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INTRODUCTION*

In the present paper we investigate some operator ideals defined
with the aid of a fixed Bamach lattice. These operator ideals have their
origin in the ideals of radonifying operators of Schwartz and can be con-
sidered as generalizations of the duals (or preduals) of these operators.

If X is a fixed Banach lattice and F and F are Banach spaces, then
we call a bounded operator T: E — F normable by X, if for any bounded
operator A: F— X AT maps the unit ball of F into an order bounded
subset of X. The class of all operators normable by X is an operator
ideal, which we call the Schwartz ideal determined by X. To understand
why we define an operator ideal in this way, one should have the following
picture in mind:

Imagine that X is a Banach lattice of some measurable funections
on a probability space; call a cylindrical measure » on E of type X, if
there is stochastic function A: B* —» X, determining it. If T: B+ F
is an operator so that 7™ is normable by X, then given any cylindrical
measure » of type X, i. e. a bounded operator 4: E* — X, we get that
AT is the stochastic function determining 7'(v). By assumption 4T maps
the ball of #* into an order bounded set, meaning that 7'(») is 2 Radon
megsure.

This picture is a little simplified ; in Section 5 we discuss it in detail.

We feel that the study of the present operator ideals is important
of various reasons; the present setting enables us for example to make
heavy use of the isomorphism theory of Banach spaces in problems con-
cerning radonifying operators. Also we feel that the investigation of these
operator ideals can be useful in the Banach space theory itself, f. ex.
in problems concerning subspaces of .IL,-spaces.

We now wish to indicate in greater detail the arrangement and the
results of the present paper.

The Sections 1 and 2 are considered as preliminary sections. In
Section 1 we give some definitions, notation and some elementary results

* The present work in essentially the author’s Ph.D- thesis, written at the
Institute of Mathematics PAN, Warszaw, Poland, under the supervision of professor
A. Pelezyrisli. A few additional notions and results are included in order to make
this paper more self-contained.
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concerning Banach space theory and certain operator ideals, defined
by some summability properties of the operators in question with respect
to unconditional bases. In Section 2 we state some facts on Banach lattices
and prove a number of theorems on these, necessary for the study of the
operator ideals, defined in the beginning. We end the section by giving
an alternative proof of a lattice characterization of L,-spaces due to
Tzafriri; this result is very useful for us in Section 5.

In Section 3 we consider certain families of bounded and absolutely
convex subsets of Banach spaces called ideal families, and we show how
it is possible to define an operator icdleal with the aid of such a family,
and we investigate the basic properties of such an ideal. It turns out
that if X is a Banach lattice, then the family of all symmetric order inter-
vals in X is an ideal family, and the corresponding ideal is the Schwartz
ideal determined by X. Though we are not going to investigate these
families in the sequel, we have included this section to indicate, that
the way we have constructed the Schwartz ideals above is only a special
case of a more general construction of operator ideals, a construction
which seems to be interesting to study in detadil.

Section 4 is devoted to the detailed study of the Schwartz ideals
defined in the beginning. We show for example that if the lattice structure
an X is defined by an unconditional basis {z,} in X, then an operator
is normable by X, if and only if its adjoint has certain summability
properties with respect to {z,}. Later we show that under rather mild
restrictions on the Banach lattice X an operator is normable by X if
and only if the adjoint operator satisfies certain summability conditions
with respect to cvery sequence in X, consisting of mutually lattice disjoint
elements of X. This theorem is very important since it reduces the general
case to the much simpler case above. It implies f. ex. that an operator
is normable by L,(u), 1 < p < oo, iff it has p-absolutely summing adjoint.

We also show by using the “principle of local reflexivity” that in
theorems of the nature as the above cited it is possible to interchange
the role of the operator and its adjoint. We end the section by discussing
order bounded operators from a Banach space E into a Banach lattice
X ; we prove for example some theorems on compositions of order bounded
operators with weakly compact operators; these theorems are all derived
from a theorem proved here, which provides a kind of “universal” proot
for all theorems of the type “weakly compact operators composed with
an operator from a nice operator ideal”. (f. ex. weakly compact operators
composed with p-integral ones as considered by Persson).

In Section 5 we consider the case, where the Banach lattice in question
is a Banach lattice of some meagurable funetions on a probability space.
We show for example a representation theorem for order bounded opera-
tors in that case, a theorem which enables us to find the connection between



Introduction 7

radonifying operators and Schwartz ideals, as we have already mentioned.
This connection enables us to formulate the Schwartz duality theorem
for general Banach lattices in the language of Schwartz ideals. We end
the section by proving that the validity of this theorem characterizes
the I,-spaces, 1< p << oo, among Banach lattices.

In Section 6 we consider the space I,(0,1), 1 < p < oo, where the
lattice structure is defined by an unconditional basis in the space. Our
main theorem says that if {#,} is an unconditional basis in L,(0, 1), p > 2,
then an operator is normable by {2,} if and only if its adjoint is 2-abso-
lutely summing.

For 1 < p < 2 we have not been able to describe the Schwartz ideal
determined by an unconditional basis in I,(0, 1), but we indicate that
the answer is far from being as simple as above. We conclude the section
by discussing some open problems, all of which are more or less connected
with the one mentioned above.

Section 7 is devoted to some auxiliary results and open problems
in the general theory.

Acknowledgement. I would like to thank professor A. Pelezynski
for his kind advise, for many stimulating conversations during the prep-
aration of this work and for his arranging of my stay in Poland. Also I
will thank dr. S. Kwapien, who originally drew my attention to the
present subject, and mgr. P. Wojtaszezyk for their willingness to discuss
‘the subject with me.

Finally I would like to take this opportunity to express my gratitude
to professor W. Zawadowski and mgr. H. Karwowski for their extreme
helpfulness towards my family and me during our stay in Poland.



Section 1

NOTATION BASIC FACT AND PRELIMINARY RESULTS

In this paper the letter N will stand for the set of natural numbers,
R’ the set of reals and €' the set of all complex numbers.

All vector spaces are assumed to be either over R’ or (', and when
it is of no importance to distingnish we shall simply use the term “vector
space over the scalar field”.

‘We ghall call 2 function f from a measure space (2, &, u) into a Banach
space X u-measurable if it is measurable in the sense of [9].

If 2 is a topological Hausdorff space and x> 0 is a finite Borel
measure on, £2, then u is called a Radon measure, if u(A4) = sup{u(K)|
| X< A, K compact} for all Borel sets A = Q. If Q is a topological Haus-
dorff space, x is 2 Radon on 2 and X is a Banach space, then it-follows
from the Lusin theorem (for a proof see [14], Theorem 7, page 203), that
a function f: 2 - X is u-measurable (in our sense), if and only if there
is a sequence {K,} of compact sets so that u(H,)t x(R2) and f restricted
to each XK, is confinuous.

The following notation for special Banach spaces is used:

If 1<p < oo then I, denotes the space of all p-summable scalar

sequences {a,}, equipped with the norm [[{a,}l, = (> la,*)'?. 1, deno-
n=1

tes the space of all bounded scalar sequences equipped with the su-
premum norm, and if 8 is a compact Hausdorff space then O(8) denotes the
space of all scalarvalued continuous functions on S equipped with the
supremum norm. ¢, stands for the space of all sequences of scalars tend-
ing to zero, equipped with the supremum norm.

Further if (2, &, u) is a measure space then L,(u), 1 < p < oo, stands
for the space of all equivalence classes of scalarvalued u-measurable
functions f for which [ |f¥du< co and the space is equipped with the

2
norm |[ffl, = ([ If1Pdu)®. L,(x) is the space of all equivalence classes
2
of essentially bounded u-measurable functions, cquipped with the norm
Iflles = esssup |f(s)|-

5e¢N
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Let X and Y be Banach spaces. When we use the term “operator
from X to ¥” we shall always suppose that the operator in question is
linear; however we do not suppose continuity of the operator unless it is
explicitly stated. The space of all bounded operators from X to Y is
denoted by B(X, ¥) (B(X), if X = ¥).

By an isomorphism from X to ¥ we mean a bounded one-to-one
operator from X to ¥ with closed range. We ghall say that X and ¥ are
isomorphic, if there is an isomorphism of X onto ¥; in this case we
define the distance d(X, Y) between X and Y as:

d(X, Y) = int{)T§ |1T7|| T isomorphism of X onto Y}.

X and Y are called isometric, if there is an isomorphism 7' of X onto
Y, so that | T} |\ T~ = 1.

A sequence {z,} in a Banach space X is called a basts, if to every
element xe X there is a unique sequence of scalars {#,}, so that

r = Ztnwn.
]

A sequence {z,} in X is a basic sequence, if it is a basis in its closed
linear span [#,]. If {z,} is a basis in X, then the sequence {a}} c X%,
defined by aj(x) = 0y, is called the sequence biorthogonal to {z,}.

A sequence {z,,} in X is an unconditional basic sequence, if it is-a basic
sequence and every expansion in it converges unconditionally.

