MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 2I
PWN — POLISH SCIENTIFIC PULBLISHERS
WARSAW 1988

COALGEBRAIC DECISION THEORY *

J. R. B. COCKETT

Department of Computer Science, University of Tennessee, Knoxville, U.S.A.

Decision trees are terms of a coalgebraic theory, called a decision theory. The
terms of a decision theory may be manipulated into two important forms: by
simple reduction into a simply reduced form and by reduction into an
irreducible form. Simple reduction provides a method for determining equal-
ity of terms. An irreducible term is always optimally efficient for some
problem. Irreducibility provides a key to the more general problem of code
optimization.

0. Introduction

Decision trees have traditionally been used for the representation of taxono-
mic knowledge and to drive interactive systems (for recent work in this
direction see [1], [8] and [9]). With the advent of rule-based systems, this
method of representation has become less popular. One reason for this
decline in popularity has been the lack of a well-known calculus of mampu-
lations for decision trees. This is regrettable as many applications have a
natural representation as a decision tree. Furthermore there is a very well-
behaved calculus of manipulations.

A decision corresponds to an attribute map. The value of an attribute
gives a choice of branching at a decision. Conversely, a choice of branching
at a decision gives an attribute value. Thus decision trees are closely allied to
information systems, which provides another application of decision trees.
They are an efficient data structure for holding database information. The

* This research was supported by the US. Department of Energy, Office of Energy
Storage and Distribution, Electric Energy Systems Program, through the Oak Ridge National
Laboratory, Systems Engineering for Power Program. Activities at the University of Tennessee
where supported by sucontract 37B-07685C/S13.

186 5. R. B. COCKETT

retrieval properties and the database aspects of decision trees have been the
subject of several investigations (see [2], [3] and [4]).

Decision trees, in their most general form, occur as the control structure
(flow diagram) of a program. Thus every computer scientist and programmer
uses decision trees. Yet at the same time little is generally known about these
structures and it is hard to find a reference which talks substantially about
decision trees.

The theory of discrete decisions has two significant merits. Firstly, it
provides a description of decision trees which is purely algebraic. This
provides a good basis from which properties can be proven and the
correctness of algorithms can be established. Secondly, it introduces some
basic forms for decision trees. The most important of these forms is the
irreducible form, which is central to optimization results for decision trees
(see [5] and [6]) and whence, more generally, for program code.

The problem of optimization has, of course, been the subject of a
considerable volume of research (see references in [10]). Traditional treat-
ments have been. stymied by the lack of a calculus to directly manipulate the
terms. They rely on general techniques, such as searching using branch. and
bound, and do not taken full advantage of the structure inherent in the
situation.

The optimization results mentioned above assume that the decisions are
independent in the sense that the possible outcomes of any given decision are
not affected by the outcomes of other decisions. This is rarely the case in
practice (e.g. in expert systems). Current work indicates that all the basic
results may be extended to the case in which dependencies are present.

This paper provides a brief survey of the current state of the theory of
discrete decisions [7]. That it has bearing on program code optimization,
database design, and interactive system design implies that it may well be a
rather fundamental part of that theory which underpins practical computer
science.

1. Coalgebraic preliminaries

A decision tree may be viewed as an expression or term of a coalgebraic
theory. A coalgebra, for such a theory, consists of a base set S together with
a collection Q of cooperations which act on the set. A cooperation, g,
consists of map from the base set S to an n-fold coproduct, or disjoint union,
of S:

qg: S—S+...+8.

Cooperations can be manipulated in the same way as operations. The
primary difference is that their composition is the “wrong way round” (that

COALGEBRAIC DECISION THEORY 187

is they are the formal dual of operations). However, there are significant
differences between coalgebras in Sets (or indeed in any topos) and algebras
in Sets as cooperations interact with the underlying structure of Sets.

A common way in which a cooperation can arise is when an attribute
map is present. Thus, a cooperation g may result from the presence of a map
f from the base set S to the product of that set with a finite cardinal, |n]. This
is because this product is isomorphic, via k (see below), to the n-fold
coproduct (disjoint union) of S:

f: S—-Sx|nl, k:Sx|n—-S+...+8, q=f'k:S-S5S+...+8S.

Conversely given a cooperation, g, by composing with the inverse of the
isomorphism k a map, f = q-k~': § — $*|n| can be obtained. Thus coopera-
tions and maps to this product correspond precisely.

