CONTENTS Introduction............................................................................................................................................................................... 5 § 1. Finite systems of convex inequalities.......................................................................................................................... 6 § 2. Infinite systems of convex inequalities........................................................................................................................ 14 § 3. The Hahn-Banach Theorem and related propositions as corollaries of inconsistency theorems................. 22 § 4. Various equivalent forms of the Hahn-Banach Theorem........................................................................................ 32 References............................................................................................................................................................................... 35
[1] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear programming, Stanford, California 1958.
[2] C. Berge and A. Ghouila-Houri, Programmes, jeux et réseaux de transport, Paris 1962.
[3] N. Bourbaki, Espaces vectoriels topologiques, Actualités Sci. Ind. 1189, Paris 1953.
[4] N. Bourbaki, Espaces vectoriels topologiques, Actualités Sci. Ind. 1189, Deuxième édition, Paris 1966.
[5] A. Brondsted, Conjugate convex functions in topological vector spaces, Math. fys. Meddelelser udjigate at Det Kongelige Danske Vid. Selskal, Copenhagen 34, 2 (1964).
[6] N. Dunfoxd and J. T. Schwartz, Linear operators. Part I: General theory. New-York 1953.
[7] W. Fenchel, On conjugate convex functions, Canad. Journ. Math. 1 (1949), pp. 73-77.
[8] W. Fenchel, Convex cones, sets and functions, Princeton Univers. 1953.
[9] L. Hurwicz, The Minkowski-Farkas lemma for bounded linear transformations in Banach spaces, Cowles Commission Discussion Papers, Mathematics No 415, July 16, 1952; Mathematics No 416, October 17, 1952; Economics No 2109.
[10] H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proc. of the Second Berkeley Symp. on Math. Stat. and Prob. Univ. of Calif., Berkeley 1951, pp. 481-492.
[11] J. J. Moreau, Sur la fonction polaire d'une fonction semicontinue supérieurement, Compt. Rendus Acad. Sci. Paris 258 (1964), pp. 1128-1130.
[12] A. P. Robertson and W. Robertson, Topological vector spaces, Cambridge 1964.
[13] R. T. Rockafellar, Extension of Fenchel duality for convex functions, Duke Math. Journ. 32 (1965), pp. 331-397.
[14] Е. Г. Голштейн, Двойственные задачи выпуклого и дробно-выпуклого программирования в функциональных пространствах, Сб. Исследования по математическому программированию, Москва 1968, pp. 10-109.
[15] А. Я. Дубовицкий, А. А. Милютин, Задачи па экстремум при наличии ограничений, Ж. вычисл. матем. и матем. физики. 5. Н° 3 (1965), pp. 395-453.
[16] А. Д. Иоффе, В. М. Тихомиров, Двойственность выпуклых функций и экстремальные задачи, Успехи матем. паук. 23 (6) (1968), pp. 51-116.
[17] В. Л. Левин, Условия экстремума в бесконечномерных линейных задачах с операторными ограничениями, Сб. исследования по математическому программированию, Москва 1968, pp. 159-199.
[18] Хоанг Туй (Hoâng Tuy), О линейных неравенствах, Доклады АН СССР 179 (2) (1968).
[19] Hoang Tuy, Sur les inégalités linéaires, Colloq. Math. 13 (1964), pp. 107-123.