If {z,} is a basis in X, then a sequence {y,} = X is called a block
basic sequence with respect to {z,}, if there exists a sequence {#,} of scalars

and a sequencep{pn} of natural numbers p, < Py, # =1, 2, ..., 0, = 0,
n+1
so that y, = D ., for all ne N’
k=p,+1
The followin:c;r proposition on basic sequences is due to Pelezynski

and Bessaga [4].

1.1. PROPOSITION. A sequence {x,} in a Banach space X is a basio
sequence, if and only if there is a constant K > 1 so that for every pair (p, 9)
of natural numbers, p < q, and every g-tuple (14, ..., t;) of scalars the follow-
ing inequality is satisfied:

& | 3 || < X | 3t
n=]1 ne=l

A sequence {z,} = X is an unconditional basic sequence if and only
if there is a constant K > 1, so that for every pair (p, q) of natural numbers,
p<q, and giuples (L1,...,%); (&1, €2y .-y 8 l&l =1, ¢ =1,2,...,¢
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the inequality

@ | 3 et < 2] 3t

Numl

18 valid.

The infimum of all constants, which can be used in incquality (1)
is called the basis constant of {,}, while the smallest possible constant,
which can be used in (2) is called the unconditional constant of {m,}.

A basis {wn} in X is called boundedly complete, if for every sequence
{t,} of scalars 2, 1,2, is convergent whenever the set {” Zt ke N '}

=1
is bounded. {z,} is said to be a shrinking basis if the sequence {zp} = X7,
biorthogonal to {z,} is a basis of X".

The following proposition is due to James (for a proof see [6])

1.2. PROPORITION, Let {z,} be an wunconditional basis im X. {w,} is
boundedly complete if and only if X coniains no subspace isomorphic to ¢,.

{w,} s shrinking if and only if {®,} contains no subspace isomorphic
o 4.

If {z,} and {y,} are bases m X and Y respectively, then {x,} is equl-

valent to {y,} if the sequence E t, %, converges in X if and only if Z‘tn Yn
converges in Y. =1 n=1
Finally a seminormalized basis {z,} i3 a basis so that 0 < inf |z, ||
"

< sup |, < oo. {@,} is a normalized basis if |lz,| = 1 Tor all .

1.3. DEFINITION., We shall gay that a Banach operator ideal < is
given, if for each pair X and Y of Banach spaces there is a linear subspace
& (X, ¥)of B(X, Y)and anorm ay y on# (X, ¥) turning it into a Banach
space and so that the following conditions are satisfied:

(i) For every Tes/ (X, Y), |IT| < ax,(T).

(ii) If B, ¥, X and Y are Banach spaces and S¢ B(H, X), Te (X, Y)

and VeB(Y,F), then VISe (K, I") and

o, w(VIS) < ISI [Vllax,¢(T).

(ii) If Te B(X, Y) is finite dimensional then Te 7 (B, F).

Let now X be a Banach space with an unconditional basis {z,}.
We are now going to define a Banach operator ideal with the aid of this
basis.

1.4. DEFINITION. Let E and F be Banach spaces. An operator T
¢ B(E, I') i3 called {,}-absolutely summing, if for all sequences {y,} < E

[-~] (=]
so that Y 9" (y,)®, is convergent for all y*< E* we have that 3 | Ty,ll=,

n=1 nml
18 convergent.
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If ¥ and ¥ are dual spaces, say F = Z; and F = Z;, then T is called
w*-{x,}-absolutely summing if for all sequences {y»} < Z} 50 that 2 yn(¥) 2,

Nl
is convergent for all ¥ Z, we have that 2 ITyx||z, is convergent.
n=1
The following propositions are very easy and we omit the proofs.

1.5. ProposiTION. Let B and F be Banach spaces and Te B(EH, F)
an {z,}-absolutely summing operator. Then there exists a constant K = 0,
so that for all sequences {y,} < E with ) y*(y,)x, convergent for all y*< F*

=l

the following inequality holds:

ey | 2 izynten | < L su | 2./ (¥a)2a -
n=1 flo*li<i
If {x,} is boundedly complete and T <« B(E, F') then T is {x,}-absolutely
summing tf and only if there is a constant KL > 0, so that for any finite set
Y1 Y2y -y Yt S B the following imequality holds

() I Zurynnw (B su | [ 2.«/ (9a) 2
Jly*
Similar statements hold for o*-{z,}-absolutely summing operators.
Let us denote the set of all {z,}-absolutely summing operators from
B to F by I, (B, F). Il (B, F) is readily seen to be a vector space
and if we deflne the function my, \: 1T, (B, F) — R/ U{0} by

T (T) = Inf{K| K satisfies (1)} for T'e ﬂ'{%}(l}, N2

then m , is easily seen to be a norm on Ifi, ,(H, F).
In a similar manner we define the space H{m y(H, F) and the norm
n{z y for dual spaces E and F.

1.6. PROPOSITION.

(i) The class I, , of all {w,}-absolutely summing operators is Banach
operator ideal.

(ii) For every pair E and F of dual Banach spaces IT{‘:.:;}(E, F) is
a .Banach space under the norm n{";,,*,

iil) If {@,} is boundedly complete then Iy (B, F) = HE,','}(D )
for a'n,J pair E and F of dual Banach spaces, and my)< @y }gKn{z"}
where K 1s the unconditional constant for {x,}.

In case {x,} is the unit vector basis of I, 1< p < oo, we shall use
the term “p-absolutely summing operator” instead of “{z,}-absolutely
swmiing operator”. These operators will play an important role in the
present paper and for a detailed study of them we refer to Pietsch [25]
and Persson and Pietsch [24].



Section 2

SOME RESULTS ON};BANACH LATTICES

We assume that the reader is familiatr with the notion of a vector
lattice, as it appears in f. ex. ([29], Chapter V). (In this case the under-
lying veetor space is of course assumed to be over the reals.)

& X is a vector lattice under the partial ordering <, and @ and ¥
are elements of X, then we put o v ¥y = sup(z, y) and z A y = inf(z, y).
If 2 < y, then the order interval [w, ¢] is set {ze X | # < 2 < y}; an order
interval of the form [ —2, z], #¢ X and x> 0 is called a symmetric or-
der interval.

A set A = X is sald to be order bounded, if it is contained in some
order interval. The vector lattice X is called order complete, if every order
bounded set has a lowest upper bound (sup) and a greatest lower bound
(inf).

If e X, then we define 2+ = 2 v 0, the positive part of z, and &~
= —(x A 0), the negative part of 2. Clearly # = ™ —a~; the element
lz| = &t +2~ is called the absolute value of =.

A number of relations between the algebraie structure and the order
structure in a vector lattice are valid; for details we refer to [22] and
[29).

We define a Banach lattice X to be a vector lattice with a complete
norm ||+, so that there is a constant K > 1 so that

(%) [lol < lyl = el < Klyll, a,yeX.

The smallest constant, which can be used in (x) is called the lattice constant
with respect to ||-|. If the lattice constant is 1, then the norm is called
a lattice norm. In any Banach lattice X it is possible to find a lattice norm,
which is equivalent to the original norm. Indeed, define a new norm
on X, by

flell] = sup llyl, ®eX
ly<|z|
clearly |||-]]] is a lattice norm and it satisfies

Izl < el < Kllwl, ®eX.

where K is the lattice constant relative to |- ||.
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In the sequel, when we use the term “Bamnach laftice X', we shall
assume that the given norm in X is a lattice norm. We do that with one
exceplion, namely the one we explain now:

If X is a Banach space over the reals with an unconditional basis
{z,} and biorthogonal sequence {#}, then X is a Banach lattice under
the partial ordering z < v if ) (2) < @} (y) for all ne N

It is easy to see that the lattice constant in this case is the same
as the unconditional constant of the basis. When a Banach lattice has
been defined in such a way, we find it more convenient to keep the original
norm instead of going to the lattice norm.

A directed subset A of a Banach lattice X is a set with the property
that if z and y are in 4, then thereis a z¢ 4 with 2 < zand y < 2. A directed
get 4 can be considered as a net (generalized sequence) with the identity
in A as the indexing map, therefore when we say that a directed set in
a Banach lattice is convergent, we simply mean that it converges, consid-
ered as a net.

2.1. DEFINITION. A Banach lattice is called boundedly complete,
if every norm bounded directed set is convergent.

'We recall that a subspace M of a vector lattice X is called a sublattice,
if 2, ye M implies # v ye M. Itis easy to see that a Banach lattice always
canonically can be imbedded into. its double dual as a sublattice.

The following proposition gives a characterization of boundedly
complete Banach lattices. The equivalence (a) <> (b) is trivial and that
(b) <> (e) <= (d) follows from Tzafriri ([36], Theorem 14).

2.2. PROPOSITION. If X is a Banach lattice then the following statements
are equivalent:

(a) X 48 boundedly complete.

(b) Every morm bounded increasing sequence 18 convergent.

(¢) No subspace of X 4s isomorphic to c,.

(d) For every directed subset A = X, which is majorized in X** we
have supxed e X (hence supxd ewvists and supxesd = supxd).

