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§ 1. Some motivating questions

1. In 1974 Banchoff proved that, given a closed surface F?, the only
restriction for the possible values of the number r of triple points of an
immersion F2— R? is that t = y(F?) (modulo 2), where y(F?) is the Euler
characteristic of F2. What is the relation between the number of triple points
and singular points if we consider arbitrary (generic) maps F? — R%?

What is the right generalization of this question to higher dimensions?

2. Given a closed manifold M" and a bordism class xeQ,(M") of M",
how can we decide whether x is realizable by an immersion or not? If not,
then what is the simplest singularity which we are forced to admit to
realize x?

3. Which n-dimensional manifolds can be immersed into R"** up to
cobordisms?

What follows can be considered as developing tools to handle these
sorts of problems. But the main motivation is the hope that generalizing the
Pontryagin—-Thom construction to the cobordism of singular maps one can
obtain a model of the loop spaces of Thom spaces. Let me now explain how
we do arrive at this model.

Derinmion 0. We say that a map f: M"— R"'* of an n-manifold into
R"** is a Cymap (1 <g< %) if the composition of f and the standard
inclusion R""* < R"***4 becomes an embedding after an arbitrarily small
alteration.

The usual Pontryagin-Thom construction gives an isomorphism
Emb(n, k) = 7,,, (MO (k)), where MO (k) is the Thom space and Emb(n, k) is
the cobordism group of the embeddings of n-manifolds into R"*%

On the other hand, the cobordism group of C,-maps of n-manifolds into
R™** is isomorphic to ,,,(Q? MO (k+q)).

* This survey paper is in final form and will not be submitted for publication
elsewhere.
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Now, our hope lies in the following. Consider a class # of maps of
manifolds which contains the class of embeddings and is contained in the
class of all C,-maps. One can define

a} the cobordism group of maps M" — R"** of class -, denoting it by
#(n, k), and

b) a “classifying” space P(k) such that 2(n, k) = n, ., (P (k)).

Enlarging smartly class # (for example allowing more numerous and
more complicated singularities) we can describe how the corresponding space
P(k) changes. The resulting spaces P(k) will give better and better
approximations to QMO (k+ gq).

§2. Immersions with restricted selfintersections

Usually two main types of maps are considered in differential topology:
embeddings and immersions. Embeddings have no selfintersections at all
while an immersion may have selfintersections of arbitrary multiplicity. Here
we consider a notion lying in a sense between the two types. Namely, we fix
a natural number [ and allow selfintersections of multiplicity [ but forbid
selfintersections of higher multiplicity. Immersions of this type will be called
[-immersions. This notion 1s due to F. Uchida [U1] and to M. Gromov
(unpublished). The cobordism groups of /-immersions can be defined in two
different ways.

DeriniTioN 1 (see [Sz1]). The objects are [-immersions of arbitrary n-
manifolds into the sphere $"** The cobordisms are l-immersions of (n+ 1)-
manifolds (with boundary) into the cylinder §"** x I. Notation: Imm,(n, k).
For /=1 and | = «c we also use the notation: Emb(n, k) and Imm/(n, k),
respectively. If the underlying manifolds are all oriented then we obtain the
definition of another group, which we denote by Immj°(n, k)

DeriniTion 2 (see [U1l] and [Sz6]). The objects are l-immersions of
arbitrary n-manifolds into arbitrary (n+ k)-manifolds. The cobordisms are /-
immersions of (n+1)-manifolds into (n+k+ 1)-manifolds (both with
boundaries). Notation: C(n, k; ). The oriented version of this group is
denoted by C°(n, k; D).

For I =1 and ! = o, i.e. for embeddings and immersions these groups
have been interpreted in terms of algebraic topology and investigated by
several authors, as is shown below.

