COMBINATORICS AND GRAPH THEORY
BANACH CENTER PUBLICATIONS, VOLUME 25
PWN POLISH SCIENTIFIC PUBLISHERS
WARSAW 1989

INDEPENDENT FACE AND VERTEX COVERS
IN PLANE GRAPHS

MACIEJ M. SYSLO

Institute of Computer Science, Wroclaw University, Wroclaw, Poland

Two new notions of covering defined for plane graphs, a vertex-independent
face cover (VIFC) of vertices, and a face-independent vertex cover (FIVC) of
faces are studied in this paper. The main result provides necessary and
sufficient conditions for a maximal embedded graph to have a FIVC. The proof
uses special paths of triangles in such graphs. Moreover, VIFC and FIVC sets
are investigated in outerplanar and Halin graphs.

1. Introduction

Let G = (V, E) be a 2-connected planar graph embedded in the plane. A subset
W < V of vertices is called a face-independent vertex cover (simply, FIVC) of
faces of G if every face of G has exactly one vertex in W, Note that if G is
maximal planar then the face-independence of vertices is equivalent to the
independence in the usual sense. A FIVC in G corresponds in the geometric
dual G* of G to a set of faces €,. which we call a vertex-independent face cover
(simply, VIFC) of vertices of G* since no two faces of €, share a vertex and
every vertex of G* is contained in exactly one face of €,. A VIFC in G is
nothing else than a 2-factor of G which consists of facial cycles. Figure 1(a)
shows a graph G and its dual together with a FIVC in G and the corresponding
VIFC in G*. Note that G has also a VIFC and G* has a FIVC, see Fig. 1(b).
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Fig. 1(a) Fig. 1(b)

In contrast to almost all other notions of covering sets (of cycles and/or
vertices), a graph may not have a FIVC and/or a VIFC. Figure 2 shows
a member G of an infinite class of graphs which have neither FIVC nor VIFC,
and whose dual graphs G* have none either.

G‘

Fig. 2

Covering sets FIVC and VIFC have been originally introduced in [5] in
a weaker form. A subset W of vertices in a plane graph is a weak FIVC if
W covers all faces of G and at most one face of G contains more than one
vertex of W. It is easy to see that the graph G in Fig. 2 has a weak FIVC.
A weak FIVC in a plane graph G generates a weak VIFC in the dual graph G*
of G. Therefore, a weak FIVC consists of a set of faces of G* which cover all
vertices of G* and at most one vertex belongs to more than one face chosen. In
[5], weak FIVC’s (called there just FIVC) were related to other weak VIFC’s
defined in extended dual graphs. If G is a 2-connected plane graph, then the
extended dual graph G* of G can be obtained from G* by splitting the vertex
v Of G* corresponding to the exterior face of G into deg(v.,) copies and
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drawing a cycle through them. It is clear that a weak FIVC of G corresponds to
a set of faces which cover all interior vertices of G* in G*. The study in [5] was
motivated by the traveling salesman problem on Halin graphs. Every Hamilton
cycle in a Halin graph H generates a set of faces 2 which cover all interior
vertices in H and corresponds to a weak FIVC in the weak dual graph
H™ = G*—{v.,} of H which is an outerplanar graph.

Yet another generalization of a VIFC known as a face cover can be
obtained by allowing faces to overlap on vertices. This notion has recently been
considered by several authors (see [2] and [3]). Every plane graph has a face
cover but it was independently proved in [2] and (3] that the face cover
problem is NP-complete in general. Several other versions of this problem are
also NP-complete, as is verifying if a plane graph has a VIFC [4].

The main interest of this paper is focused on necessary and/or sufficient
conditions for a graph to have a FIVC and/or a VIFC.

2. FIVC in maximal planar graphs

Let G = (V, E) be a maximal plane graph. Hence, its dual graph G* = (V*, E*)
is a 3-valent and 3-connected plane graph. If additionally, G is Eulerian (i.e.,
every vertex is of even degree) then it has a 3-coloring {V,, V,, V,} [6], ie,
V=V,uV,uV, and ¥ \nV, =0, and each color class contains exactly one
vertex from each face of G. Therefore, an Eulerian maximal plane graph G has
exactly three FIVC of faces, each of which generates in G* a VIFC of vertices.

