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Stable and mixing properties of a randomly indexed sequence are studied.
No assumption concerning the interdependence between random indices
and the considered random variables is made. The obtained results generalize
the known limit theorems with random indices. In particular case of a
sequence of normed sums of independent random variables the conditions of
the basic results are satisfied.

1. Introduction

Let {Y,, n > 1} be a sequence of random variables defined on a probability
space (2, .o, P). Let {N,,t >0} be a family of positive integer-valued
random variables defined on the same probability space (2, .7, P).
Several authors (see, e.g., [16], [20], [17] and [18]) investigated the
asymptotic distribution of Yy for ¢ —oo. In all these investigations it has

been supposed that N, is for any t > 0 independent of the random variables
Y,, n= 1, and N, converges in probability to infinity for ¢t — oc. This case
will not be considered here except as a particular case.

It seems more interesting to allow the random variables N,, ¢ >0, to be
dependent on Y,, n > 1. In this case, a general and very useful theorem has
been proved by Anscombe ([3]). Generalizations of his result have been
given 1n [11], [13], [14], [1], [7] and [8]. The obtained results are not only
of theoretical interest but are also very important in various applications,
e.g., in the theory of Markov chains, in sequential analysis, in random walk
problems, in connection with Monte Carlo methods and in the theory of
queues (cf. [10], [S5], [6] and [8)).

In the present paper we establish some theorems concerning the limit
behaviour of sequences of random variables with random indices in the case
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where no assumption concerning the interdependence between the random
indices {N,, t >0} and the terms {Y;, n > 1} is made. The basic results are
given in Theorems 1, 2 and 3. Theorems 1 and 2 generalize the main results
presented tn [3], [11], [1], [7] and [19], while Theorem 3 generalizes the
main results given in [13]. The results presented in Theorems 1 and 2 may
be especially useful in the study of the limit behaviour of sequences of
random variables with random indices under different normalizations.

Finally, we want to emphasize that in the particular case of the sequence
of normed sums of independent random variables the conditions of the basic
results are satisfied (Theorem 3).

2. Notations and definitions

Let {k,,n>1} be a sequence of positive numbers. Let {Y,,n>1} be a
sequence of random variables.
We begin with the following definitions.

DeriniTion 1. A sequence {Y,, n > 1} of random variables is said to
satisfy the generalized Anscombe condition with a norming sequence
{k,, n = 1} if for every ¢ > 0 there exists § > 0 such that

lim supP(max |Y;—Y,| > ¢) <e¢, (1)
n—o ieD,(8)

where, here and in the sequel, D,(8) = {i: |k? —k7| < 6k3)}.

DefFINITION 2. A sequence of random variables {Y,, n>1} is called
stable if for every event Ae o, with P(A) > 0, there exists a distribution
function F, such that

lim P(Y, < x]A) = F ,(x) (2)

for every x which is continuity point of the distribution function F,.

Let us observe that the set of the discontinuity points of F, contains the
set of the discontinuity points of F, and therefore the set of the discontinuity
points for all random events A is denumerable. Furthermore, if {Y,, n > 1} is
a stable sequence of random variables then, for every fixed continuity point
x, the measure Q, (') defined as lollows

0.(4) =F(x)P(4), Aes

is absolutely continuous with respect to the probability measure P.
According to the Radon—Nikodym theorem the derivative

d0 JdP = £.(w), weQ, 3)

exists and it is determined uniquely modulo P. The random variable #,(w),
weQ, is called the local density of the stable sequence {Y,, n>1}.
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DerFiNITION 3. A sequence of random variables {Y;, n > 1} is said to be
mixing with density F(x), if for every Ae .o/ with P(A) >0
lim P(Y, < x|4) = F(x) 4)

n—+x
for every x which is continuity point of the distribution function F.

Let us observe that a stable sequence of random variables {Y,, n > 1}
with the density % (w), weQ, is mixing if and only if %, (w) is constant in w
with probability one.