1 =1 (embeddings) Il <l<ao | = oo (immersions)
Ttk (MO (k)} ~ Emb(n, k) ) Mo+ (MO(K)) = Imm (n, k)
fmm, (n, k) Pontryagin, Thom ' Wells
Cin, k: 1) Nk (MO(K)) = C(n, ks 1) 9 N,k (RFSTMOK)) = Cn, k; oo)

Wall Schweitzer
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The groups C{(n, k; ) (see Definition 2) have been introduced and
investigated by F. Uchida (mainly for / = 2). He constructed some interesting
exact sequences joining these groups with some other groups, which- are
more or less computable. However, these exact sequences do not allow one
to compute these groups completely. The construction in the next section
makes it possible to interpret groups C(n, k; ) in algebraic topological terms
and compute them completely.

In 1971, when I was a student of M. Gromov, he posed to me the
problem: How to compute the first type cobordism groups of l-immersions,
re. the groups Imm,(n, k)? As a matter of [act he himself suggested the main
idea of the solution. The idea was that one should construct a “classifying
space” (an analogue of the Thom space) attaching to each other the total
spaces of the universal bundles of normal bundles of simple, double, triple
etc. points.

§ 3. The classifying space for 2-immersions

Consider an immersion f: M" — R"** which has no triple points and such
that the selfintersection at double points is transversal. Then the double set
fyeR"™ x, x,eM"; x, #x, and f(x;)=f(x,) =y) forms an (n—k)-
dimensional submanifold in R"** which we denote by V" * The 2k-
dimensional normal bundle of V" * in R"** admits the group G = O(k)
t Z, (the wreath product of the orthogonal group O(k) by the group Z,)

- . A0 0 A4 .
consisting of all matrices (0 B) and (B O) where A and B are arbitrary

orthogonal k x k-matrices.

(Proof. In every normal fibre RZ (xe V" ¥) there is a “cross” C = R
x 0 0 x R¥, which is the union of the tangent vectors of the two branches of
/(M) at x. The structure group of the normal bundle of V leaves invariant
these “crosses”. Q(k) ¢ Z, is the maximal subgroup of O(2k) which acts.on
R?** leaving the cross C = R¥ x0 U 0 x R* = R** invariant.) -

Let us denote by n: EGiz—k»BG the universal vector bundle with
structure group G = O(k) ¢Z,. We can choose a cross C,e RZ* in the fibre
over he BG continuously with respect to b. Let SG and DG be the unit
sphere and unit disc bundle, respectively, associated with 5. If C denotes the
intersection SGn [|JC,| beBG), then C is an (infinite-dimensional)
submanifold in SG of codimension k. By the Pontryagin-Thom construction
this submanifold determines a map ¢: SG — MO(k). Now, the classilying
space for 2-immersions i1s DGy MO (k). This symbol stands for the disjoint
union DG U MO(k) in which we identify points xeSG < DG with
o(x)e MO (k). We denote this space by I'; MO (k).

THeorem. Imm, (n, k) = 7, (F; MO (K)).
The proof is straightforward (see [Sz1], [Sz4]).

16 — Bunach Center Publications
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We leave to the reader to guess how to continue this construction, 1¢.
how to construct a space [ ,MO(k) for any natural [ such that
Imm, (n, k) = n,.,(FMO (k)). (This construction can be found in [Sz6]). The
same construction can be repeated for any closed subgroup H of the
orthogonal group. For example, if H = SO (k), we obtain a space I', MSO (k)
such that Imm;(n, k) = @, (I, MSO (k)). Analogously, a classifying space
can be defined for the cobordism group of C,; /-immersions. It will be
denoted by I'yMO(k) (when the underlying manifolds are not necessarily
orientable) or by I'; MSO (k) {(when the underlying manilolds are oriented).

§ 4. First applications: homotopy groups of spheres

Let us consider the case when H is the trivial group. It is well-known that
the first successes in computing the homotopy groups of spheres were
achieved by Pontryagin with use of geometrical methods (cobordism groups
of framed embeddings). Since then the methods of computation became
purely algebraic. Now the question is whether we can return to geometrical
methods if we consider the cobordism groups of framed 2-immersions (or /-
immersions) and not only embeddings. My answer is yes and no. No,
because I am not able to prove anything new by this method (and probably
algebra always remains more powerful in algebraic topology than geometry).
Yes, because there are some (old) theorems, which can be proved in this way.
For example:

1) the exact sequence of Toda;

2) the EHP sequence;

3) the theorem of Freudenthal;

4) the double suspension EZ: 74, (S%) — 75,42 (S*?) is an epimorphism if
k 1s even:

5) Bpena (S5 21, (SP)V®m, . (SY if k=1.3,7 and n < 2k;

6) if we add to the tools the generalized Hurewicz theorem (which s
proved by the algebraic method of spectral sequences) then we can prove
geometrically the following theorem of Serre: E?: m,,(S*) — muqp 2 (8572
induces isomorphisms of p-components for k odd and p > n/k (see [Sz3]). As
an example I sketch the proof of 4).!