THEOREM 1. Every Eulerian maximal plane graph G has exactly three
FIVC of faces which correspond to exactly three VIFC of vertices in its dual
graph G*.

Note that from the theorem about 1-factors in bipartite regular graphs (see
[17, p. 28) it only follows that G* contains a cover of vertices by vertex disjoint
cycles which, however. are not necessarily facial.

Fig. 3
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We now turn our attention to maximal plane graphs with odd degree
vertices. Figure 3 shows such a graph H. It has a FIVC of faces A = {a, e, f, h}
which, however, is not a color class of H in any of its 4-chromatic colorings and
no color class of a chromatic coloring of H is its FIVC. Therefore, although
a FIVC is a color class of a graph it may not be generated by any chromatic
coloring. Note that H of Fig. 3 has no VIFC.

Every vertex together with its neighbors generate a wheel in a maximal
plane graph. For an even degree vertex v, there are two ways to cover the faces
containing v: either by taking v or by taking every second neighbor of v on the
circle. If v is of odd degree, then the latter set is not independent and v must be
chosen to every FIVC of faces in G. Hence, all odd degree vertices of G belong
to every FIVC of G. Therefore no two such vertices can be adjacent, but this is
not sufficient.

Fig. 4(a). A diamond Fig. 4(b). A t-path

A pair of triangles sharing an edge is called a diamond, see Fig. 4(a). Here
and in what follows a triangle in a plane graph is understood as a triangular
face. The vertices in a diamond which belong to only one triangle are called
terminal. It is easy to see that we have

LEmMMA 2. If a maximal plane graph G has a FIVC W then for every dia-
mond H in G, either both terminal vertices of H or none of them belongs to W.

As a generalization of diamonds, we now introduce ¢-paths which will then
be used to characterize graphs with FIVC’s. A t-path in a maximal plane graph
G is a sequence p=(T,, ..., T,) of distinct triangles such that:

(i) T,and T;;, form adiamondin Gfori=1,3,...,2 | k/2] —1,ie, T,
shares an edge with T;.,. Let H, denote the diamond consisting of T,,_, and
T, fori=1,2,..., | k/2].

(i1) The terminal vertex of H, which belongs to T, does not belong to any
other triangle of p and the other terminal vertex of H, is a terminal vertex of
H,. For every i=2,..., | k/2] —1, the diamond H, shares its terminal
vertices with those of H,_; and H;,,. For | = | k/2 | , one terminal vertex of
H, is also a terminal vertex of H,_,. Moreover, if k is odd then the other
terminal vertex of H, belongs to T,.



INDEPENDENT FACE AND VERTEX COVERS 181

(i) H, and H;,, may share at most one edge, i =1, 2, ..., | k/2] —1L

A diamond is a t-path and another t-path is shown in Fig. 4(b). Let
p=(T,,..., T,) be a t-path and let (H,,..., H) be the sequence of the
corresponding diamonds. The length of p is equal to k. The terminal vertices in
H/s are called even with respect to p and the other ones are called odd. The
terminal vertex of H, which belongs to T, is called an initial vertex of p. If k is
even then the terminal vertex of H, which belongs to T, is called an end-vertex
of p, and when k is odd then each of the two vertices of T, which is not
a terminal vertex of H, is an end-vertex of p. For the sake of simplicity, if u is
the initial vertex of p and v is an end-vertex of p then we shall say that
p connects u and v.

LEMMA 3. Every wheel W in a maximal plane graph G has zero or an even
number of triangles in common with a t-path p = (T, ..., T,) of G except possibly
when W contains T, or T,.

Proof. Let p=(T,, ..., T;) be a t-path in a maximal plane graph G. It is
evident that any two triangles which share a vertex (or/and an edge) in G are
contained in one wheel. Therefore, any two consecutive triangles of p belong to
one wheel, in particular, each diamond of p is contained in a wheel and if two
consecutive diamonds share an edge they are also contained in one wheel. The
wheel which is centered at the initial or at an end-vertex of p may contain an
odd number of triangles of p, in particular it may contain only T, or 7. Note,
however, that T; and T, may belong to one wheel of G.

