of X. Let A and Y be proper subcontinua of M such that
M = AUY. Let U be an open subset of M such that U o4 and U # M.
Let E be the component of U containing 4. By (10.1) of [14], p. 16, 4 is
a proper subcontinuum of E. Also, since ¥ =« M, A —Y is a non-empty
open subset of E. This proves that A is a proper subcontinuum of E with
interior in ¥. Hence, F is decomposable (see Theorem 3—-41 of [5], p. 139).
Now

YnE #0
and, since U # M, it follows that

Yn[X—FKE] #0.
However,
YPE.

Thus, (4.4.1) is violated. Therefore, since ¥ is decomposable, we have
by Theorem 4.4 that 2¥ — {E} and C(X) — {E} are each arcwise connected.
This proves that neither (4.11.2) nor (4.11.3) holds.

(4.12) Remark. We could have shown (4.6.1) was violated in the

second half of the proof of Corollary 4.11 by observing that ¥ o [E — A],
a non-empty open subset of E.
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Our next result, (4.13), gives a direct relationship between arcwise
accessibility of singletons and sets which arcwise disconnect a hyperspace.
We justify the restriction to hereditarily decomposable continua in two
major ways: (1) the usefulness of (4.13) in (3.12) and (2) the host of spaces
one obtains by letting E’, in (4.5), be hereditarily indecomposable. Also,
in light of Theorem 3.3, the restriction seems appropriate. We mention
that we do not know if the converse of (4.13) is valid (see Section 6).

(4.13) THEOREM. Let M be an hereditarily decomposable continuum
and let z,e M. If x, belongs to arbitrarily small subcontinua (of M) each
of which arcwise disconnects 2, then {z,} is not arcwise accessible from
2M _ O(M). . V

Proof. Assume {z,} is arcwise accessible from 2¥ —C(M) and let
f: [0,1]1—+2™ be continuous such that f(f)e [2¥ —C(M)] for all t< 1
and f(1) = {w,}. Let

n = diameter of (Jf([0,1]).

Let K be a non-degenerate subcontinuum of M such that z,¢ K and
the diameter of K is (strictly) less than #. Clearly, | Jf([0,1]) ¢ K. Hence,
there exists sye [0, 1] such.that f(s,) ¢ K. Then, since f(1) = {z,} =« K
and f(t) # K for any te [0, 1], it follows from Lemma 4.1 and Lemma 4.3
(applied to K) that 2¥ — {K} is arcwise connected. This completes the
proof. '

(4.14) Remark. For completeness we make some technical com-
ments relating to (3.3) and (4.13). Assume 2,¢ X such that {z,} is arcwise
accessible from 2%* —(C(X). Let f: [0,1]—2% be continuous such that
fH)e[2¥—C(X)] for all t<1 and f(1) = {w,}. By Theorem 3.3,
Uf(it, 1]) is a decomposable.subcontinuum of X for all ¢t < 1. Let s <1
such that {J f([s,1]) # U f([0,1]). Then, there exists u, < s such that
flug) & U f([s,1]). Also, recall that f(1) = (Jf([s, 1]). Therefore, since
U f([s,1]) is decomposable and f(¢) # U f([s,1]) for any ?¢¢[0,1], it
follows from Lemma 4.1 and Lemma 4.3 that {_f([s, 1]) does not arcwise
disconnect 2*. Thus, we have proved the following

(4.14.1) THEOREM. Let xoe X. If f: [0,1]~2% is continuous such
that f(t)e [2%X —C(X)] for all t <1 and f(1) = {x,}, then there exists 8, < 1
such that, for any se[sy,1), \Uf([s,1]) is a decomposable subcontinuum
(with x, in it) which does not arcwise disconnect 2%,

Using Theorem 1.4, we can give a version of (4.14.1) without reference
to a particular f as follows:

(4.14.2) THEOREM. Let zye X. If {z,} is arcwise accessible from
2% _(C(X), then there is a segment o: [0,1]>C(X), with o(0) = {z,},
such that o(t) is a decomposable subcontinuum of X and does mot arcwise
disconnect 2% for any t > 0 (note: o(0) is not decomposable).



24 Arcwise accessibility in hyperspaces

Theorem 4.14.1 adds to the information in (3.3). Note that, for the
clags of hereditarily decomposable continua, (4.13) is a better result
than (4.14.1) or (4.14.2). This is because (4.13) guarantees that if {z,}
is arcwise accessible, then no continuum containing x, of sufficiently
small diameter can arcwise disconnect 2%. One final observation in regard
to this: If a point p ¢ X belongs to arbitrarily small decomposable sub-
continua of X, then p belongs to arbitrarily small decomposable sub-
continua which do not arcwise disconnect 2*. To see this, let M be any
decomposable subcontinuum of X such that p « M. The continuum E,
produced as in the second part of the proof of (4.11), is a decomposable
subcontinuum of M which does not arcwise disconnect 2%; also, pe E
if we assume (as we may, without loss of generality) that pe A in the proof
of (4.11).