Denote by Imm4 (n, k) the cobordism group of 2-immersions of n-
manifolds into R"** with trivial (and trivialized) normal bundle. Further
denote by Imm3"(n, k) the cobordism group of 2-immersions of n-manifolds
into R"** with trivialized normal bundle and with the extra condition C, (see
Definition 0). From Hirsch's theory of immersions it follows easily that if n
< 2k—1 then

' In the prool the integer kK will be replaced by k+1.
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a) Imm? (n, k} = 7°(n) (= the nth stable homotopy group of spheres);

b) Imm¥ (n, k) = My ps (S57).

It is easy to see that an immersion satisfies condition C, iff no path
lying in the double set V" * — R"™* can interchange the two branches of
1 (M), |

(Moving a point P along a closed path in V we have a cross R*

x 0 w0 x R* in the normal bundle at every position of P. It may happen that
at the return of P to its starting point the two linear subspaces (R* x0 and
0 x R*) of the fibre interchange their positions. This does not happen for any
closed curve in V if and only if the immersion satisfies condition C,).

The infinite suspension homeomorphism E*: 7., ,($*"") - n5(n)

corresponds to the forgetting map Immi (n, k) — Imm% (n, k). When n =k
+1 and k is odd then this homomorphism is obviously an epimorphism.
Indeed, in this case the double set is a 1-dimensional manifold and thus it is
orientable. We have two framing sets of vectors along every double circle,
both consisting of &k vectors. Should they interchange their roles when a
point P is moving along this circle, its normal bundle would not be
orientable, which is impossible.

§ 5. Classifying spaces of /-immersions and models of
. loop spaces of suspensions

It is interesting that if we continue the construction of the classilying spaces
of l-immersions for [ = 3, 4, etc. to the infinity, we obtain nothing else but
the Barratt—Eccles model of the space Q*S™ X (see [B-E]) [or X = MO (k)
(see [Sz6]). The fact that we have to obtain a space homotopically equivalent
to 25" MO(k) follows from the Hirsch theory and was noticed by
R. Wells ([We]).

Remark 1. If we consider only C,-maps then, having constructed the
classifying space of C, l-immersions for /=1, 2,..., «, we find that

1) from one hand, by the Hirsch theory, we must obtain the space
QSMO (k) and ,

2) on the other hand, for I = x this space is nothing else but the James
product of the space MO (k).

Hence, for the special case of Thom spaces we obtain a new proof of the
fact that the James product gives a model lor Q5SX (see [Szl])).

Remark 2. Analogously, considering only C, maps we obtain P. May’s
model for 45X when X is the Thom space MO({k).

The constructed spaces make it possible to compute completely Uchida’s
groups C(n, k; [) and obtain some information on the first type cobordism
groups of [-immersions (on Imm,(n, k)).
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§ 6. Groups C(n, k; )

The groups C(n, k; [y are direct sums of finitely many copies of Z,. The
number of terms to sum up can be expressed explicitly by using the number-
theoretical properties of n, k and [ (see [Sz2]).

The computation relies on the following facts:

1) C(n, k; ) =~ Ny (I MO (K), where 0 (X) denotes the ith bordism
group of the space X (in the sense of Conner and Floyd);

2) N (X)) >N, ®H,(X;Z;) where N, is the cobordism ring of
unoriented manifolds;

1

3) H(I'MO(k): Z,) = @ H, (I MO (k)/T',_, MO(k); Z,) (see [B-E]):
i=1

4) I, MO®K)T;_, MO(ky = (MO(K) A MO(K) A ... A MO(K)) x WS (i),

i-factors Su)
where WS (i) is a contractible space with free S(i) action; S(i) 1s the ith
symmetric group. (This follows from the construction of spaces I'; MO (k).)
5) The homology groups of the space (X A ... A X) x WS(i) have been

S(iy

computed by Vogel.