A t-path in G can be constructed from a sequence of adjacent wheels (two
wheels are adjacent if they share exactly one edge). We simply take in each
wheel a section consisting of an even number of triangles and such that these
sections in two consecutive wheels share exactly one vertex. It is easy to see
that the resulting sequence of triangles is a t-path.

It 1s clear that if the initial vertex v of a t-path p belongs to a FIVC U of
a maximal plane graph G then every even vertex of p has to belong to U and no
odd vertex of p can be in U. Hence, if v is of odd degree then no odd vertex of

p is of odd degree. As a main result of this section we shall prove that the
converse also holds.

THEOREM 4. A maximal plane graph G has a FIV C if and only if no two odd
degree vertices in G are connected by an odd-length t-path.

Proof. If G has no odd-degree vertices, i.e., if G is Eulerian then the result
follows by Theorem 1.

Let G = (V, E) be a maximal plane graph with a set W < V of odd-degree
vertices, where |W| = 2. If G has a FIVC U then evidently all vertices of
W belong to U, so no two vertices in W can be connected by an odd-length
t-path.
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Assume now that G has at least two odd-degree vertices such that no two
of them are connected by an odd-length ¢-path. To construct a FIVC U in G we
first add to U all elements of W and call them even. Then we show that any
other vertex of G, ve V— W, gets either label even or label odd on every t-path
from a vertex in W to v. The vertices in W together with those labeled even
constitute a FIVC.

Let we W and ve V—W. We first take a shortest path g between v and
w and show how to transform g into a t-path. Let g = (w = ug, uy, ..., 4, =)
and we may assume that every vertex u; (1 < i < [) is of even degree. Any two
consecutive edges {u;, 4;+,} and {#;4+, u;4+2} (=0, 1, ..., I—2) of g belong to
a wheel: denote it by F,.,. Two consecutive wheels overlap on two triangles.

Fig. §

Figure 5 illustrates a construction of a corresponding t-path ¢' for g,
depending on the distance between the vertices u; and u; ., on the circle of the
wheel F;,,. We always take an even (or zero) number of triangles from each
wheel F; except possibly the last wheel which contains the last vertex u; of the
path g (see Lemma 3 for the relevant property of t-paths). Using this t-path we
determine the parity of the vertex r and label it either even or odd.

To complete the proof we have to show that every ve V— W gets the same
label regardless of the t-path chosen. To this end, we show that there is no
triangle in G which contains two vertices that could have been labeled even.
Assume that G has a triangle T = (r,. r,. 1) whose two vertices r, and r, got
labeled even. We may assume that all vertices of T are of even degree. Hence,
there exist two vertices w,, w, in W and two t-paths g, and q, from w, to v,

Fig. 6
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and from w, to v,, resp., in which v, and », are both even. Now we use one of
the t-paths, say ¢q,, to extend the other t-path ¢, so that the resulting z-path
r connects w, to w, and w, is odd in r — a contradiction since w, and w, are of
odd degree. To find the t-path r, note first that extending g, with the triangle
T results in a t-path in which w, is odd. Then using consecutive wheels
associated with q, we can further extend ¢, so that a vertex with even (odd)

label in g, will get odd (even) label in r (see Fig. 6). Finally, w, is reached as an
odd-labeled vertex.

COROLLARY 5. A maximal plane graph G has exactly three or at most one
FIVC of faces. The latter occurs when G contains odd degree vertices.

Transforming the result of Theorem 4 to the dual graphs of maximal plane
graphs we obtain

CoOROLLARY 6. A 3-connected cubic plane graph has a 2-factor consisting of
facial cycles if and only if no two odd length faces are connected by an even
sequence of faces.

3. VIFC and FIVC in special planar graphs

In this section we investigate the existence of VIFC and FIVC sets in special
families Of planar graphs: outerplanar and Halin graphs.

3.1. Outerplanar graphs

We assume that an outerplanar graph is given in its most natural
outerplane embedding.