Remark. It follows from the above proposition that all reflexive
lattice and all abstract L-spaces are boundedly complete Banach lattices.
Further if X is a Banach space with a boundedly complete unconditional
basis {z,}, then X is boundedly complete considered as a lattice under
the ordering induced by {z,}.

In the rest of this section let X denote a fixed Banach lattice.

Another notion on Banach lattices we are going to use often in the
sequel is the following:

2.3. DEFINITION. X is called of minimal type, if every directed subset
of X, which is majorized, converges.
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A number of theorems on Banach lattices of minimal type may be
found in ([29], Chapter V). However the following proposition and its
corollary, which we are going to use frequently in the sequel seem to
be unknown.

2.4. PROPOSITION, Let X be of minimal type and let K be a compact Haus-
dorff space. Then every positive operator from O(K) into X is weally compact.

Proof. If T: C(K)—~ X is a positive operator and {f,} < O(K), f, <
fre1 <1 for all #, then it follows from the minimality of X, that T'f,
is convergent. From Grothendieck [12], Theorem 6 it now follows that
T is weakly compact. N

2.5. COROLLARY. X is of minimal type, if and only if every order inter-
val in X is weakly compact.

Proof. Suppose first that X is of minimal type and let z¢ X, # > 0.
By the Kakutani representation theorem on abstract IM-spaces [16],
there is a compact Hausdorif space K and a positive operator 7': C(X) - X
mapping the unit ball of C(K) onto [ —=, #]. From Proposition 2.4 it
now follows that [—z, ] is wealkly compact.

Next suppose that every order interval is weakly compact and let
A c X be a directed set, which is majorized. Let z;e A and consider
the set

A, = {we d] < 2}.

If we can prove that 4, is convergent then also A must converge.
Now for every "¢ X", " > 0 we get that 2*(4,) is convergent and
hence 4, is a weak Cauchy net in X; since it is contained in a weakly
compact set, it is weakly convergent to #, say. From the theorem of Dini
([29], Chapter V, § 4.3) we now get that 4, is convergent to zinnorm. M

Remark. Clearly all boundedly complete Banach lattices are of
minimal type, and so are all Banach lattices where the order is defined
by an unconditional basis. An abstract M-space is not of minimal type
unless it is finite-dimensional.

We recall that two elements # and y in X are called disjoint (z | ),
if 2] A Jly| = 0. If A < X then AL denotes the set of all those ¥ ¢ X for
which y | « for all ze A.

2.6. ProrosITION. If {2,} < X s a sequence of mutually disjoint
element then {®,} is an unconditional basic sequence in X with unconditional
constant 1.

Proof. Let p and ¢ be natural numbers with p < ¢ and let (f,, 25,...
ceyb)e RY (&g, 85y ..., 8)e R with |g| =1, 7 =1,2,...,4q.

Then we have:

D yi
| D) cataa| = D leal Htal o) < 3t bl = |Zg tat
n=1

n=1 =1 n=1
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and hence

q
<[tz =
n=1
Remark. The proof of Proposition 2.6 also shows that if {z,} € X
is a sequence of mutually disjoint elements then the sequence {|,)} and
{x,} are isometrically equivalent basic sequences.
The next proposition is very usefull for us in the sequel

2.7. ProPoSITION. Let X be of minimal type and let {m,}, @, >0
n=1,2,..., be a sequence of mutually disjoint elements of X. Denote
span{#,} = [x,].

Then the order in [x,], defined by the unconditional basis {xz,} agrees
with the order induced by X.

Furthermore, if A < [z,] and A. is order bounded in X, then A is order
bounded in [»,] as well and supxAd = supy ;4.

Proof. Let {z)} < [#,]* be the sequence biorthogonal to {z,}.

Since X is of minimal type X is also order complete, hence for each
ne N there exists a bounded projection P,: X — x-+ so that

P
“ 2 entnmn
n=1

0<Pr<g forallzeX, x>0

(see [29], Chapter V, § 7.3).

If now ze [,), ¢ > 0, then P,x > 0 for all ne ¥ but since the x,’s are
mutually disjoint we get P,z = z;(z)2, and hence x,(z) > 0.

Since clearly a;(x) > 0 for all » implies # > 0 we have proved that
the two orders agree on [x,].

To prove the second assertion let first # and y be is X; we wish to
prove that ¢ v ye¢[2,]. Clearly it is no restriction to assume that z > 0
and y > 0. Put 2 = supx(#, y). Then for each ne N':

(@), <r<Ke ay)e,<y<z

and hence
max (2, (%), @, )z, <z for all ne N’

and therefore since the #,’s are mutually disjoint.

SUD(, (@, Y) = D) max (z,(a), 2, (4))7, < 2
Nl
from which we conclude that supy (=, y) = supx(s, y).

Using the above we easily get that the statement holds for a finite
set of elements; therefore to prove it for an arbitrary order bounded
(in X) subset of [2,] it is enough to show that if 4 < [,] is a direccted
set, which is majorized in X, then supy4 e [#,], but this follows trivially
from the minimality of X and the fact that [«,] is closed in X.



16 On Banach ideals determined by Banach lattices

2.8. DEFINTITION. X is said fo have sufficiently many disjoint elements
if for auny finite dimensional subspace F = X and any &> 0 there is an
operator Te¢ B(#H, X) so that

(i) llz—T2| < ¢z for all xeB.
(i) 7’ has a representation of the form:

Te = Zw;(w)wm ze D

and where {&}}t_, = B and {#,}f.,<c X, 2, | @, for n #m.

2.9. PROPOSITION. If X is order complete then X has sufficiently many
disjoint elements.

Proof. Let ¥ = X be a finite dimensional subspace of X and let
e> 0 be given. We can then choose w,e X with 25> 0, |#|| = 1 so that

(1) T = span[ —z,, 24]-

Let us denote span[—aq, %] by X_, 5 When it is equipped with
the norm having [—a,, %,] as unit ball and let I: X , ., — X be the
formal identity map.

When equipped with the order induced by X, X_, ., is readily
seen to be an abstract M-space, hence there is a compact Hausdorff space
K and & lattice isometry U of O(K) onto X_; .. It is easily seen that
the order completness of X implies that of X_, ., and therefore K is
stonian (see f. ex. [2]).

If & denotes the family of all indicator functions for clopen sets
in K, then from the above we infer that

(2) spane = C(XK).
It is readily checked that if A, Be & with AnB =@ then
(3) IU(]'.A.) A IU(IB) = g-

From (1) and (2) we get that there exists a finite dimensional operator
8: B - C(K) with a representation of the form

(4) Sw =2w}'(w)14i, ze B

Tl

where {2}, @3 ..., %} S B* and {4;] ¢ =1,2,...,n} = & with 4,n4,
=@ for ¢ # j and so that

() 18— T I Y @)||| < e, we B
(Ili*]ll denoting the sup-norm in O(K)).
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If T: B#— X is defined by

(6) Ty = Zm HIU(,), @k

=1

then T is of the required from and
(7) |To—al) = \LT(U I e — So)ll < I (| O\ellz] < el

for z¢e . W

The final theorem we are going to prove in the present section gives
a lattice characterization of the spaces L,(u) 1 < p < oo and ¢,(I"). The
result is due to Tzafriri [35], who proved it with the aid of boolean algebras
of projections. However, we would like here to give an alternative proof,
which seems to be a little shorter and more direct.

2.10. TeErOREM. Let X be a Banach lattice of minimal type, so that
there 48 a p, 1 < p < oo with the property that every mormalized sequenoce
consisting of mutually disjoint elements 48 equivalent to the unit vector basis
of 1,. Then there is a measure space (2, %, u), so that X is lattice isomorphic
to Ly (u).

If every mormalized sequence consisting of mutually disjoint elements
is equivalent to the unit vector basts of ¢,, then there is a set I'y so that X is
lattice isomorphic to co(I).

Before we can prove the theorem, we need the following lemma,
which for the case 1 < p < oo is due to Tzafrivi [35].

2.11. LeyvmA. Let X be a Banach lattice satisfying the conditions im
the theorem. Then there are positive constants K, and K, so that for any finite
or infinite sequence {x,} of mutually disjoint elements we have

| X @l < (3 1oal?)” < Eof] Y
7 n n

(]| o] < suploalis Kol| Yan||  if 2 = o).

Proof. The right inequality can for 1 < p < oo be proved as by
Tzafriri [35]; for p = oo it is trivial.

To prove the left inequality let # denote the class of all finite sets
of normalized, mutually disjoint elements of X, each Fe#% Dbeing indexed
in some way. If e X we let P, denote the band projection onto the band
generated by x (see [29], Chapter V). For Fe &, F = {2, L, ..., Z,} 1ot
Tp: 1,—span F be defined by:

n
Trpa = ) a(i)x;, acl,.