The ranks of the groups C°(n, k; I) can be computed quite similarly (see
[Sz6]).

§ 7. Groups Imm;,(n, k)

The results concerning these groups are less satisfactory than those on the
groups C(n, k; I) (see [Sz1]). (These groups are isomorphic to the homotopy
groups of spaces I''MO (k) and the computation of homotopy groups is
always more difficult than that of the homologies.)

R. Wells has obtained some interesting results on the p-components of
these groups for ! = oc. Namely, he proved that Imm(n, k) has no p-
components if n < k+2p?—2p—1. Combining this theorem with a theorem
of Barratt and Eccles which states that the inclusion I, MO (k}y < I';, MO (k)
induces a monomorphism of the mod p homology groups, and using the
generalized Hurewicz theorem we obtain that Imm,(n, )®Z, =0 if n <k
+2p*—~2p—1 for any [

If k is odd then the groups Imm,(n, k) have no p-components for p > .

For k even, | = 2, n < 3k—2, these groups may have nontrivial torsion-
free part, namely rank Imm,(n, k) = m, (n—k/4), where

T (x) = %

0 if x is not an integer

the number of partitions of x into the sum of numbers < k.

If we consider the oriented version of Definition 1 then we obtain groups
Imm;®(n, k). Hardly anything is known about these groups.
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The group Imm3°(2, 1) (i.e. the cobordism group of immersions without
triple points of oriented surfaces in R’) is isomorphic to the direct sum of
infinitely many copies of the group Z, ([Szl]).

§ 8. Classyfying space for X' singular maps

When investigating the cobordism groups of immersions we arrive at a
natural and interesting question, which cobordism classes of n-manifolds
contain a manifold immersible into R"** Thus the problem is to compute
the natural homomorphism Imm®°(n, k) — @2, which sends a class of
immersions into the cobordism class of the underlying manifold (i.e. the
domain of an immersion [rom the given class). This problem has been
considered and completely solved modulo finite groups by Burlet [Bu]. His
method was algebraic. I would lhke to sketch a more geometrical method,
which allows one to compute the odd components of this map as well, at
least in the metastable case (1.e. when n < 2k—1).

One can think of Q, as the cobordism group of arbitrary smooth maps
of n-manifolds into R"**. On the other hand, if n < 2k—1 then an arbitrary
“generic” map has only X' type singularities. So the idea is to construct the
analogue of the Thom space for the cobordism group of X' singular maps
and compare this space with the classilying space constructed for
immersions. This comparison turns out to be fairly easy in this case, since
the classifying space for the X' singular cobordisms can be obtained {from the
classifying space of immersions by attaching to it a well-describable space.

More precisely, we define the cobordism group of so-called S-maps (see

[(H], [Sz4]).
DEerFINITION. A map f2 M" — N"** is called an S-map il
1) rank df (x) =2 n—1 for xe M";

2) singular points are not doubie;
3) / has no triple points;

4) If (x;,.... x,) are local coordinates at a singular point and the
x,-coordinate line is the direction of Kerdf, then the (2n—1) vectors
of ef &f  eof &
ox,’ 7 dx, ox3 0x, Ox;0 7 0x, 0x,

are linearly independent.

Remark. S-maps M" — N"** are dense in C*(M", N**¥) if n < 2k—1.
Now, the cobordism group of S-maps of oriented n-manifolds into R"** can
be defined by replacing in the definition of Imm{?(n, k) the word “l-im-
mersion” by the word “S-map”. The group obtained thus will be denoted
by S(n, k). We are looking for a space X (k) such that S(n, k) x n,., (X (k)).
The space X (k) can be constructed from two blocks. The first one is the
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classifying space for oriented 2-immersions I'y MSO (k). The second block i1s
the unit disc bundle of the universal (2k + 1)-dimensional vector bundle ¢
with structure group consisting ol all matrices

