Indian Statistical Institute, Bangalore 560059, India
Bibliografia
[1] B. Aniszczyk, Complementation in the lattice of Borel structures, Colloq. Math. 51 (1987), 5-8.
[2] B. Aniszczyk, Antiatomicity of the lattice of Borel structures and extensions of two-valued measures, Colloq. Math. 52 (1987), 23-27.
[3] B. Aniszczyk, A rigid Borel space, Proc. Amer. Math. Soc. 113 (1991), 1013-1015.
[4] B. Aniszczyk and R. Frankiewicz, On minimal generators of σ-fields, Fund. Math. 124 (1984), 131-134.
[5] J. Baumgartner, Letter to R. M. Shortt, June 25, 1986.
[6] J. Baumgartner, A. D. Taylor and S. Wagon, Structural properties of ideals, Dissertationes Math. 197 (1982).
[7] K. P. S. Bhaskara Rao and B. V. Rao, Borel spaces, Dissertationes Math. 190 (1981).
[8] K. P. S. Bhaskara Rao and B. V. Rao, On extensions of measures, Colloq. Math. 53 (1987), 43-47.
[9] K. P. S. Bhaskara Rao and R. M. Shortt, Separation of points by families of intervals, Real Anal. Exchange 16 (1990), 177-186.
[10] M. Bhaskara Rao and K. P. S. Bhaskara Rao, Borel σ-algebra on [0,Ω], Manuscripta Math. 5 (1971), 195-198.
[11] A. Broughton and B. W. Huff, A comment on unions of sigma-fields, Amer. Math. Monthly 84 (1977), 553-554.
[12] W. Bzyl and J. Jasiński, A note on Blackwell spaces, Bull. Polish Acad. Sci. Math. 31 (1983), 215-217.
[13] W. Bzyl and A. Mysior, On the extension property of measurable spaces, Proc. Amer. Math. Soc. 92 (1984), 501-504.
[14] W. W. Comfort and A. W. Hager, Cardinality of 𝔨-complete Boolean algebras, Pacific J. Math. 40 (1972), 541-545.
[15] R. O. Davies, An intersection theorem of Erdős and Rado, Proc. Cambridge Philos. Soc. 63 (1967), 995-996.
[16] M. Droste, Super-rigid families of strongly Blackwell spaces, Proc. Amer. Math. Soc. 103 (1988), 803-808.
[17] M. Droste, The existence of rigid measurable spaces, Topology Appl. 31 (1989), 187-195.
[18] N. Falkner, Generalizations of analytic and standard measurable spaces, Math. Scand. 49 (1981), 283-301.
[19] M. Filipczak, On generators for Borel sets, Real Anal. Exchange 13 (1987-88), 194-203.
[20] D. H. Fremlin, On Blackwell algebras, notes privately circulated, 1980.
[21] D. H. Fremlin, A very non-Blackwell space, note of June 14, 83.
[22] D. H. Fremlin and J. Jasiński, A note on the intersections of countably generated σ-algebras, Colloq. Math. 56 (1988), 211-220.
[23] F. Hausdorff, Summen von ℵ₁ Mengen, Fund. Math. 26 (1936), 241-255.
[24] J. Jasiński, On the combinatorial properties of Blackwell spaces, Proc. Amer. Math. Soc. 93 (1985), 657-660.
[25] J. Jasiński, On the Blackwell property of Luzin sets, Proc. Amer. Math. Soc. 95 (1985), 303-306.
[26] J. Jasiński, A solution to the problem of B. V. Rao on Borel structures, Colloq. Math. 54 (1987), 167-170.
[27] T. J. Jech, Trees, J. Symbolic Logic 36 (1971), 1-14.
[28] H. G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete 67 (1984), 399-432.
[29] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
[30] A. Maitra, Extensions of measurable functions, Colloq. Math. 44 (1981), 99-104.
[31] R. D. Mauldin, Countably generated families, Proc. Amer. Math. Soc. 54 (1976), 291-297.
[32] C. A. Rogers et al., Analytic Sets, Academic Press, London, 1980.
[33] H. Sarbadhikari, A note on reticulated sets, note of 1985.
[34] H. Sarbadhikari, A projective Blackwell space which is not analytic, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 511-514.
[35] R. M. Shortt, The extension of measurable functions, Proc. Amer. Math. Soc. 87 (1983), 444-446.
[36] R. M. Shortt, Borel density, the marginal problem and isomorphism types of analytic sets, Pacific J. Math. 113 (1984), 183-200.
[37] R. M. Shortt, Reticulated sets and the isomorphism of analytic powers, Pacific J. Math. 119 (1985), 215-226.
[38] R. M. Shortt, Minimal complementation and maximal conjugation for partitions, with an application to Blackwell sets, Fund. Math. 34 (1984), 211-223.
[39] R. M. Shortt, A separation principle for Blackwell sets, Bull. Polish Acad. Sci. Math. 34 (1986), 643-645.
[40] R. M. Shortt, Sets with no uncountable Blackwell subsets, Czechoslovak Math. J. 37 (1986), 320-322.
[41] R. M. Shortt, Borel-dense Blackwell spaces are strongly Blackwell, Colloq. Math. 53 (1987), 35-41.
[42] R. M. Shortt, Combinatorial properties for Blackwell sets, Proc. Amer. Math. Soc. 101 (1987), 738-742.
[43] R. M. Shortt, Maximally conjugate sigma-algebras represented as hypergraphs, Fund. Math. 130 (1988), 27-49.
[44] R. M. Shortt, A criterion for measurability of countable-to-one functions, Real Anal. Exchange 4 (1988-89), 498-500.
[45] R. M. Shortt, Measurable and topological rigidity, in: Ann. New York Acad. Sci. 552, New York Acad. Sci., 1989, 152-160.
[46] R. M. Shortt, Measurable rigidity, super-rigidity and the Blackwell property, Indian J. Math. 31 (1989), 201-214.
[47] R. M. Shortt and K. P. S. Bhasakara Rao, Generalized Lusin sets with the Blackwell property, Fund. Math. 127 (1986), 9-39.
[48] R. M. Shortt and J. van Mill, Automorphism groups for measurable spaces, Topology Appl. 30 (1988), 27-42.
[49] J. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), 82-88.
[50] H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ-algebras, Ann. Inst. H. Poincaré Sect. B 19 (1983), 91-100.