BU
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If we can prove that sup [Tzl << oo we are done; hence suppose that
e #
this is not the case. By induetion we can then construct an increasing

sequence {n;}, 7, = 0, of natural numbers, a sequence {a,} of reals and
a sequence {®,} < X of mutually disjoint normalized elements so that:

41
(d) (- > 25k =0,1,2, ...
a=npt+1
(id) Hoodmitt il <1, % =0,1,2,...
ﬂ‘k
(1ii) i}:g”(I—-gP%) Te N =o0, k=1,2,...

Suppose gy ...y Mgy Baye.ny By, a0A CPRRTE have been defined
g
to satisfy (i), (ii) and (iii) and put an =T1— ZP . By (iii) we can then

=1

find an FieF so that ||Q, Ty, ll > 25"+ 1,
Since IlanTFII< ,E IleQn,,TFHHI ZF P)Q, Ty| for FeF, we
Tely

get by (iii) that there 13 an zq¢ Iy, so that

@) mel(r— 3 Pe)@nTr] =

(if sup (T — "1'@* P,)Q, Tyl = oo, then we just choose w, arbitrarily in
F,) Put F, —Pl\{wo} ; clearly
(2) 1@, Tyl = > 9+,
Let Fz = {Unya1) Ynga2r - -3 Yny, ) o0d define
5 = Qn Y ’
1@, ¥l

Clearly these elements are mutually disjoint and contained in {z,, ...

= 'n/k+1,' 'n,,:—l—2, ey 'nk+1.

oy T}
By (2) there is a set {b,}zk5L,, = R', so that
L TRl g1
(3) P Y 0,0 a] = D 09, vz,
n=ng+1 nnnk+1
(4) Bt ally << 1
tlélef;ne Wy, = bp @, Yull 7 = my+1, ..., %, Since 1€n, Yl <1 we get
a

(5) @bl < 1
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Further from (1) we get

n

Lo X ] +1
sug" (I— ng,: Prn) TF" - i‘j};" (Q"’k_ n_ﬂZkLPzn) TF"

Fe )
0t 2l 2] =

This completes the induction.
Define now

6, = @27 %1

From (ii) it follows that {c,}el,({c,}ec,) on the other hand from (i) it

for iy <n<L Mgy, k=1,2...

o
follows that )’ e,x, is divergent, thus contradicting the assumption of

n=1

the lemma.

Proof of Theorem 2.10.

Case 1. Assume that X has a Freudenthal unit z,, ||z = 1 2> 0
(i.e. X = @[o, @,], or equivalently, since X is of minimal type, @, has
the property |z] A &, =0 =2 =0, see f. ex. ([29], §7.7)).

Define

Ay ={eeX| 0 e @y, €A (2,—e) =0}.

It is easy to see that &y is a boolean algebra, and hence using the
Stone representation theorem (see f. ex. [32]) we can identify it with the
algebra % (£2) of all clopen subsets of some 0-dimensional compact set Q.
In the following we shall not distinguish between &7y and F(R2).

It follows from the above lemma that to each partition @ = {e,, €,, ...
...y 6y} Of Q into finitely many disjoint clopen subsets there is an isomor-
phism 7': span@ — 1} so that

(1) K llzl < ITozll < K, llel, 2« spang).
€.

(2) Ty (|]el]|) = 04, (6; the ¢’ th unit vector of 7).
4

If z¢ spanse/y, then we define for each partition @ of the above kind

(Tozll if @espan@,
0g(z) =

0 else.

If @, and @, are partitions of 2 as above then we say that @, is finer
than @, and write @, X @,, if every element of @, is the union of some
elements of @,. Clearly =3 defines a partial ordering in the family of all
partitions of £ into finitely many disjoint clopen sets, which is readily
seen to be filtered upwards.
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Define
II =0, K]{mespmdxl llzl <1}

IT is compact when. equipped with the product topology. We define smye II
by
mo(®) = g(®), |l <1, wespan Fx

{mq} is a net on II and hence we can find a convergent subset; let us for
simplicity assume that {74} itself is convergent. Since for every @« span «/x
there is a partition Q,,so that for all partitions ¢, @x =3 @ we have zespan@
and hence pg(r) = [Tl we infer that {go(®)} is convergent for all
@espan &x. Pub

o(z) =limpy(®), @espan oy.
It follows from the above that
Kol < o(2) < K, |izll, 2espan o/x.

It is easy to check that g is in fact a norm on span &/.

It 2, yespan &y with || A |y| = 0, then there is a partition @, so
that @, yespan @ for all @, @, 3@, and disjoint there, but this means
that

0g(@+y)? = |To(@+yl° = Toall” + ITeuyl® = do(@)* + 0o (¥)*
and hence
(*) e(@+y)" = e(@)"+o(y)’

there the pth powers mean max, in case p = oo). Since sp—aﬂ Ly =X
if follows that ¢ can be extended by continuity to a norm on X, equivalent
to ||'|l. From (*) together with a result of Bohnenblust [B] we infer that
if 1<p< oo, then (X, o) is lattice isometric to L,(u), where p is the
measure on the o-algebra generated by % (£2) given by

ule) = e(e)®, ee Ax.
If p = oo, we get from [5] that there is a set I'y so that (X, o) is lattice
isometric to oo(I). '
The general case.

Let {z, | ae I} be a maximal set of mutually disjoint elements (such
a set exists by Zorn’s lemma). Define

_Xa =:L‘cfj', aeI.

Since for each ae I, #, is a Freudenthal unit in X,, we get by the first
part that each X, is lattice isomorphic to some L,(u,) (Some ¢o(l}), if
p = oo) and using the above lemma again, we observe that there is
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a constant A1 and lattice isomorphisms 7', of X, onto L,(u,) (onto ¢o(I,))
with |7, 171 < M. Using our assumption on X and the fact that X is
the ordered direct sum of the X./’s we get

X () B ) 1< < o ond

XEE*E‘B(ZL)%“‘JE" (Z c(,(rﬁ,))co for p = co.

This finishes the proof, since the latter spaces are lattice isomorphic to
L,(u) for some u, respective ¢,(I") for some I°

2.12. CoROLLARY. Let X be a Banach lattice of minimal type, in whioh
all normalized sequence consisting of mutually disjoint elements are equiv-
alent. Then either there is a p, 1 < p < oo and a measure space (2, &, u)
so that X is lattice isomorphic to L,(u) or there is a set I' with X lattice iso-
morphic to cy(I).

Proof. The assumptions imply that if {z,} is a normalized sequence
in X, consisting of mutually disjoint elements, then every normalized
block basis with respect to {,} is equivalent to {z,}; hence {x,} is perfectly
homogeneous and by a theorem of Zippin [37] either thereisa p, 1 < p << o0
so that {,} is equivalent to the unit vector basis of 7, or {z,} is equivalent
to the unit vector basis of ¢,. Obviously we get the same p for all sequences
{z,}, and we can apply the above theorem. N

Remark. It can be shown that if 1 < p << oo, then the other assump-
tions in Theorem 2.10 already imply that X is of minimal type, hence
this assumption is dispensable for finite p. However we only need to
apply the theorem to cases, where we know that X is of minimal type,
and therefore we do not go into that. Note that minimality is not dispens-
able, if p = oo.



Section 3

IDEAL FAMILIES OF SETS IN A BANACH SPACE AND
SCHWARTZ OPERATOR IDEALS

In this section let X denote a Banach space over either the reals
of the complex numbers.
It B is a non-empty, bounded, closed and absolutely convex subset

of X we denote by Xz the space U nB equipped with the norm having

B as unit ball. It is easily seen that XE is a Banach space. If Iz: Xz — X
is the formal identity map, then the number ||[I|| will be called the radius
of B.

3.1. DEFINITION. A family # of non-empty, closed, bounded and
absolutely convex subsets of X is called a pre-ideal family, if the following
conditions are satisfied:

(i) VAeZ,VAi>0 14 ¢Z,
(i) VA, Be&, A+ BeF,

(iii) I {4,} =& and 2‘ Lyl < oo, then there exists @ Be#, so
that =l

=) k
IZsl < D)Ly, and D4, B for all ke V.
n=l n=1

3.2. DEFINITION. Let &% be an pre-ideal family in X, and let Z be
a Banach space. An operator T': E — X is called &#-bounded, if there is
an Ae#, so that Toe A for all we B, ||| < 1.

The set of all #-bounded operators from E to X will be denoted by
Bg(H, X), and if Te B5(E, X) then we define the number b (T) by

be(T) =inf{|I4)|l| Txe A for ||2|<1 and AeF}.

Remark. It is easy to see that if the pre-ideal family & contains
a neighbourhood of 0 in X, then %, (E, X) = B(E, X) and bz (T) = | T
for all Te B(E, X).

3.3. THEOREM. Let # be a pre-ideal family in X and let I be a Banaoh
space, then:
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(i) Hvery operator Te Bs(H, X) is bounded and ||T| < bgs(T),
(i) B5(H, X) is a vector space,
(ili) by 18 @ norm on Bx(H, X) turning it into a Banach space.
Proof. (i). If Te #4(F, X), then there is an A%, so that I’ admits
the factorization
Ry, ¢
N\
T /{:1
X4
where ||T,]| < 1. From this (i) follows immediately.