A survey of stable and mixing sequences of random variables may be
found in [15] and [2].

DEeriNiTioN 4. A family {N,, t > 0} of positive integer-valued random
variables is said to satisfy the condition (/\) with norming sequence {k,, n
> 1}, if for every ¢ >0 and 6 >0 there exist a finite and measurable
partition {A, A,,..., Ay} of Q and a family {a;, 1 <j<M,t>0} of
positive integers such that a,j —» o as t = oo, and

lim sup Z P, (K&, — "ul > 5k"u) (5)
t—=an j=1

where P,(B) = P(A n B).

3. Limit behaviour of sequences of random variables with random indices

th Z,, t =20, be d-dimensional random vectors such that
zZ,b52Z, as t—w (P-in probability). (6)

THeEOREM 1. Let {Y,,n > 1} be a stable sequence of random variables
with local density ¥ (w) and let Z,, t >0, be d-dimensional random vectors
for which (6) holds. Suppose g is a continuous function of (d+ 1) variables. If for
every £ >0 there exists & > 0 such that for each Ae f

lim sup P,(max |Y,— Y| > ¢) < eP(A), (7)

n—= o0 ieDp(8)

then the family {g(YNr, Z), t >0} of random variables is stable with local
density

Bsw= | d,%,Ww) @)
la(y.Z2¢) <x]
Jor every family {N,, t > 0} of positive integer-valued random variables satisfy-
ing the condition ().

Proof. Let ¢ >0 and a set A€ .o/, with P(A) > 0, be given. Choose
0 > 0 as in (7). Then there exist a measurable partition {A;, A,,..., Ay} of Q
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and positive integers q,;, 1 <j < M, t > 0, such that (5) holds true. Let F, be
the distribution function satis(ying (2). Then, for every x which is a continuity
point of F,. by (5) and (7). we have

lim sup P(Yy, < x; A) < lim sup Z P(Yy < x: A;lky — k2

a”
| s ¢ I—x J_

< 0k ; max |Y,—Y, S <e A)+2e,
Y iep, ye)

where
D, (0) = li: |k} —ki | < ok, |

Furthermore, the first term on the right-hand side of the last inequality can
be estimated from above by

llmsupz P(Y,, <x+&; 4; 4)).

= au Jj=1

But by stability, for every 1 €£j < M, we have
lim sup P(Y,; < x+¢; 4; 4)) = | ZL.4.dP.

= Ar\AJ

Finally, we get
im sup P(Yy, < x; A) < | &y, dP+ 2.
A

|-+

Proceeding as above one gets

lim inf P(Yy, < x; A) 2 | L,-,dP-2s.
= x A

Since ¢ > 0 can be chosen arbitrarily small, the last two inequalities prove

that the family [Yy,t >0} is stable with the density % (w). Thus, by

Theorem 2, [12]}, Theorem 1 is proved. »

Remark 1. If we suppose, in Theorem 1, that {Y,, n> 1) is mixing
instead of being stable, then the local density (8) will be as follows

B.w= [ dF().
[e(»Z ) <x]

THEOREM 2. Let Z,, t = 0, be a family of random variables such that
P(Z, > 0) = 1 and (6) holds. Suppose h is a continuous and increasing function
defined on the real line. If |Y,, n > 1} satisfies (7) and L. (w), weQ, xeR, is a
continuous function of x, then the following conditions are equivalent

(i) {Y,, n=1} is a stable sequence with local density £ ,(w);

(i) th(Yy)Z,t> 0} is a stable family of random variables with local

density &£, _, wzo(w»(w) for every family {N,, t > 0} of positive integer-valued
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random variables satisfying the condition (/\), 1e., for every Ae o/

lim P(h(Yy)Z, <x; A) = [ £ (W) dP (w), (9)
A

£
ey h~ Lz g(wh

where h™! is the inverse function of h.