Weak VIFC. By the definition, the exterior face covers all vertices of an
outerplane graph.

Weak FIVC. It was demonstrated in [5] that there exists a one-to-one
correspondence between Hamilton cycles in a Halin graph G and weak FIVC’s
of faces of the corresponding weak dual G~ of G which is an outerplane graph.

VIFC. As in the case of weak VIFC's, the exterior face covers all vertices
of an outerplane graph.

FIVC. Since all vertices belong to one face (in an outerplane embedding),
a FIVC may consist of only one vertex. Therefore, an outerplane graph has
a FIVC if and only if it is an extended fan (see Fig. 7(a)). In general, an
outerplanar graph may not have a FIVC for any of its embeddings — Fig. 7(b)
shows one such graph. The problem of when an outerplanar graph has an
embedding (possibly different from an outerplane one) which admits a FIVC
will be treated in a forthcoming paper [6] together with an efficient method for
handling all embeddings of an outerplanar graph.
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Fig. 7(a). An extended fan Fig. 7(b) Fig. 7(c)

3.2. Halin graphs

Since every Halin graph is 3-connected, it has a unique set of faces.
Therefore, without loss of generality we may assume that a Halin graph G is
given with its longest face C(G) as an exterior one.

Weak VIFC. It is easy to see that every Hamilton cycle in a Halin graph
G generates the set of interior faces which cover all interior vertices of G (see
also [5]). There exists a one-to-one correspondence between weak VIFC's of
vertices in a Halin graph and weak FIVC's of faces in the corresponding
outerplanar graph.

Weak FIVC. For every Halin graph G, except an odd wheel, we can
construct a weak FIVC of all faces of G with more than one vertex on the
exterior face. If the exterior cycle C(G) is of even length then we choose every
second vertex of C(G). If the cycle C(G) is of odd length then:

a) If G has a fan F with an even number of spokes then we take the center
v of F and every second vertex from those which lie on C(G) and do not belong
to the same face with v.

b) If every fan of G has an odd number of spokes then we reduce G by
contracting one fan F of G to a vertex. Let G’ denote the resulting Halin graph
and v’ the contracted vertex. Note that C(G’) 1s also of odd length but G’ may
contain a fan with an even number of spokes. If so, we find a weak FIVC U’ in
G’ as described above. Then a weak FIVC U of G is obtained from U’ either by
taking every second exterior vertex of F starting with the second one if v' ¢ U’,
or by replacing v" in U’ by the center of F. If G’ has no fan with an even number
of spokes, we keep contracting fans until the current graph contains an even
fan or is a wheel. In both cases, except an odd wheel, the graph has a weak
FIVC which, as above, can be transformed to a weak FIVC in G.

VIFC. Let G be a Halin graph. First note that the exterior face of G does
not belong to any VIFC of G since G has interior vertices and any other face
shares an edge with the exterior face. Hence, it follows that every triangular
face of G belongs to every VIFC and therefore G cannot have two such faces
adjacent (i.e., sharing a vertex). Consider two triangular faces consecutive with
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regard to their order on the exterior face. To cover all exterior vertices laying
between them we have to choose to a VIFC every second face located between
the triangles, so there must be an odd number of such faces. When this is done
for every pair of consecutive triangular faces, we finally check if any two
nontriangular faces chosen are vertex disjoint. If so, G has a VIFC just
constructed, otherwise it has no such face cover of vertices.

FIVC. Not every Halin graph has a FIVC, e.g. the graph in Fig. 7(c) has
no such cover. However, this can be quite easily tested. First, note that if a fan
in a Halin graph G has more than three spokes then its interior vertex must
belong to every FIVC. Moreover, exactly one face can be covered by its
exterior vertex, so in particular at most one triangle is covered by its
noninterior vertex. To find if G has a FIVC, we root the interior tree T(G) of
G at one of the vertices of a fan F with the maximum number of spokes and
attempt to generate a FIVC of G starting with a vertex which covers all faces of
F. If F has more than three spokes we have only one choice (the center of F),
otherwise each of the three vertices in F must be considered separately. Details
of a search along T(G) are left to the reader.
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