The effect of the map f as it is a map to a product, may be split into two
parts. The first effect is an endomorphism of S, which is called the trace,
tr(q), of the cooperation q. The second effect is a splitting of S into n buckets,
- which is called the attribute assignment, at(q), of the cooperation g. The set
|n] may be regarded to be a set of attributes. These two effects are obtained
by composing with the projections from the product:

tr(q) =S-po: § S, at(g)=fp;:8—n.
The map f may then equivalently be expressed as the composition:
Ci(S), at(g))- <tr{q) xi(jnf)>: S =S x|n},

where i(S) and i(|n]) are the identity maps on S and |n| respectively.

The first component of this composition di(S), at(g)> has codomain
S x|n| and gives rise to a cooperation dc(q) = <{i(S), at(f))> k. Notice that
dc(q) relies only on the attribute assignment. This cooperation is idempotent.
For this reason it is called the idempotent factor of the cooperation g.

It is idempotent in the normal. algebraic. sense, that is

dc(q): <x’)lc’...’x) =X,

where the list is the codiagonal map. The dual of this, the idempotence law
for an operation, should be familiar: lattice conjunction is idempotent. A
cooperation is clearly idempotent if and only if its trace is the identity map.
The trace of {i(S), at(q)) -k is obviously the identity map thus it is idempo-
tent.

An idempotent cooperation is a decision. Decisions arise from attribute
assignments alone. If 4 is a finite set then, given an attribute assignment
a: S— A an idempotent cooperation {(S),ad> k: S—+S+...+8S, can be
formed. The converse is also true: an idempotent cooperation gives rise to an
attribute map.

188 J. R. B. COCKETT

LEMMA. Any cooperation q on a set S may be uniquely factored into a
decision dc(q) followed by the application of the trace tr(q) to each component:

dc(q)- ¢r(q)+ ... +tr{g)>.

Proof. g = f -k = (i(8), at(g))>" <r(q) xi(|n])>
= (i(S), at(q)>-k, k™' <tr(g) xi(in)))>-k
=dc(q) <r(q@)+ ... +tr(q)). =

The existence of this unique factorization implies that every coalgebraic
“theory” can be “decision extended” in the sense that decisions can be added
so that every factorization can be expressed within the theory. Thus, an
extension of the theory can be formed in which the unique idempotent
factors are already present. From this it can be seen that idempotent
cooperations form a rather natural focus of study. In particular all coalge-
braic theories give rise to a related theory consisting of the idempotent
cooperations of this “decision completion”. A theory in which all the
cooperations are idempotent, and thus decisions, is called a decision theory.

An idempotent cooperation is the abstract notion of a discrete decision.
The study of theories whose cooperations are all idempotent is thus the
study of discrete decision processes.

A fundamental result of these theories is that the expressions, or terms,
of the theory are also decisions which themselves satisfy all the identities
which the primitive decisions do. While it is clear that every decision must
satisfy the idempotence law,

[D.1] g X'x'...x)=x,
the fact that every decision is idempotent actually forces two other important
identities to hold.

PROPOSITION. In any coalgebra on the set S:

(1) The composition of decisions is a decision,

(i) Every decision distributes over every other decision, that is [D.2]
(below) is satisfied,

(iii) Every decision satisfies the repetition law, [D.3] (below). =

It is not hard to see that a distibutive law holds between decisions. In
the binary case this is the following identity:

gy <X g2 0 'Y2)) =42 {qy {xy'y1 Y gy Xy 'yad).

The generalization of this to arbitrary arity produces the general distri-
butive law:

[D.2] g1 <$xy' o Xe- 1) G2 1V) Xeer 1y - XD
=q; g1 <X Xy VU Xy -

e X g X X a1y Y X1y X)),

COALGEBRAIC DECISION THEORY 189

The repetition law is the following identity:
[D3Y g <X) @ VY Xp+1) oo Xp)
= ql " (Xll v ’x(,._ “I y,.'x(,+ 1)’ - 'x">.

These identities [D.1]-[D.3] are really commonsense facts about deci-
sions. [D.1] states that if making a decision makes no difference, then there
is no need to make it. [D.2] allows the order of decisions to be changed.
While [D.3] says there is no point in asking for the same decision twice in a
row: the same answer will be obtained both times.