It is trivial that #s(FE, X) is a vector space and that bs iS & norm
on #4(E, X), so let us prove the completeness of by. In view of (i) it is

enough to prove that if {T,} < #+(H, X) so that ) bs(T,) << oo then
) fim]l
the operator T = } T, is #-bounded and

=1

b (T) < Db ().

Nl

Hence let {T,} be a sequence with the above properties and let s > 0 be
arbitrary. Choose a sequence {4,} = & so that

Iy | < bg(Tp)+e-27"  for ne N,
T,xe A, for all ne N’ and all ze H, |z < 1.

Then 3 (I || < ) bs(T,)+¢ and hence from property (iii) of # we can
nesl n=l
find a Be#, so that

0

Mall< DIl

n=1

k
D T.xeB forall ke N' and all z¢ B, [z < 1
n=1
and hence since B is closed Tze B for all ze B, |z|<1; Furthemore,
by the above inequalities we get

==

b (T) < W5l < D) by (Tw) + 2
n=1
which proves the statement, since ¢ was arbitrary.
3.4. DEFINITION. A pre-ideal family & in X is called an ideal family
if for every xe X there is an 4 %, so that xe 4.
Let now ¥ and F be Banach spaces and let # be an ideal family in
X; we introduce the following concept.
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3.5. DEFINITION, A linear operator 7': B — F is called wnormable
by &, it for any Dbounded linear operator 8: F -+ X, Sole #4(E, X).

The set Sg&(H, F) of all linear operators from F to F, which are
normable by & is called the Schwartz ideal determined by &.

If Te #&(FH, F) then the number

$#(T) = sup {bx(80T)| 8¢ B(F, X), [IS]| <1}

is called the Schwartz norm of T.

Remark. We can of course also define & (H, F) for a pre-ideal
family #, but it is easy to see that L& (F, F) # {0} if and only if & is
an ideal family.

3.6. THEOREM.

(i) If TeS5(B, F) then sz(T) << oo.

(i) If Te S (B, F) then T is bounded and |T|| < sg(T).

(iil) L& (H, F) is a vector space and $g 18 a norm on L g(H, F), turning
it into a Banach space.

(iv) If @& is another Banach space then T'e Pz (¥, F') and S< B(F, G)
imply 8T e P& (EB, @) and 35(8T) < |88z (T). Te o (E, F) and S: B(G, H)
imply TSe P& (G, F) and sx(T8S) < ||S|\ss(T).

Proof. Let T« ¥ (I, I'). To prove (i), we must show that the op-
erator Ap: B(Il, X) > %5 (H, X) defined by

Ap(8) = SoT, 8SeB(F,X)
is bounded.
A is clearly continuous, when %4 (H, X) is equipped with the opera-
tor norm, but since this norm is coarser than bg it follows that A, is

closed. The closed graph theorem and Theorem 3.3 mow show that A,
is bounded.

To show (ii) let Te 5 (B, F) and let y*e F*, |y*| =1 and z¢ X,
[l =1 be chosen arbitrarily. Define S§: ¥ — X by

Sy = y*(y)=.
Olearly |IS)| < 1 and if e B, |z| <1 we get:
ly*(Tz)| < 18T%) < bz (8T) < s¢(T)

which proves (ii), since y* was arbitrary.

(iii) is trivial, except perhaps the completeness of sz, but this is an
easy consequence of the similar statement on bz in Theorem 3.3 and
the definition of sg.

(iv). Let Te #5(E,F) and SeB(F,Q); for an arbitrary operator
8¢ B(Gy X) we get

(8,08)0Te B4 (H, X)
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hence Sole 5 (H,F) and

N .
$5(8T) = sup bg(8,080T) = ||8]| sup bs (Slo o.’l') < |88 (T).
I8 ll<1 Isyis N}
If TeF5(B, F) and S<B(G, E) then we have for §,¢B(F, X),
IS:1 <1, that 837« Z&(F, X) and hence §8,78¢ #4(F, X). This shows
that T8 e F (G, X) with

85 (T8) = sup bg(8,T8) < |ISlisg(T)
ISyt

which proves the assertion. W

3.7. DeFINITION. Let X and Y be Banach spaces and %, and &,
ideal families in X and Y respectively. &, is said to be coarser norming
that #,(#, finer norming than &#,) if for any pair E, F of Banach spaces
we have

(i) 8g,(E, F) < L& (B, F).

(ii) There is a constant K > 0 so that

$3,(T) < Ksg,(T) for all Te Py (B, F).

F, and &, are said to be equinorming, if %, is both coarser and finer

norming than #,.

We shall in the sequal.often see examples of ideal families which
can be compared in the above sense.

Let us end the present section with the following proposition

3.8. PrOPOSITION. Let & be an ideal family in a Banach space X.
The following statements are equivalent.

(i) For every Bamach space B B(H,X) = SLz(F,X).

(ii) For every Banach space E B(B, X) = B&(H, X).

(iil) &# contains a 0-neighbourhood of X.

Proof. (i) = (ii) is clear, since Fz(E, X) = #z(H, X).

(i) = (iii) follows easily from the definition of #s(F, X) since (ii)
implies that the identity in B is #-bounded.

(iii) = (1) follows directly from the definitions.



Section 4

SCHWARTZ IDEALS DETERMINED BY A BANACH LATTICE

In this section we shall assume that all Banach spaces in question
are real Banach spaces.

If X is a Banach lattice and & is the family of all symmetric order
intervals in X, then it is easy to see that # is an ideal family in X. We
shall denote the Schwartz ideal determined by # by &x instead of L,
when no confusion about the order structure in X can be made. Also if
E and F are Banach spaces and T ¢ ¢ (FE, F) we shall say that T'is normable
by X, and we denote the Schwartz norm of 7' by sx(T) ().

If X is a Banach space with an unconditional basis {»,}, then X is
a Banach lattice under the ordering discussed in Section 1, and we shall
in that case use the notation & , for the Schwartz ideal, s, for the
Schwartz norm, and use the expression “7T normable by {z,}” e.t.c.

Our first proposition is a eorollary of Proposition 3.8 and the Kaku-
tani representation theorem for abstract IM-spaces.

4.1. PROPOSITION. If X is a Banach lattice, then the following statements
are equivalent.

(i) For every Bamach space H, B(E, X) = x(E, X).

(ii) For every Banach space E B(I, X) = Bx(E, X).

(iii) There is a compact Hausdorff space 8, so that X is order isomorphic
to C(S).

Proof. It is enough to prove that (iii) of 3.8 is equivalent to (iii)
here. If (iii) of 3.8 is assumed, then there is an z< X, 0 < @, so that X
is order isomorphie to X;_, . The latter space is casily seen to be an
abstract M-space with unit and hence by the Kakutani theorem on
representation of such spaces [16], we get that X;_,, is order isometric
to O(S) for some compact Hausdorff space S. Clearly (iii) implies (iii)
of 3.8. W

Before we treat the case of general Banach lattices let us loolk a lititle
on the unconditional basis case.

(*) We shall use the term order bounded operator instead of #-bounded operator
and write % x instead of F&.
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About this case we have the following theorem.

4.2. THEOREM. Let X be a Banach space with an iunconditional basis
{z,} with biorthogonal sequence {22} and let B and F be Banaoh spaces and
TeB(E, F). Then T is normable by {w,} if and only if T* is w*-absolutely
{@a}-summing, and in this case we have sx(T) = ngy (T*).

Proof. Suppose first that T is normable by {w,} and let (y)} < F*

be a sequence so that »’ Yu ()@, is convergent y e F.
n=1
Let us define

Ay =2y,’:(y)mn for all ye 7.

n=1

Using the closed graph theorem it is readily verified that A is a bounded
linear operator from F to X.
By the assumption on 7' there exists an element ¢ X, so that

(1) |2 (ATy)| < ap(x) for all ne N and for all y« B with |yl <1

From (1) we get immediately: T *yrll < @ (@) for all ne N, and therefore
S T*ynll, i3 convergent.

n=l

It is also easily verified that by, ,(AT) = || 2“ T*yy |z, and therefore
by the definition of s ,

| 22 2ol < 10y (DI = s (D) s0p | Sz 00
n=l A<l "y

which proves that zfy (1) < 8z, (T).
To prove the assertion in the other direction let 4 ¢ B(F, X). Since

Ay = Z(.A*m,";) ()@, for all yeF

n=al

we get by assumption that: Y| T*A4*z)|z, is convergent and
ne=l

(2) 13|12 4% ol < 25, (%) 141,
Nl

Since for all ne IV and all ye B, |ly|| < 1 we have
oy (ATy)| < | T* 4|

it follows that T is normable by {2,}; furthermore, from (2) we get that
S (1) < 7y (T%). W
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4.3. COROLLARY. Let B and F be Banach spaces and 1 < p < oo. An
operator T e B (B, F) is normable by the unit vector basis of l,, if and only
if T* is p-absolutely summing.