11010 l 0
01410 and 0]0|A]|, where AcO (k).
0[O0 | A 0140

Denote this disc bundle by D and the sphere bundle associated to it by ¢D.
An attaching map ¢: ¢D— I, MSO(k) can be defined. (For a precise
definition of ¢ see [Sz4] or [Sz5].)
Now let X (k) =D u I, MSO(k), meaning that in the disjoint union
[

D u ', MSO (k) we identify every point xe ¢D < D with its image. The proof
of the isomorphism S(n, k) > n,,,(X (k)) can be found in [Sz4] and [SzS].
The main step in the proof is a lemma which says that the image of an S-
map near the image of the singular submanifold has in some sense a
canonical form. This is a globalization of the local results of Whitney and
Haelliger on the canonical form of X' singular map near a singular point.
This lemma is due to Haefliger.

Now, from the exact homotopy sequence of the pair (X (k), ', MSO(k))
we obtain easily the answer to the question: What are, respectively, the
image and the kernel of the natural map ¢: Imm°(n, k) — Q,?

THEOREM. Suppose n < 2k—1. Then Coker ¢ is a finite 2-group.

Ker ¢ is also a finite 2-group if k is odd, otherwise it is isomorphic 1o the
group Q. modulo finite 2-groups.

Proof. The pair (X (k), I'; MSO(k)) is 2k-connected. Thus by the
homotopy excision theorem, in the exact sequence

(%) oo = Tk (T MSO(K)) = 1, (X (K) = 7o (X (), T3 MSO(K)) — ...

for n < 2k the relative homotopy groups can be replaced by the homotopy
groups of the factor-space X (k)/I"; MSO (k), which coincides with the Thom
space T¢ of the vector bundle . A standard computation shows that for
n<2k—1 the groups n,, (7<) are isomorphic modulo the class of finite
2-groups to @, , _, (il k is even) or O (il k is odd). Using the isomorphisms

(X (k) xQ, and m,.,(F; MSO(K) = Imm3®(n, k) x Imm*®(n, k)
the exact sequence (¥) can be rewritten as follows,

- nn+k+ 1 (TL‘_-;) - Imm(", 1‘) - Qn - nn+k(T‘f)_'
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which modulo finite 2-groups is the same as
=0, S T Imm®n, k-0, Q, ., (if k is even)
or
0—-Imm*’(n, k)— Q,—0 (if k is odd).

In the first case a splitting map Imm®?(n, k) — Q2,_, (dotted arrow) can be
defined which assigns to a class of immersions the cobordism class of the
manifold formed by the double points of an arbitrary immersion from the
given class. Q.E.D.

As regards the third motivating question, we formulate the following

THEOREM (see [Sz4] Corollary II). Let us denote by % an arbitrary class
of Abelian yroups containing the class of all finite 2 primary groups. Let M" be
a manifold such that H'(M", Z)e % if i = 1 mod 4. Let us denote by a;(M") the
subgroup of the bordism group Q;(M") consisting of the elements which can be

2
represented by immersions. Then for | < in the factor groups Q;(M")/o;(M")

belong to the class .

Proof. Consider the sequence of spaces I',(k) = X (k)™ X (k)/T", (k). For
any CW complex K it gives an exact sequence of homotopy sets

(*+%) [K, 2 (k)] = [K, X (k)] - [K, X(k)/T(k)].

If dim K < n then these homotopy sets are stable (and so they are groups)
because all the spaces I',(k), X (k), X(k)/I',(k) are (k—l)-connected and
n<2k—1. For K =M" the group [M" X(k)] can be identified with
Q. (M" the image of x can be identified with a,_,(M"). Hence
the factorgroup ,_,(M"/a,.,(M") is isomorphic to a subgroup of
[M”, X (k)T (k)]

It is well-known that there exists a spectral sequence, its second member
being E;™ = H* 2?(M, n,_,(X(k)/Ty(k))), which converges to the
graduated set of stable homotopy classes @ {M" X(k)/I';(k)}, (see

P

Mosher-Tangora’s book, Ch. 14.).
Now, {rom (*+*) and (rom the conditions it follows that in this spectral
sequence all the groups E; 79 belong to 4. =