Proof. Putting g(x, y) = h(x)y in Theorem 1 and using (8) we see that
(i) implies (i1). Thus suppose that (ii) holds. Let ¢ > 0 be given. Choose real
numbers a, and g, such that

Plagp£Zy<a,)=1—¢. (10)

Let ag <a, <a, <...<a, be a partition of the interval [a,, a,,], and let
Ae .o/ be given. Then, by (10), for every xeR

PLh(Yy)Zo <h(x)a;- 15 4 S Zo < a;; A] < P(Yy, < x; A)
=1

< Y PLh(Yw)Zo <h(X)a;; a;_y < Zo < a;; A]+e. (11)

i=1
° It is obvious that if {X,, n > 1} and {Y,, n > 1} are sequences of random
variables such that X,—Y,5 0 as n—> oo and {X,, n > 1} is stable, then the
sequence {Y,, n > 1} is also stable with the same loca! density (¢f. Lemma 3,
[13]). Thus, by our assumptions, the family {h(Yy)Z,, t >0} of random
variables is stable with the local density & (w). Hence, by (11), we

h~ LxjZg(w))
get

i=Zl E:{)h_l(a‘-_lh(;)/zo)l[al'—l < Zo < a;, A]

< lim inf P(Yy, < x; A} < lim sup P(Yy, < x; A)

| g o {—

< .';1 EZ, . l(a,'h(-t‘)llo)l [ai-, < Z, <aq;; A]. (12)
Since the functions h, h~! and £, (w) as the functions of x are continuous
therefore we can choose the splitting points g;, 1 < i < m, and the number m
in such a way that

I"gh‘ 1(a;h(x)/u) (w)

_—yx(w)l <é& (13)
and

|&

b~ Ya; _ {hix)/u)

(w)—Z.(w)l <e (14)
for every ¢;_, <u<a;, 1 <i<m, and almost ali weQ2.
Thus, by (11)}~(14) and (ii), the family {Yy, ¢ > 0} of random variables is

stable, with local density #,(w), for every family {N,, t >0} of random
variables satisfying the condition (A).
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Suppose the sequence {Y,, n > 1} is not stable. Then there exist a set
Ae o/, and a continuous and bounded function f and subsequences {i,, n
> 1}, {j., n =1} of positive integers such that

hmEf(Yn)I(A);éllmEf i) 1(A).
For every ¢t > 0 define N{"’ and N{? to be [t]+1 on @—A and NV =i, ,,
N{® =jj+1 on A, where [t] denotes the integer part of the real number .

Then, for i =1, 2, the random variables {N r > 0} satisfy the condition
(A). But

lim |Ef(Y~(l)) Ef(YN(Z))l = lim |[Ef (Y )I(A)—Ef(Y; )1(A) # 0.

{— o n—a

However, the last relation is in contradiction with the fact that the family
ny , t > 0} of random variables is stable with local density %, (w) for every
fam11y lN,, t > 0} of positive integer-valued random variables satisfying the
condition (/). Thus the proof of Theorem 2 is completed. m

Remark 2. If we assume, in Theorem 2 (i), that {¥, n> 1} is mixing
with a continuous density F(x) instead of being stable, then the family of
random variables given in (i1) of Theorem 2 is stable with local density

F(h™ Y (x/Zo(w))).

Let {N,, t >0} be a [amily of positive integer-valuéd random variables
such that

kifka B4 as 1o, (15)

where A is a positive random variable, {a,, t >0} is a family of positive
integers, a, — o as t — o, and |k,, n > 1} is a sequence of positive numbers.
Assume

ko_1/k, =1, k, — oC as n— . (16)

Considering a sequence of simple random variables which approximates
the random variable A, we see that if (15) and (16) hold, then (5) holds too.
Thus Theorems 1 and 2 do give generalizations of the main results presented
in [3], [11], [1], [13], [14] and [19] even in the case k? =n, n> 1.