We now turn our attention again to the case of a general Banach
lattice. Using the results stated in Section 2 we shall prove that under
rather weak restrictions on the Banach lattice X it is possible to describe
the operators normable by X by certain summability conditions of their
adjoints, conditions similar to those of Theorem 4.2.

In the rest of this section let X denote an arbitrary Banach lattice
and F and .F Banach spaces.

Qur first result in the direction described above is:

THEROREM. 4.4 Let X be of minimal type. If Te P x(E, F) then T
¢ Lz (B F) for any sequence {w,} = X, consisting of mutually disjoint
elements, and

8 (T) < 8x(T).

In other words X is is finer norming than any sequence {z,} of mutually
digjoint elements of X.

Proof. Let {z,} € X so that z, | x, for n * m. Since equivalent
bases are equinorming and since clearly there is an isometry of [#,] onto
[l%,|]1, carrying «, to |z,| for all ne IV, it is no restriction to assume that
z, > 0 for all =,

Let Te #x(B, F) and AeB(T, [z,]). Since by assumption on 7
the set: '

M = {|ATz|| e B, |z <1}

is order bounded in X, it follows from Proposition 2.7 that it is also order
bounded in [,], hence AT is order bounded. Furthermore from 2.7

by (AT) = [Suppe M| = llsupM|| = bx(AT) < ||4]|8x(T)
and from this we get that

Sy (T) < sx(T). W

Remarlk. It is easy to see that the requirement that X is of minimal
type is not dispensable in the above theorem; indeed, let I: ¢, — ¢, be
the identity map, it is clearly normable by 1, but not by c,.

Let us list a few corollares of Theorem 4.4.

4.5. COROLLARY. Let X be o Banach space with an wunconditional
basis {x,}. Then {w,} is finer norming that amy block basic sequence with
respect to {@,}. Further if Te %, 2 (Hy I') and {z,} is a block basis with respect
to {x,} then

S (T) < Es814(T)

when K denotes the unconditional constant of {,}.
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The corollary follows immediately from 4.4; let us just mention
that the entrance of the unconditional constant for {s,} in the above
inequality is caused by the fact that we do not use the lattice norm in X.

Remark. We would like to mention here, that if an operator is
-{x,}-summing for an unconditional basis {z,} then it is also summing
with respect to any block basis sequence of {z,}, hence 4.5 follows from
4.2. However we feel that the picture of the whole situation becomes
more clear if we take it out as a corollary of the more general 4.4 of the
same type.

4.6. COROLLARY. Let X be a Banach space with an unconditional basis
{#,}. If X contains a subspace of 1,, for some p,l = p<< co then every
operator normable by {x,} has absolutely p-summing adjoint.

Proof. The properties of the unit vector basis of 1, and the results
of [4] give that it is equivalent to a block basis of {z,} hence the conclusion
follows from Corollary 4.5. ]

Corollary 4.6 shall be very usefull for us in the sequal.

The next theorem gives conditions for the converse of Theorem 4.4
to hold.

4.7. THEOREM. Let X be a boundedly complete Banach lattice having
the metric approximation property and let Te B(E, F).
The following statements are equivalent.

(i) Te (B, T).
(ii) Te Fp (B, F) for every sequence {x,} = X of mutually disjoin

elements and Supsg ,(T) < oo.
{z,}
(iii) There "ewists a constamt K = 0 so that for oll finite sels {z4, x,, ...

eoey @} of mutually disjoint elements form X and all finite sets {y7, ..., Yn}
< F* we have:

T*y; o < K sup ||g 97 ()

1>

Turther, if Te Px(E, F), then
sx(T) = int{K| K satigfies (iii)} = sups{zn}(.’[')
{mn}

where the sup is extended over all finite or infinite sequences of mutually
disjoint elements.

Proof. (i) = (ii) follows immediately from Theorem 4.4. since cvery
boundedly complete Banach lattice is of minimal type.

(if) = (ili) follows from Theorem 4.2, since every basic sequence
{x,} consisting of mutually disjoint clements is boundedly complete in
the case considered.
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Furthermore from 4.2 it follows that
sups{mn}(T) = inf{K| K satisfies (iii)}.

9L

(iii) = (i). Suppose first that A: F—X ig a finite-dimensional

operator with a representation:
n
2 = Y zp(w)m, for veF

(1) A g (@)@,
where {z}, ..., 25} € F* and @,, #,, ..., , are mutually disjoint elements
from X.

For all ye &, |ly <1 we have:

(2) l47y) = |, 2<T*wk) () = 21 T*a%) (4)] Il

Zn‘nfl’*w I ) = | 2 IT* 5| 2.

=1
Since

| = x4

” 7n |
k=1

we get for every finite subset {y,, ..., ¥,} of the unit ball of E
(3) 1 ATy, v |[ATysl v v |ATy,| < E|4].

T* 5, |l || < s x% (Y) 2y,
e < Kamp| 350

If A: F—» X is an arbitrary bounded finite-dimensional operator,
then it follows from Proposition 2.9 that 4 is a uniform limit of a sequence
of finite-dimensional operators of the form (1); since the lattice operations
in X are continuous it follows that inequality (3) is valid for A.

Let now A B(E, X); since X has the metric approximation property;
these is a net {4, | te I} of finite-dimensional operators with |4,] < |4}
for all te I so that

limd,z = Az for all zeF.
¢

JFrom this it follows that (3) is valid for 4.
Since X is boundedly complete, it follows from (3) that the set

= {4Tx | =)l < 1}

is order bounded in X f01 every Ae B(I', X), hence Te #x(E, F).
Further it follows from (3) that

(4) bx(AT) = [sup Oyl < K4

since sup O, is the limit of the net consisting of all supremas of finitely
many clements from C,; hence

(5) sx(TY < K.
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To prove the last statement let T'e¢ 5 (E, F). From the implications
(i) = (ii) = (iii) it follows that

(6) inf{ K |K satisfies (iii)} = !?u]}_) Sz () < 8x(T).
Tn

Combining that with (5) from the implication (iii) = (i) we get the desired
result. W

Remark. It is easy to see that Theorem 4.7 is still valid if we assume
that F* has the metric approximation property instead of X.

Our first corollary of 4.7 was first proved by Kwapienn [17]; it is
the “functional-analysis version” of a theorem of Sehwartz on cylindrical
measures [31].

4.8. COROLLARY. Let (2, %, u) be a measure space and let 1 < p < oo.
We consider L,(u) as o Banach lattice under the ordering “< a. e.”. If H
and I' are Banach spaces and Te B(H, F), then Te.S”Lp(,,) (B, B if and only
if T* is p-absolutely summing.
Fyrther in that case
st(F)(T) = IL,(T").

Proof. L,(u) is boundedly complete, if 1 < p < oo, and has the
mefric approximation property, so we can apply 4.7. It follows immedi-
ately from Theorem 4.2, that it is enough to consider sequences {z,} of
mutually disjoint elements from I,(u), for which |z,| =1 for all n in
Theorem 4.7.

It is easy to see that every such sequence is 1-equivalent to the unib
vector basis of I, hence the corollary follows immediately from 4.7 and
Corollary 4.3. [ |

From the above corollary we see that Theorem 4.7 is in fact a gener-
alization of a theorem of Schwartz on cylindrical measures stating that
the ideal of p-radonifying operators and that of p-absolutely summing
operators almost coincide.

We shall in the next section study the relation between the theory
developed here and the theory of cylindrical measures 2 little more detailed.

The next proposition we are going to prove can also be taken out as
a Corollary of 4.7 in case X has the mefric approximation property, however
we prefer here to give a direct proof of a formally stronger statement.

4.9. ProrosiTioN. Let B and F be Banach spaces and Te B(E, F).
If T* is 1-absolutely summing, then T is normable by any boundedly complete
Banach lattice X.

Further, in that case we have:

sx(T) < IL(TY).
Proof. Let K denote the unit ball in F** equipped with the "-
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topology. Since T* is l-absolutely summing, there is a positive Radon
measure x4 on K so that

(1) IT* "I < [ 1y** ()| du(y**)
K

and

(2) wE) = II,(T").

Let now X be a boundedly complete Banach lattice, and 4 ¢ B(F, X).
Let us define f: X* - R’ by

(3) flar) = [ 1A% y**|(@*) du(y**).
K

Tt is easy to see that fe X*, f > 0 and that
Il <A™ (K) = |4 1T,(T).
For every a*e X*, 2* > 0 and every < F with |jz) <1 we get

(4) ot (AT)| < |T* A*2| < [ 1(A™y**) (@*)] du(y**)
K

< [ 1A g (@*) du(y**) = f(2¥).
K

Hence identifying X with a sublattice of X** in the canonical manner,
we geb

(5) ATz < f for all z¢ B, |z| < 1.

From Theorem 2.2 it now follows that Te ¥y (E, I).
Further from the same proposition we get

(6) bx(AT) < Ifll < AT (TY)
hence
sx(T) < I (T"). W

Remark. The reason for that we can avoid assuming that X hag
the metric approximation in the above proposition is of course that when
T* is absolutely summing, then we. have an “integral inequality” for
T*, and hence we nced not go to finite-dimensional subspaces of X.