§ 9. Classifying spaces for higher singularities

The classifying spaces for the cobordism groups of maps with Z!!, X'!l
JHH L type singularities can also be constructed. (Here we use the normal
forms of these types of singularities given by Morin [Mo].) This way we get
a model of the (first) loop space of the Thom space. The classifying space of
X2 singularities has been constructed by Mirnij (see [M]). What about the
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classifying spaces of maps with higher singularities? Probably they can be
constructed also from some simple blocks, but I am not able to prove this.
However, the existence of these classifying spaces can be deduced from E.
Brown's representability theorem (we explain this later on). For some
applications it is enough to know that these spaces exist.

§ 10. An application: Eccles’ theorem

In 1979 at the Siegen conference Peter Eccles posed, and in most cases
answered the question, for what values of n there exists an immersion of an
n-manifold into R"*! which has exactly one (n+ I)-tuple point. In particular
he proved that there i1s no such immerston if the manifold is orientable and
n 1s even. Using the classifying spaces for singular maps one can prove the
following generalization of this fact.

DeriniTion. Given a map 2 M" — R"** we say that the image f(Q) of a
singular point Q has multiplicity greater than or equal to k if in any
neighbourhood of f(Q) there i1s a point which has k (or more) preimages.

THeEOREM. If the multiplicities of all singular points of a map f: M"— R"*!
do not exceed n— 1, where M" is orientable and n is even, then the number of
(n+ 1)-tuple points cannot bhe 1.

We sketch the proof only for C,-maps (see Definition 0). First we give a
prool for the nonsingular case. Let me¢ remind that the space I, MSO (k) has
been already mentioned in this paper. Denote this space for k =1 by I,.
Recall that I, = MSO(1) =S', and I, can be obtained by attaching an /-
dimensional cube to I,_, using an attaching map from the boundary of the
I-dimensional cube into [I',_, (see [Szl]). The points of I',_, can be
considered as finite sequences (x,,..., x;) of length j </—1 each element of
which lies in the unit interval [0, 1] Two sequences are identified if, by
omitting elements which are 0 or 1, they become the same. The attaching
map g,: I' — I',_, is the following. Any point Pe él' can be represented as a
sequence x = (xy, ..., x) where Vx;¢[0, 1] and 3x; =0 or 1. Omitting any
element of x which is equal to 0 or I we obtain g,(x). Recall also that there
is an isomorphism 7,,,(I) = Imm?$%(n, 1), where Imm7°(n, 1) denotes the
cobordism group of C, l-immersions ol oriented n manilolds into R""'.

Now suppose, on the contrary, that therc exists a C,-immersion f: M2
— R**! with a unique point PeR?*' such that the number of its
preimages equals to 2k+1 (i.e. |/~ (P) =2k+1).

LEMMA. If there exists such a map [ then the natural “forygetting” map
Imm32(2k—1, 1) > Imm32, , (2k—1, 1) is a monomorphism.

Proof. Suppose there exists an immersion of a (2k— l)-dimensional
manifold into R* which bounds an immersion ¢: N2* — R* xI. We have to
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show that there exists an immersion @: N2 — R%* xI with the same
boundary (d¢ = (&) and having no (2k+ 1)-tuple selfintersection points.

Denote the composition M2* L R?**1 o, RZ* 1, point = $?**! also by
/. Consider a small disc U centered around PeS**! where P has (2k+1)
preimages. The (2k4+ 1)-tuple selfintersection points of ¢ form a finite
set. Let Q be such a point. Consider a small disc V' centered around Q.
Replace V by the disc S**'\U in such a way that the set
O(N¥WV) U LS (M) (S '\ U)} forms the image of an immersion which
has one less (2k + 1)-tuple point. Having repeated this procedure for all other
(2k + 1)-tuple selfintersection points of ¢ we obtain an immerston ¢ which
has no (2k+ 1)-tuple points at all. The lemma is proved.

Thus it is enough to prove that the map Imm3Y(2k—1,1)
— Imm32, [ (2k—1, 1) is not a monomorphism, i.e. that the map a: 75, (I5;)
— 754 3 4 ) induced by the inclusion I, < I',,,, is not a monomorphism.