These three identities [D.1]-[D.3] are actually sufficient to describe all
possible valid manipulations of decisions, this is proven in [7]. For this
reason expressions which are [D.1]-[D.3] equivalent shall be said to be
decision equivaleni.

It is reasonable to be curious as to how these other identities arose.
Clearly one cannot somehow perform some algebraic trick to obtain the
repetition law from idempotence. This highlights the significant difference
between algebraic and coalgebraic theories. In the coalgebraic setting the
‘idempotent identity does imply distributivity and repetition. This is because
the underlying structure of Sets interacts with the cooperations.

The significance of the completeness of the identities [D.1]-[D.3] is now
clear. A complete characterization of the manipulations of decision expres-
sions in terms of the algebraic identities which hold is essential. This avoids
recourse to pulling some vital “fact” about coalgebras out of the air
whenever the going gets tough. It is certainly not obvious that such a
complete characterization exists. However, it does and it is given by [D.1}-
[D.3].

The use of the term coalgebra suggests the existence of a right-adjoint to
the obvious underlying functor from the category of coalgebras. In fact such
an adjoint does exist. Furthermore the category of coalgebras is a well
known category. It is the slice category Sets/Arg: this is decribed in [1]. The
underlying functor is therefore a left-adjoint and so preserves colimits. It
should not be expected to preserve limits and does not in general. These
matters are discussed in more detail in [7].

There may be further identities which are satisfied by a particular
decision coalgebra. These can be used to determine a subvariety of decision
theories. In practice these varietal identities are rather important as they
provide the description of the dependencies which hold between attributes.
Although this paper does not deal with the effect of these identities, all the
basic results can be generalized to the situation in which they are present.

2. Simple forms for decision expressions

In fact the proposition, above, has some further rather important ramifica-
tions. It is intuitively obvious in a decision tree that there is no point in

190). R, B, COCKETT

repeating a question on any path from root to leaf. However, it is not
immediately obvious how this fact can be obtained from the identities [D.1]-
[D.3]. Repetition refers only to an immediate repetition not to a case in
which there are a series of intermediate decisions. In fact this more general
notion of repetition is a consequence of the algebraic identities and this may
be seen from a rather subtle application of this proposition.

LemMMa (RepeaT ReEDUCTION LEMMA).
q- <.Y|’..-'X(,.. I)I'W' <.VI’---"1' (le...'Z,,>'...'y,,,>'.‘c(,.+“'...'x,,>

=g xS Xy Wy Y Xy - X,
where W is any expression, or term, of a decision theory in variables v,, ..., v,
and W-tt,'..'t,> denotes that term with variable v, substituted by t;.
Proof. Notice that W-<(v,"..."v,) is a decision and therefore satisfies all

the identities of decisions. Thus we may distribute the inner occurrence of g
forward to get from the RHS:

g Xy Xy @ Wy 2 Y Y Xy X)
Now use the repetition law to obtain the LHS. =

This shows that arbitrary repetitions can be climinated. It also shows
that the idea of eliminating repeated decisions which does not seem at first
sight to be an algebraic concept is in fact a direct result of algebraic
identities. _

This raises the question of whether it is possible to rewrite an arbitrary
decision expression into a canonical form in which there are no repetitions.
This, among other things, can be done. Consider the following forms and
associated rewriting schemes for decision expressions:

A. Idempotent reduced:

— no subexpression of the form g (x' x’ ... 'x),
— term rewriting rule: ¢ (X' x' ... 'x) = x,

— confluent: t =id ().

B. Repetition reduced:
— no repeated cooperations on any path to the leaf,

— schema term rewriting rule:
g {xy Xy Wy g 2y 2 Y)Y XD
=q- X)Xy W 2 Y XD
— confluent: t = rpt(t)

A+B. Simply reduced:

— no subexpressions which can be idempotent reduced, no repetitions,
— not confluent: ¢ = id(cpt(t)).

COALGEBRAIC DECISION THEORY 191

It is easy to show that A, B are confluent. However, A+ B does not give
a confluent rewriting scheme. In order to produce an expression in simply
reduced form it is usual, therefore, to first perform repeat reduction and then
apply idempotent reduction.

Obviously if two expressions happen to have the same simply reduced
form then the expressions must have been decision equivalept. However, it is
not the case that if two expressions are decision equivalent that they will
necessarily have the same simply reduced form. Despite this, simple reduction
does provide a method of determining equality.