5. Hereditary indecomposability and arcwise accessibility. In Section 4,
(4.11), we characterized hereditarily indecomposable continua in terms
of arcwise disconnection of their hyperspaces. In this section we character-
ize them in terms of certain arcwise accessibility properties in their hyper-
spaces (see Theorem 5.4). In addition, we obtain information about the
structure of arcs in 2* when X is hereditarily indecomposable.

Throughout this section we let G denote a mon-degenerate hereditarily
indecomposable continuum.

(5.1) LEMMA. Let h: [0, 1]1>2% be a homeomorphism. If a < b such
that h(a)e C(@) and h(b)e C(G), then h(t)e C(G) for all te [a,b].

Proof. Let a, be an arc in C(G) with non-cut points k(a) and h(b).
Let Eea,. Suppose E¢ h([a,b]); then, by Corollary 4.8 above, there
is an arc g in C(@) such that h(a), h(b)e § and E¢ f, a contradiction to
8.4 of [7]. Hence, a, < h([a, b]). Thus, since a, = h([a, b]) are each arcs
with the same non-cut points, a, = k([a, b]).

The following theorem is an immediate consequence of Lemma 5.1.

(5.2) THEOREM. If I' is an arcwise connected subset of 2% then I'nC (@)
18 arcwise connected.

We use (5.1) to prove the following lemma which, in turn, we will
use in the proof of Theorem 5.4. .

(5.3) LEMMA. Let h: [0, 1]—-2% be a homeomorphism such that h({0, 1))
NnC(@) #O. Let

ty = g.Lb. ({te[0,1]: h(t)e C(G)}). |
Then h(t,) is the (unique) subcontinuum of G irreducible about h(t) for any
te[0,1,].

Proof. Let t,¢ [0, t,]. Since the lemma is clear for ¢, = {,, we assume
t, <1,. Let A denote the unique subcontinuum of G irreducible about
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h(t,); uniqueness is a consequence of the hereditary indecomposability
of G. By 2.3 of [7], there exists a segment o: [0, 1]->2¢ from h(¢,) to A.
Since h(t;) # A (because t, < !, implies k(t,)¢ C(G)), it follows from the
irreducibility of A that o(t)e C(@) if and only if ¢t =1. Now, suppose
A # h(t,). Then, let

8o = Lu.b. ({te[0,1]: o(t)e h([ty, t])})
and let t,e[?,%,] such that

It is easy to verify that s; < 1 and %, < {,. It follows that
y = h([ta, L]) Vo ([80, 1])

is an arc in 2¢ intersecting C(G) only in its two non-cut points h(t,) and A.
This contradicts Lemma 5.1; therefore, 4 = h(t,).

(5.4) THEOREM. The following three statements are equivalent:
(5.4.1) X s hereditarily indecomposable;

(5.4.2) Given K e [2X —C(X)], there exists one and only ome Ae C(X)
which is arcwise accessible from 2% —C(X) beginning with K;

(5.4.3) If A is a subcontinuum of X and Ke[2X —C(X)], then A is
arcwise accessible from 2% —C(X) beginning with K if and only if A is
wrreducible about K.

Proof. Assume (5.4.1) holds and let Ke[2¥—C(X)]. Since 2% is
arcwise connected, surely there is an AeC(X) such that A is arcwise
accessible from 2¥ — 0 (X) beginning with K. The fact that there is only
one such A is a consequence of Lemma 5.3. This proves (5.4.2) holds.
Next, assume (5.4.2) holds. Let A be a subcontinuum of X, let K
e [2%X — 0(X)], and assume A is arcwise accessible from 2¥ — ¢ (X) beginning
with K. Let A’ denote a subcontinuum of X which is irreducible about K.
Using 2.3 of [7] as we did in part of the proof of Lemma 5.3, we see that
A’ is arcwise accessible from 2% — ((X) beginning with K. Hence, by the
uniqueness in (5.4.2), A’ = A and, therefore, A is irreducible about K.
Of course, as seen above, if 4 is irreducible about K, then A is arcwise
accessible from 2% —((X) beginning with K. This proves (5.4.3) holds.
Finally, assume (5.4.1) does not hold. Then there are subcontinua M and
N of X such that MAN 0, M & N, and N & M. Let ae[M —N]
and let be [N —M]. Let K = {a,b}. By 2.3 of [7], there are segments
o;: [0,1]-2%, ¢ = 1,2, and 3, such that:

(1) 0,(0) = K and o,(1) = Mu{b};

(2) 0,(0) = LU {b} and o,(1) == MU {b}, where L is some component
of MnN; .
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(3) 05(0) = Lu{b} and o,(1) is some subcontinuum A4 of N which
is irreducible about Lu {b}.