Since 'y, ., = fz,‘géJDz"“, the map « is a monomorphism iff the attaching

map ¢: ¢D**' - [, is null-homotopic. Denote by I, the universal covering

of T,. It is easy to see that the factor-space /I, -, is an infinite wedge
product of spheres $2*. The map ¢ can be lifted into a map g: §* - I",, and
composing § with the projection [ — '3/l 5_, we obtain a map §*
— \/ 8. The degree of such a map is an infinite sequence of integers.
i=1

In our case some of these integers will be odd, so the map is not homotopic
to zero. This completes the proof of the Theorem for C,-immersions. The
proof for singular maps only slightly differs from this.

In that case we have to consider those singular C,-maps of oriented
n-manifolds into R"™' which satisfy the following conditions:

a) the multiplicities of their singular points do not exceed 2k —1;

b) the muitiplicity of their selfintersections does not exceed /.

The cobordism group of these maps will be denoted by X} (n, 1). These
groups can also be represented homotopically, i.e. there exists a space X,
= X,(k) such that

Tyt (Xl(,\)) =x Zf(na 1)

The existence of these spaces X, can be deduced from Brown's
representability theorem. Define a functor from the category of simplicial
complexes into the category of sets as follows. Consider in a simplicial space
K a subset f§ such that for any open simplex 4% = K the intersection §n A5
is the image of a proper map of an (s— I)-dimensional manifold which
satisfies conditions a) and b). A cobordism joining two subsets of this type is
a subset of this type in K x I. The set of cobordism classes will be denoted by
Z,(K). Notice that i[ K is the (n+1)-sphere, then X,(K) is the same as
X(nm1). Hfi L—-K is a pl. map and B is a subset in K as above, then
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f71(P) will define an element in Z,(L). So we obtain a map f*: X/(K)
— 2, (L). Hence 2,( ) is a functor indeed. It is easy to see that this functor
satisfies the condition of Brown's theorem. (If the elements B;e2,(K;) (i
=1, 2) “restricted” to K, n K, give the same element then there exists a
unique feX; (K, v K,) such that By = f;) So X, does exist.

A map I,— X,, which may be supposed to be an embedding,
corresponds to the natural forgetting map Imm?°(-, 1) —» X,(-). Hence
[, = X,. We will be interested mainly in X, for { =2k—1, 2k and 2k + 1. It is
not hard to see that X, for [ = 2k —1 can be obtained from the disjoint union
X,._uT, by identifying the subspaces I's,_; = X, _, and [y _, = I}

Now the proof of the Theorem for the singular case is exactly the same
as for the case of immersions. We simply have to replace in the proofl the
group Imm$®(n, 1) by X,(n. 1) and spaces I', by X,

At the final step of the proof we considered the map S2* — "/I',_, for
| = 2k. ([, denoted the universal covering of I',.) The inclusion I', © X, induces
an isomorphism of the fundamental groups and so the universal covering of
X,—denote it by X,—contains the universal covering of I', and the factor
space X,/X,_, will be same as [/l ;.

It turns out that we have to consider the same map S* — X,,/X,._,
=I5/l -, as before. And as in the case of immersions, it is enough to

show that this map 1s not homotopic Lo zero. But this has already been
proved.

§ 11. Application; Points which are both double
and singular

DeriniTiON. Given a generic map f: M"— R""X we say that a point
PeR" " is an x-point if £~ '(P) consists of two points one of which is
singular, while the other is nonsingular.

Remark. The x-points form an (n—(2k + 1)}-dimensional manifold. Hence,
when n=2k+1 (and M" 1s compact), the number of a-points is finite.

THEOREM. The number of x-points cannot be equal to 1.