Consider two simply reduced decision expressions:

E,-(xy...'x,> and E,-{x;"..."x;).
By .idempotence we have:

El ° <E2' <x|’...’x">,...'E2' <XJ’...’X">> = Ez' (xl’...’x,,).

However, if the LHS is repetition reduced then it is clear that the
structure of E; will be left intact under the remnants of the E,’s at the
leaves. Equality occurs precisely when the remnants are such that an
idempotent reduction collapses the remnants down to the appropriate vari-
able at the leaf of E,.

LemMma. E, and E, are decision equivalent if and only if

id (rpt (Ey - <xy1-.."%,)))

id(ept (Ey - (Ey {xy v XY oo Eq - {2y '%0>)). m

Here “=" means structural equality. A full proof of this result is given
in [6] or [7]. Simple reduction, besides providing the basis for an algorithm
for determining decision equivalenéc, affords the builder of an interactive
system an inexpensive tool to make the interface more productive. However,
it is a rather trivial step compared to the steps which are introduced in the
next section.

3. Irreducible decision expressions

A criterion for a decision theory is a cost function on the expressions of the
theory. It associates a real number with each decision expression to indicate
the cost’ of evaluation, storage or testing [10]. The problem of optimizing a
decision expression, with respect to a criterion, is that of finding a decision
equivalent expression of minimal cost. Clearly this problem is of considerable
computational interest.

A further identity of decision expressions, which turns out to be central

192 J. R, B, COCKETT

to this optimization problem and whose significance was, for ecample,
exploited by K. Chen and Z. Ras [3], is transposition:

[D4] ' PRRC PRRC TPUNNNS 70 SN P <xm1'---'xmn>>

=4z <‘11 C(Xpy e X Y (xln"",xmn>>'

As the identities [D.1]-[D.3] are complete they imply this identity. In
fact the distributive law, [D.2], could be replaced by this identity to give an
alternate axiomatization of decision theories.

For any expression the set of all paths from the root to a leaf can be
considered. Each path must be regarded as a pair: a list of decision outcomes
and the variable at the leaf to which those outcomes lead. If each list of
decision outcomes is regarded to be an unordered bag, then it may reason-
ably be asked what expressions with equivalent sets of path bags have in
common.

ProprosiTiON (Ras's LEMMA). Two repeat reduced expressions have equiva-
lent sets of path bags if and only if they are transposition equivalent. ®

This result gives a simple algebraic characterization of a complex
property which two trees may have in common. In trying to arrange a
productive interaction, or computation, it is often not the particular order of
the decisions which matters but rather which decisions will actually have to
be made at the end of the day to reach the various conclusions. Thus
interactions (or computations) which always result in the same path bags will
be equally desirable. Such decision expressions may be obtained from each
other by using transposition alone and are thus called transposition equiva-
lent. If expressions are transposition equivalent, then they are decision
equivalent, however, the converse is certainly not true. It is clear that in
trying to optimize a decision expression it is necessary only to optimize up to
transposition equivalence.

In an actual application it is often difficult to specify a precise criterion.
Thus, optimization to a particular criterion is often of little practical value.
An alternative approach is to optimize with respect to a class of criteria. The
problem with such a strategy is that two different particular criteria of the
class may have very different optimal solutions. This implies that such an
optimization should allow for the possibility that there are many possible
optimal solutions.

A preorder is a transitive and reflexive but not necessarily anti-symme-
tric relation. A preorder may be generated from any relation by forming the
transitive-reflexive closure. As a preorder is not necessarily anti-symmetric; it
is possible for two different elements to be both greater and less than each
other. Such elements are said to be equivalent in the preorder.

A preorder may be generated on the expressions of a decision theory as
follows:

COALGEBRAIC DECISION THEORY 193

DerinimioN. If D is a decision theory and T(D) its terms, then the
reasonable preorder ,< is generated by:

[RP.1] g, <¢..'x. D>, < g, {.."x;"...> whenever x; < x, (composable},

[RP.2] X1,<q,¢(x;"..."x;> (idempotent well-ordered),
[RP3] gy @2 a0 o 'Ga Xt o X 0D
rs qZ : <q1 : <x1 l""rxm1>""’q1 : <xln""’xmn>>

(transposition invariant),

[RP4] g - (.. ,W-{.g- 0y 00 D)
2,q (0%, WALy L)L) (repeat reducing).

