EN
CONTENTS
Introduction..............................................................................................5
1. General torus embeddings...................................................................7
1.1. Sets of subrings..............................................................................7
1.2. Complex of cones and torus embeddings. Basic properties and notation...............8
1.3. Jets of 1-p.s. at 0...........................................................................12
1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14
1.5. Some $G_m$-actions on torus embedding...................................18
2. Complex torus embeddings. Real and lion-negative parts..................20
2.1. Introduction...................................................................................20
2.2. The real non-negative part of the variety $X_Σ$...........................21
2.3. Bijection of $X_σ^{≥0}$ onto σ̆......................................................29
2.4. Real part of $X_Σ$. Reflexions......................................................35
3. Projective torus embeddings..............................................................37
3.1. Polyhedra......................................................................................37
3.2. Morse function...............................................................................41
3.3. Filtrations, cycles of orbits and projectivity.....................................46
4. Homology............................................................................................50
4.1. Poincaré polynomial......................................................................50
4.2. Chow ring and l-adic cohomology..................................................51
4.3. Cohomology ring of $X_Σ(R)$ with coefficients in Z/2Z..................52
4.4. Orientation.....................................................................................55
4.5. The 2-dimensional case, homology with integral coefficients.........56
References.............................................................................................62
Index.......................................................................................................64