Sketch of the proof. Consider the cobordism group of maps of 2k-
dimensional manifolds into R**, where the cobordism maps have no a-points.
Denote this group by A(k). Again, there exists a space Y (k) such that
A (k) = n3, (Y (k). Denote by B(k) the cobordism group of arbitrary maps of
2k-dimensional manifolds into R**. There exists a space Z(k) such that
B(k) = n3,(Z (k) and Z (k) can be obtained from Y (k) by attaching a (3k + 1)-
dimensional disc to it by the use of a map dD**! — Y (k). The analogue of
the Lemma in § 10 is true also in this case; so, if the Theorem is false, then
the natural map A (k) — B(k) is a monomorphism. Hence the map n4, (Y (k)
— 13, (Z (k)) induced by the inclusion Y (k) = Z (k) is a monomorphism. This
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means that the attaching map éD***' — Y (k) is null-homotopic and hence
Z (k) is (homotopically equivalent to) the wedge product Y (k) v $**!. Then
there is a retraction r: Z(k) — Y (k), |y = identity. Now we are going to
lead the last statement to a contradiction. Consider two maps f. ¢:
M?%* — R3* of a 2k-dimensional manifold into R**, such that f has an even
number of triple points and ¢ has an odd number of triple points. These
maps are cobordant in the class of all maps. Let H: S** xI — Z (k) be the
homotopy corresponding to the cobordism h joining f and g. It 1s not hard
to see that the number of x-points of i modulo 2 equals the difference of the
numbers of triple points of f/ and g. (Prool: the triple lines of & may end at
the a-points of h or at the triple points of f and g.) Thus for any cobordism
joining f and g, the number of its x-points is odd. But the number of x-points
of a cobordism can be expressed in terms of the homotopy H corresponding
to this cobordism as follows. Let ¢4 be the (uniquely delined) map for which
the following diagram commutes:

H
s¥x1 > Zlk)

The left vertical arrow is the
natural factorizing map, which

maps the two bases S** x0 and

$* x 1 into one point.

Ik +1 'PH

¥ ——F = (ZU) [ Yk = 8T

The number of a-points of the cobordism map h corresponding to H equals
the degree of the map ¢y.

But if Y (k) is a retract of Z (k) then the map H can be changed (keeping
fixed on the bases S* x 0 and $** x 1) so that ¢y have zero degree. (It suffices
to replace H by roH, where r i1s the retraction Z (k) — Y (k).)

The contradiction thus obtained proves the Theorem.

§ 12. The analegue of Bancholf’s theorem

Finally, we answer the very first motivating question. There are no
restrictions on the number of triple points and singular points (if the latter is
positive) of a generic map of a closed surface into R* except that the number
of singular points must be even. (Proof: multiple points form a graph whose
vertices of odd degree are at singular points) So this is not the right
question. To formulate the right question we need a

Derinimion. Let f: M?* — R be a generic map. Such a map has no
singular points except for X'-type points and these points form a (k—1)-
dimensional submanifold V* ' in M?*. The image of this submanifold under
f is the boundary of the image of the submanifold 4 formed by double
points. Consider the outward normal vector field v of f(V) in f(A). If the
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vectorfield v is small enough then its endpoints form a submanifold ¥ in R*.
Let /(f) be the linking number of ¥ and f (M) in R**. It is called the linking
number of map f. (If M is oriented and k is even then I(f) 1s an integer,
otherwise it is an element of the group Z,.)

Now, the right analogue of Banchofl’s theorem for singular maps is the
[ollowing.

THeOREM ([Sz7]). For any generic map f: F* — R* of a closed surface into

R® we have y(F2)+t(f)+1(f) =0 mod 2 (where t(f) is the number of triple
points) and this is the only restriction.

Remark. F. Ronga proved a formula for the homology class ol double
and triple points of immersions. When the immersion is a map from an n-
manifold into R"** then these classes are W, and W_, respectively. He also
showed that the formula for the homology class of double points holds for
singular maps as well. And what about the formula for triple points? It does
not hold in general. The “error™, i.e. the difference between the two sides for
a singular map f: M* — R** equals (/) ([Sz8)).

Added in proof. 1. F. Ronga showed me that § 11. can be replaced by the following short
remark: “The set of a-points forms a 0-homological cycle (the boundary of triple points)™.

2. In the theorem on the page 251 the homological conditions on M" can be omitted. This
will be shown in a subsequent paper.

3. The results discussed in this paper have been or will be published with full proofs
elsewhere.
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