Notice that two expressions are comparable only if they express the
intuitive notion of when one decision expression is better than another. Thus,
if a subexpression has been improved then it is reasonable to expect that the
_whole expression will be no worse, [RP.1]. Similarly eliminating a decision
by repetition or idempotence should improve the situation, or at least make
it no worse, [RP.2] and [RP.3]. If ¢, and t, are {wo expressions and ¢, >,!,
and t,,< t,, then they are reasonable equivalent, denoted ¢, ~,t,, and this
occurs if and only if the terms are transposition equivalent.

The idea is that any reasonable criterion must preserve this reasonable
preorder. Thus we may study the problem of optimizing a decision expres-
sion given the assumption that the criterion is reasonable in this sense. It is
easy to see that, for criteria which are reasonable, simple reduction will never
increase the cost of an expression. Thus the cost of an expression 1 is never
less than the cost of its simply reduced form id(rpt(r)). This is a desirabie
property as simple reduction seems intuitively to be an obvious source of
improvement.

A minimal element in a preorder is an element for which every element
below is actually equivalent. A solution to optimization with respect to a
reasonable criterion will always fall on a minimal element in the reasonable
preorder. Finding decision equivalent terms which are minimal in this
preorder will therefore be a crucial step in optimization with respect to any
reasonable criterion. A term which is minimal in the reasonable preorder is
said to be irreducible.

A sensible step in optimizing a decision expression would therefore be to
find a decision equivalent irreducible term. It is natural to inquire whether
any further steps can be taken in this general optimization problem. That is
whether irreducibles can be ordered in a nontrivial way to agree with every
reasonable cost criterion. The answer is no. Thus one cannot optimize at this
general level beyond finding irreducibles.

13 — Banach Center 21

194 J. R. B. COCKETT

For the class of reasonable criteria the problem of optimization amounts
to finding a suitable decision equivalent irreducible. It would therefore be
useful if they could be easily identified. If a term is repeat reduced then any
further reduction in the reasonable preorder must use idempotent reduction.
This actually gives rise to a characterization of irreducibles.

LEMMA. An expression is irreducible if and only if every transposition
equivalent term is simply reduced. »

Notice that this means that the expression must itself be simply reduced
as 1t is transposition equivalent to itself. This indicates how one can test for
irreducibility: generate all the transposes of the expression and check that
they are all simply reduced. In practice this may be a rather difficult thing to
do as the number of transposes can be very large. In [6] a more efficient
approach to this problem is described. It suffices here to observe that
irreducibles can be identified relatively easily.

Given any decision expression there is always an irreducible which is
below it in the reasonable preorder. A process which finds such an irreduc-
ible is called a reduction. One way of doing this is by simply reducing
transposes. Given an expression ¢, it is clear that any transpose t, will have
the same cost. If such a transpose ¢, is not simply reduced, then without
increasing cost it can be simply reduced to t;. Clearly the cost of ty is no
more than the cost of ¢,. Thus, by successively simply reducing tranposes,
any term can eventually be reduced to an irreducible which is guaranteed to
cost no more than the original expression. This is the idea behind the
reduction algonithm described in [6].

A sophisticated step which can be undertaken when designing an
interaction (or computation) is to ensure that it is irreducible. If it is not,
then it can be reduced. Reduction is a nondeterministic optimization of a
decision tree and can also be applied to any acyclic code segment. The
computational cost of this process is dominated by the size of the tree. This
makes it a computationally Teasible step to undertake.

While intuitively a reasonable criterion has appeal there is no guarantee
that in practice the criteria which are used will be reasonable. However, there
is a important criterion whose relation to reasonableness has been investigat-
ed. This criterion is the expected testing cost criterion.

If, in an expression, the probability that any path will be followed and
the cost associated with making each decision is known, then the expected
testing, or evaluation, cost can be calculated. This value is the sum over each
path of the costs of the decisions on the path times the probability of the
path itself. The resulting criterion is reasonable and is called the expected
testing cost criterion.

In principle, there is an expected testing cost associated with every
applied decision expression. Thus it would be comforting if there was a well-

COALGEBRAIC DECISION THEORY 195

defined relation between irreducibles and the various expected testing cost
criteria which might apply. Such a result exists:

PrOPOSITION (SEPARATION OF IRREDUCIBLES). If t; and t, are two decision
equivalent ifreducibles which are not transposition equivalent, then there is an
expected testing cost criterion C such that

(1) C(ty) > C(t,) and

(ii) C(ty) is the minimal cost achievable. w

This means that given that one does not know, for one reason or
another, the cost and probability distributions required to obtain the expect-
ed testing cost one cannot do better than to reduce the term to -an
irreducible.