We now state a few other corollaries.

4.10. COROLLARY. Let (2, &, u) be a measure space and let X be a bound-
edly complete Banach lattice. Under these circumstances every. bounded
linear operator from L, (u) into X maps order bounded sets into order bounded
sets.

Proof. Let A« B(Ll(,u), X) and let fe L (), f> 0.
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Let us define T': L (u)— L,(u) by
Tg =f-g for all ge L (u).
It is easy to see that
T*¢ =fg for all ge L (u)

and hence it follows that T™ is absolutely summing. By 4.9 T is normable
by X and therefore we have that the set

A([—f) 1) = AT{ge Lo (p) | llglls < 1}

is order bounded in X.

Remark. Corollary 4.10 was proved by Grothendieck [11] in case
X = L,(v) for some measure ».

In a manner similar to the above we can prove:

4.11. COROLLARY. Let (2,5, u) be a finite measure space and let
1 1
1< p< oo. If p' is defined by ;+ ;’7 = 1, then the formal identity map

of Ly (u) into Ly(u) s normable by Ly, (u)-

4.12. COROLLARY. Let H be a Hilbert space, X a Banach lattice and
TeB(H, X). Then

(i) If T is order bounded then T* is absolutely summing, and hence
TeSy(H, X) for every boundedly order complete Banach lattice X.

(ii) If X is boundedly order complete, then T is order bounded, if and
only if Te Px(H, X).

(iii) If Te S x(H, X), then SoT is a Hilbert Schmidt operator for
every Se B(X, H).

Proof. The only thing we have to prove is the first part of (i), since

the rest then will follow from Proposition 4.9.
If T is order bounded, then there is a compact Hausdorff space K

8o that T admits a factorization
) S ¢
T\x\ /"{';
C(K)

where T, is positive.
Hence T™ has a factorization

X* T+ > E*
N 7
TSN /T
C(EK)*
but C(K)* = L,(u) for some measure x and therefore T} is 1-absolutely

3 — Dissertationes Mathematicae CIX
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summing by a result of Grothendieck (which states that a bounded linear
operator from an L,-space into a Hilbert space is absolutely summing;
for proofs of this see [11] and [18]). N

We now wish to show that it is possible to interchange the role of T
and T% in Theorem 4.7. To do this we need the following lemma, the
proof of which is dependent on the principle of local reflexivity of Linden-
strauss and Rosenthal [19] and it’s strengthened form by Rosenthal,
Zippin and Johnson [13]:

4.13. LEMMA. Let B and X be Banach spaces so that X has the K-
metric approximation property. Let F = H* be o finite dimensional subspace
and let e > 0 and T « B(E*, X) be given. Then there exists a finite dimensional
operator Se B(X*, H) so that

(i) 8*(F*) € X (X canonically imbedded imto X*),

(ii) |T*o*— 8* o] < ela*| for all z*e F,

(i) 8] < K (1 +) 7.

Remark. We shall say that the Banach space X has the K-metric
approximation property, if the identity operator on X can be approximated
uniformly on compact sets by finite dimensional operators with norm < K.

Proof of Lemma 4.13. Since X has the K-metric approximation
property there is a finite dimensional operator Re B(E*, X) so that

(1) ITo* — Ra*|| < ella*]  for a*e F,
(2) B < KT

By the prineciple of local reflexivity [13], Section 3 there is an invertible
operator U: R*(X*)— F so that

(3) IoI<i+e UL,
(4) UIR"‘X‘nE = ldentitry,
(5) 2* UR*2* = (R*#*)(z*) for all 2*¢ F and 2*e X™.

If we define § = U R*, then §* maps E* into X and from (5) we
infer that 8*@* = Rz* for all £* ¢ F. Furthermore from (3): 8] < |RII(1 +
+e)<K(1+e) 1T m

We are now able to prove:

4.14. THEOREM. Let X be a Banach space with a boundedly complete
unconditional basis {w,}.

If B and F are Banach spaces and T e B(E, F), then T* is normable
by {@,} if and only if T is {,}-absolutely summing and in this case.

T (T) < %,,}(T*) < K 3 (T)

where K is the unconditional constant for {a,}.
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Proof. It follows immediately from the earlier results in this section
that if 7% is normable by {z,} then T™* and hence T is {x,}-absolutely
summing, and

S{z,,}(T*) = ﬂ&;}(lﬁ*) 2 g 3 (T).

Assume now that T is {x,}-absolutely summing.
Let first A< B(X*, E) with A*(F*) o X.
I {7, v2) - Y S F* [95II<1 ©=1,3,... then

1) NIV 14T v AT < ) 1T A s e |
n=1

o
< wy(T) sup || 3@l A%y ]| = ey () 14)
1S Rmpen
where {x,} is the sequence biorthogonal to {z,}.
If now 4 ¢« B(E*, X) is arbitrary and ¢ > 0 then it follows from Lemma,
4.13 that there is a net {4,| t< I} of finite dimensional operators from
X" to E so that

(2) Af (B < X for all te I,
(3) Ajy* — Ay*  for all y*e E*,
(4) M < K (1+e) 4]

From this together with (1) it follows that for any finite set {97, ¥5, ...
ey Yr} € F* with [ly;]] <1 we have

ATyl v AT g2l v v AT ] | < Koy (T) 1A -
Hence AT™ is order bounded and
by (AT ) < Ky ((THIA|
and therefore T* is normable by {z,} with:
$e(T) < Emgy(T). W

4.15. COROLLARY. Let X be a Banach space with an unconditional
boundedly complete basis {x,}.

If B and F are Banach spaces and T < B(E, F'), then T is {z,}-absolutely
summing if and only if T™ is {x,}-absolutely summing and in this case

Ty (1) < W(z,,}(T**) < Kmg y(T).

Combining Theorem 4.14 with Theorem 4.7 we get

4.16. THEOREM. Let X be a boundedly complete Banach latiice which
has the metric approximation property, and let B and F be Banach spaces
with Te B(E, F). Then
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(i) T is {m,}-absolutely summing with respect to cvery sequence {2,}
of mutually disjoint elements from X and supmy ,(T) < oo if and only if

T,
T* is normable by X and in that case sx(T*)n= Sup g 5 (T).

T,

(ii) T is mormable by X if and only if T* is normable by X and in that
case sx(T) = sx(T™).

Tn the rest of this section we shall study order bounded operators
a little more closely. In the vest of the section we shall suppose that X is
a Banch lattice of minimal type and ¥ is a Banach space.

Our first proposition is the following:

4.17. PrROPOSITION. If Te Bx(B, X) then T* has the following prop-
erty:

(*) For every boundedly complete Banach lattice Y and every operator
AecB(E*, Y) AT* maps order bounded sels in X* into order bounded set
n ¥Y.

Proof. Since T ig order bounded it admits a factorization
B-t.Xx

h\ /‘/{';

C(K)

for some compact Hausdorff space K, and where T, is positive. By dual-
ization:

X* /a4 E*

o)

Since also T is positive T; maps order bounded sets into order bounded
sets, and since C(K)* is an L,-space the result follows from Corollary
4.10.

4.18. PROPOSITION. If Te Bx(H, X) then T maps weak Cauchy se-
quences into morm convergent ones.

Proof. Let K, T, and T, have the same meaning as in the previous
proposition. Sinee X is of minimal type T, is weakly compact by 2.6
and then by the Dunford—Pettis theorem [9] T, has the property stated.
This finishes the proof.

Using Proposition 4.18 and the theorem of Eberlein we easily get
that if §: I — ¥ is weakly compact and T e #x(E, X) then TS is compact.
‘We are however going to prove a result considerably stronger than this.

A few words about the next theorem. We are actually only going
to use the proof of it in the sequal but we have decided to state it separately
to stress the fact that it is not dependent on lattice theoretical considera-
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tions. As an sole exception in this part of the section the letter X shall
stand for a Banach space in the next theorem (and only in this). We have
done that of notational reasons.

4.19. THEOREM. Let B and X be Banach spaces and K a compact
Hausdorff space. Let 8: E—~ C(I() and T: C(K) > X be weakly compact
operators. Then there is a sequence {A,} of finite-dimensional operators
from E to X so that |4, —T8| -0 for n - oo.

Furthermore there exists a positive ue C(K)* so that the A,’s can be
chosen to have a factorization of the form:

B n > X
V4
% /T
Lo (1)
where S, is a finite dimensional operator and T' is a weakly compact operator

so that T (O) =T(V). U and V denoting the unit balls in L (u), respect-
wely C(K).

Proof. Since T is weakly compact, T is also weakly compact. Hence
by the characterization of weakly compact sets in C(K)* (see [2] and
also Rosenthal [27], Lemma 1.3) there is a positive measure ue O (K)*
so that
(1) T*X* = Ly(p)

where L,(u) via the Radon-Nikodym theorem is indentified with the
subspace of C(K)*, consisting of all measures absolutely continuous with
respect to u.