Let us observe that in accordance with the example given by Durrett
and Resnick ([9]) it is not enough to assume that (1) holds instead of (7).
This fact, in the case k2 =n, n=> 1, has not been noticed by Mogyorodi
([14]) and many others authors that used his result. One can easily note that
if A is an arbitrary positive random variable satisfying (15) with k2 = n, n > 1,
it is not possible to apply the Anscombe condition ([3]) (the condition (1)
above with k2 =n n> 1) to the inequality (7) of the Mogyorodi’s paper
[14], hence the last inequality on page 467 is not true.

On the other hand, for some sequences [Y,, n = 1} of random variables
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the condition (7) is a consequence of (1). In fact, for example, condition (7) 1s
a consequence of (1) any time when the tail o-field of {Y,, n > 1} is trivial
under P and k, — o0 as n — oc. This is a consequence of the following lemma
([4D.

Lemma. Let {Y,, n = 1} be a sequence of random variables. Let F™ be the

smallest c-field over which the Y,, k = n, are measurable and let F” = ﬂ Fm
n=1

denote the tail o-field of {Y,, n = 1}. Then the tail o-field F* is trivial under P
if and only if
lim sup |P(A nB)— P(A) P(B)] =0 (17)

n—x AeF(m
for each B in 1.

Let {X,,n>=1} be a sequence of mdependent random variables with
zero means and ﬁmte variances. Let kZ = ¢25, and put Y, =S /k,, n> 1,
where S, =X, +X,+...+X,. Then {Y,,n>1} satisfies the generalized
Anscombe condition with the norming sequence |k, =gas,, n > 1} because,
by Kolmogorov inequality, we have

P(max |Y;— Y, = &) < (24 + 166%)/e? (1) (18)

icDp(®)

for every e > 0and é > 0, 8 # 1. Thus, by Lemma the sequence {S,/k,, n > 1}
satisfies (7) too if, in addition, k, - cc as n — oo.

Suppose
lim P(S, < xk,) = F(x), (19)

where F(x) is a distribution function. Then, by Theorem 4, [15], |S,/k,,
n>= 1} is mixing with density F(x). Furthermore, if (19) holds and X /k,,
n = 1, are uniformly asymptotically negligible, then the sequence 'k, = a5,
n> 1} satisfies (16). Thus we see that any sequence of normed sums of
independent random variables satisfies the conditions of the basic results.
Hence, from Theorem 2, we get

THeorem 3. Let {X,, n > 1} be a sequence of independent random vari-
ables with zero means and finite variances. Assume that

k} =a%S, - x, ko_1/k, =1 as n— oo.

Let {M,, t >0} be a family of positive integer-valued random variables such
that

knfka, BT as t— oo,

where la,, t > 0} is a family of positive integers a, — oc as t — oo and P(t > 0)
= 1. If F(x) is a continuous distribution function, then the following conditions
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are- equivalent
(1) lim P(S, < xk,) = F(x);

n-+ s

(ii) the family |Sy kg /kn ku,. t >0} is stable with local density F(xt).
As a consequence of Theorems 3 and 1 we have the following

CoroLLARY. Ler [ X,, n> 1} be a sequence of independent random vari-
ables as in Theorem 3. Let {M,, t >0} and {N,, t > 0} be families of positive
integer-valued random variables such that

kfke Bt and  ky/k, Bi  as t—o oo, (20)
where {a,,t >0} is as in Theorem 3 and
Pt>0=P(i>0)=1.

If F(x) is a continuous distribution function such that (i) in Theorem 3 holds,
then Sy [ky,, t > 0} is stable with local density F(x1/}), ie.,

lim (Sy, < xky) = | F(xt/A)dP.
Q

[ i R

Putting M, =gq,, t > 0, in Corollary, we obtain

lim P(Sy, < xk,) = }D F(x/z)dP(1 < z).
0

[ i #

Furthermore, putting N, =a,, t > 0, we get

lim P(S, < xky)= [ F(xz)dP(t < 2).
0

t— o
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