4. Concluding remarks

The description of decisions in algebraic terms has a number of benefits.
Perhaps the most significant is an algebraic approach to code optimization.
This seems to have significant advantages over the more traditional graph
theoretical and general searching techniques. Current research is being
undertaken to extend this approach to a full programming environment.

The fact that it is rarely possible to provide a full specification of an
expected testing cost criterion makes this approach very attractive. This
difficulty cannot be emphasized enough as the foliowing two examples
illustrate.

First consider the situation for code optimization. The primitive deci-
sions, being basic machine operations, have a definite time stamp. However,
the expected cost of a computation is also determined by the probabilities of
the paths of the computation. These probabilities are determined by use and
the number of different paths involved may well inhibit any attempts at data
collection. Furthermore, if the decisions are actually subroutines, then the
embedded decisions in these may make the actual cost of the decisions
context sensitive. Thus, in code optimization, associating costs to nonprimi-
tive dectsions can be difficult while determining path probabilities may simply
not be feasible.

For interactive systems the situation is no better: the cost of a decision
should be a measure of how much difficulty a user has in providing that
decision. This is subjective and difficult to measure. Thus again the informa-
tion to calculate a precise expected testing cost is hard to obtain if not
simply unavailable.

In the latter case it may be feasible to collect path statistics. However,
these statistics can, unfortunately, fail to give sufficient information to justify
an optimization. The reason for this is that a rearrangement of the process
can produce paths -whose probabilities are not determined by the usage of
the old process.

196). R. B. COCKETT

It would seem that the best that can be achieved is to perform a
reduction. However, the situation is slightly more complex. Often to force an
irreducible to be optimal it is necessary to assume a heavily biased probabil-
ity and cost function (they may be extremely sparse). Thus some irreducibles
are more robust than others. A current area of research concerns robust
optimization.)

An irreducible is a robust optimal if a perturbation of the cost functions
and the probabilities will not cause its optimal properties to evaporate. This
means, in particular, that there must be an open set in the space of
cost/probability assignments in which it is optimal. The concept of robust-
ness can cover many different models of cost/probability perturbation: for
example path probability disappearance. The robustness properties of irreduc-
ibles depends on the perturbation model.

In the end, out of the optimization, one wishes to obtain irreducibles
which are robust to as many perturbation in the cost description as possible
and understand the relative advantages of each irreducible. There remains
much work to be done to elucidate these relative advantages.

References

[1] J. D. Birdwetl J. R. B. Cockett, A. J. Laub, M. Athans and L. Hatfield, Expert
Systems Techniques in a Computer-Based Control Systems Analysis and Design Environment,
3rd IFAC Symposium on Computer Aided Design and Engineering Systems, Lyngby,
Denmark 1985.

[2] K. Chen and Z. Ras, Homogeneous Information Trees. Fundamenta Inlormaticae 8 (1985),

123-149.
[3} —, —, An Axiomatic Theory of Information Trees, Proceedings of the 1985 CISS, 636-640.
[4] —, —, Dynamic Hierarchical Data Bases, Proceedings of the 1983 ICAA in Taipei, Taiwan

1983, 450-456.

[5] J. R. B. Cockett and J. Herrera, Prime Rule-Based Systems Give Inadequate Control,
Univ. Tenn. at Knoxville, Dept. of Comp. Sci, Tech. Report CS-84-60 (1985).

[6] J. R. B. Cockett, Decision expression optimization, Fund. Inform. 10 (1987), 93-114,

[71 —, Discrete decision theory: Manipulations, Theoret. Comput. Sci. 54 (1987), 215-236.

(81 —, File handling for detail, extent and subtasks in the implementation of decision processes,
Inform. Sci. 37 (1985), 157-168. '

[9] S. R. Heard, DECIDE: A Decision Expression Interpreter, Univ. Tenn. at Knoxville,
Dept. of Comp. Sci. (1985), M. S. Thesis.

{10] B. M. E. Moret, Decision Trees and Diagrams, ACM Comp. Surv. 14, 4 (1982).

Presented to the semester
Mathematical Problems in Computation Theory
September 16— December 14, 1985