The irreducibility condition in (3) guarantees that o,(t)e C(X)
if and only if ¢ = 1. Define f: [0, 1]—+2¥ by the formula

04(3°1), ’ 0<t< ],
f(t) = 0:(—3:15-2), %<t<§v
0y(3-t—2), << 1.

It is easy to verify that f is a continuous function such that f(t) C(X)
if and only if ¢ = 1. Hence, it follows that A is arcwise accessible from
2% _C(X) beginning with K. Since a¢ N and 4 c N, a¢ 4, so clearly 4
is not irreducible about K. This proves (5.4.3) does not hold.

(5.5) COROLLARY. The ‘“‘unicoherence property” described in (5.2)
characterizes hereditary indecomposability.

(5.6) Remark. From results in this section we see that: If I" is an
arcwise connected subcontinuum of 2¢ such that I'nC(X) = {4}, then
B < A for all Be I'; geometrically, I" can never be ‘‘above’ A. However,
this is not true for subcontinua of 2¢, in general, as (6.8.1) shows.

6. Problems. In this section we state and briefly discuss some
unsettled questions related to the material in the previous sections. We
also prove a result about continuumwise accessibility ((6.8.1)).

In Lemma 3.10 and Theorem 3.11 we showed that every non-
degenerate rational continuum contains a subcontinuum with a cut
point and, hence, ‘‘lots” of singletons which are arcwise accessible.

(6.1) For any hereditarily decomposable continuum M, must there
be a point xze M such that {@} is arcwise accessible from 2% —C(M)?

(6.2) Is there an hereditarily decomposable continuum such that
no subcontinuum has a cut point?

(6.3) Is there a rationalless hereditarily decomposable continuum,
i.e., is there an hereditarily decomposable continuum such that no (nonj
degenerate) subcontinuum is a rational continuum?

Note that a negative answer to (6.3) implies a negative answer to
(6.2) which implies an affirmative answer to (6.1).

(6.4) What are conditions, which are at the same time both necessary
and sufficient, in order that for a given point ¥, of a continuum (rational
continuum, hereditarily decomposable continuum) Y, {y,} is arcwise
accessible from 2¥ —C(Y)? In particular, for hereditarily decomposable
continua, is the converse of Theorem 4.13 valid?

(6.5) What rational continua @ have the property that each singleton
is arcwise accessible from 29—C(Q)?
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(6.6) What hereditarily decomposable continua M have the property
that each (or some or no) singleton is arcwise accessible from 2¥ — O(M)?

(6.7) Is there a member of C(X) which is arcwise accessible from
2% _ 0(X), but not arcwise accessible from C,(X) — C(X)? Is there a mem-
ber of C(X) which is arcwise accessible from 2% —((X), but not arcwise
accessible beginning with a two-point set? An affirmative answer to the
second of these two questions yields an affirmative answer to the first.

Also note that, by Theorem 2.2, the two- questions are unsolved only
for singletons. :

(6.8) Remark. We have investigated arcwise accessibility in hyper-
spaces. A type of accessibility which has been of general interest to top-
ologists is continuumwise accessibility. We define a member A of C(X)
to be continuumwise accessible from 2% — C(X) if and only if there is a non-
degenerate subcontinuum I of 2% such that I'nC(X)= {A4}. The following
result and (2.2) show that every member of C(X) is continuumwise
accessible from 2% — O (X).

(6.8.1) THEOREM. Given any A e[C(X)—{X}], there is a non-degenerate
subcontinuum I' of Cy(X) such that
, (i) I'nC(X) = {4},
and

(ii) 1" is a monotone continuous image of X.

Furthermore, if A is a singleton, I" can be chosen so as to be homeo-
morphic with X.

Proof. The proof is easy —just let

I'={Au{z}: xe X)
and define f: X —1I" by
f@) = AU{w)

for all ze« X. Lelting d denote the metric for X and letting H denote the

Hausdorff metric for 2%, specifically defined by the formula in [7], p. 23,
we see that

H(f(»), fly)) < d(z,y)

for all #, ye« X. Hence, f is continuous (and, clearly, monotone and onto I').’
Finally, if A4 is & singleton, f is one-to-one.

Theorem 6.8.1 and its proof give specific examples of continua, other
than ares, which intersect C(X) in just one point of C(X).

(6.9) What subcontinua A of 2% have the property that / intersects
0(X) in just one point of C(X)?

Note that I" of Theorem 6.8.1 is a monotone upper semi-continuous
decomposition of X.
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(6.10) What monotone upper semi-continuous decompositions A
of X have the property that A intersects C(X) in just one point of C(X)?

Of particular interest in regard to (6.9) and (6.10) is the case where
X is hereditarily indecomposable.

7. Added in proof. Part of (4.1) and the fact that (4.4.3) implies
(4 4.1) when F is decomposable were also obtained by J. T. Rogers,
Jr., General topology and its applications (1973), p. 284.
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