Let I: L,(u)— C(K)* denote the canonical injection and define
T,: X* — L,(x) by T* = IoT, and put T = T*. By the weak compactness
of T we get that 7" (C(K)™) = X and hence since I* is onto we get
that T'(Le(u)) = X and putting J = Ijgx we easily get T = T'J. Clearly
T is weakly compact and has the properties stated.

Let for each te K 6§, denote the Dirac measure at the point ¢ and
define ¢: K — E* by
1) @(t) = 8%6,.
¢ is continuous from X into (E*, o(E", B)) but since ¢(X) is contained
in a weally compact subset of E*, it is“continnous when E” is equipped
with its weak topology as well. It is wellknown that under these circum-

stances ¢ is p-measurable and hence there is a sequence {p,} of E*-valued
simple functions on K so that

(2) Il (| < 2/l@ ()| < 2118%]  for almost all teK (x)
(3) @ —> @ in u-measure.
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Let us define B,: L(u) — E* by
(4) B.f = [foudp, feIa(u)n =1,2...
Trom the weak compactness of T* we infer that
(6) (TB}, |s)* = BuoTh.

Put 8, = BYp and 4, = T8,.
Let now & > 0 be given arbitrarily. Since 7', is weakly compact there
is an 6 > 0 so that

(6) p(A) < 8 = 31I8*| [ |Tha*ldu < & z*e X* [l < 1.
A

Choosing now the number #, so large that u(C,)< é for all n>>n, where

C, = {te K| lip(t) —@n(B)ll > €}
we get for all ¢ B and all a*e X* with [z < 1, [l#*] < 1.

() Koty TSo— 4,85 =|[-(T10%) (1) (p(8) —pa(2), & dus(d)
[ 1T @)1 o (2) — pu () Ape(2)

e [ I1Tyo*du+e<e(ITI+1),
ENOyp,
Hence [|4, — TS| < £(||T]+-1) for #n > n, and we have proved the assertion.
If X is a Banach lattice of minimal type and B is a Banach space
we denote by Nx(E, X) the closure in #y(H, X) of the finite dimensional
operators. As a corollary of the above theorem we can prove:
4.20. THEOREM. Let B and I be Banach spaces and X a Banach lattice
of minimal type. If Ae Bx(F, X) and B: H > I is a weakly compact opera-
tor then ABe Nx(E, X).

Proof. Since 4 is order bounded and X is of minimal type, 4 admits
a factorization through a C(K)-space say

N

A

r-4.x
A A
C(X)
where T is a positive weakly compact operator so that
(1) |[Az| < T'(1) for all ze F, |2|< 1.

Setting § = A, B it is readily seen that we are in the same situation
a8 in the previous theorem; we shall use the same terminology and make
the same constructions as there. However, instead of inequality (7) we
proceed as follows:
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Let ze B, |2<1 and o*e X*, 2*> 0 [z <1, we get:
2) Ka*, ABo— A,z)| = [a*, T8z — 4,a)|
< [ (T () lgn () — o (D) (1)

< (0% T(lo () —pal )Y
and hence

|dBx— 4,0 < T(lp(*)—ga(+)l).-

Calculating now the norm of this element we get for > n,
1Tl () =gl = Sup [ (T2 (8) o () - @0 () dpa )

et sup [ (Ty0*) ()] o (t) — @n (D dp() < el Tl +e.
I2*I<! 2o,

Hence for n = n,
bx(AB—A4,) < «(IT}+1). MW

As a corollary of this result we infer:

4.21. COROLLARY. Let E be a reflemive Banach space then N x(H, X)
= Bx(H, X).

In particular all order bounded operators are compact.

4.22. THEOREM. Let E and F be Bamach spaces with E* separable
and let K be a compaot Hausdorff space. Let 8: B — C(K) be a bounded
operator and T': C(K) — F a weakly compact operator. Then there is a se-
quence {A,} of finite dimensional operators from Eto F so that |4, — TS| - 0
for m — co.

Further the A,’s can be chosen to satisfy conditions similar to those of
Theorem 4.19.

In particular TS is compact.

Proof. In the terminology of Theorem 4.19 we have only to show
that the map ¢ defined there is y-measurable (note, that this was the
only place in the proof, where the weak compactness of § was used).
Using the separability of H* we infer that #™¢(-) is u-measurable for all
w**e F**, and since ¢ is essentially separable-valued it follows that ¢ is
u-measurable. We can now continue as in the proof of Theorem 4.19. [

From 4.22 we now obtain:

4.23. TEEOREM. Let E be a Banach space with separable dual and let
X be a Banach lattice of minimal type. Then Nx(E,X) = #Bx(8, X).

From the last theorems it is seen that in case X is of minimal type
then the order bounded operators behave like the p-integral operators
and the space Nx(Z, X) plays the role of the p-nuclear operators.

In the next section we shall see that any L,-order bounded operator
is in fact p-integral and every operator in N. Lp(E, L,) is p-nuclear (follows
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from our representation theorem in the next section together with a result
of Persson [23]). However due to the factorization scheme of general
p-integral operators between Banach spaces F and I it is readily seen
that the statement “N,(E, F) = I,(E, F) if B is separable or B is re-
flexive” easily can be derived from our Theorems 4.20, 4£.23 and Corollary
4.21. Hence these can be considered as generalizations of the Theorems
4 and 5 and Corollary 1 in [23].

All these theorems in turn stem from the two “universal” Theorems
4.19 and 4.22.

Let us finally discuss the following example.

Exavpre. The Banach lattices ¢, (7).

It is wellknown and also easy to see that if I' is an arbitrary set,
then a closed subset of ¢,(I") is- compact, if and only if is order bounded.
This yields that if  is a Banach space and T'e B(E, ¢,(I")), then T is order
bounded, if and only if it is compact.

We can then show

THEHEOREM A. Let E and F be Banach space and I' some set. Then

(D) Sogiry (B F) = &, (B, F).

(ii) Te & (B, F) if and only if T* maps w*-sequentially compact
subsets of F* into relatively compact subsets of E*.

(iii) If Te B(E, F) ts compact, then Te FL oo (B F).

(iv) If F s either separable or reflexive, then Te FL oo By F) if and only
tf T is compact.

Prooif. (i). Let Te¢ %, (B, F) and let AeB(F,c,(I"). Put

F(8) = sup {{AT) (@) (D) | llell < 1}.

If {#,} = I' is an arbitrary infinite sequence, then it follows from the
assumption on T, that f(1,) >0 n — oo. Therefore fec,(I"). The other
direction of (i) follows from Theorecm 4.2.

(ii) follows immediately from Theorem 4.2.

(iii} is trivial in view of the remarks above.

(iv) If 7 is separable, then the unit ball of F* is w*-sequentially
compact, hence from (ii) we get that if Te &, (F, F'), then T* is compact
and therefore 7' is compact.

It F is reflexive then the unit ball of F* is w*-sequentially compact
by Eberlein’s theorem and we get the conclusion as before. M

It follows from Amir and Lindenstrauss [1] that the conditions on F
in (iv) can he replaced by the more general condition that F is weakly
compactly generated.

Let us also mention that it follows from the Dunford Pettis theorem
that every weakly compact operator Te B(l,, l.) is normable by ¢,, since
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every operator from I, to ¢, is weakly compact. Furthermore from 4.19
and 4.22 it follows that if B is either reflexive or has separable dual then
B(B, L) = % (B, L)

Note finally that a theorem for ¢, analogous to 4.14 is untrue; indeed
in 1, weak convergence and norm convergence of sequences coincide,
but since I, has a quotient isomorphic to 7, [18], there is & non-compact
operator from I, to ¢,, and therefore the identity in 7, is not normable
by ¢,-



Section 3

BANACH FUNCTION LATTICES AND THE DUALITY THEOREM OF SCHWARTZ

In this section we shall study the operator ideals defined before in
case X is a Banach lattice of measurable functions on some probability
space (2,9, u) and make the connection between the ideals defined here
and the ideals of radonifying operators defined by Schwartz (see for
example [31]). Further we shall prove that the so-called Schwartz duality
theorem actually characterizes the I,-spaces among lattices.

Let (£, &, u) be a probability space and let L,(u) be the space of
all equivalence classes (modu) of w-measurable real valued functions
defined on Q. We equip L,(x) with the natural ordering “< a.e.” and
we let L} (x) denote the positive cone of this ordering.

‘We recall [20] that a function o: L (u) — [0, co] is called a function
norm on Ly(u), if the following conditions are satisfied:

(D) o(f) =0 if and only if f=0 a.e, o(fi+f)<e(fi)+
+eo(fz), e(af) = ao(f) when a> 0.
(D) If {fu} = Ly (u) fu? f a. . then o(fy) 1 o(f).
(IIT) If Ade &, then o(1,) < co.
(IV) There is a constant K > 0 so that

[fau< Ko(f)  for feLf (u).
It is welllmown that the set

Ly() = {fe Ly(p) | o(If1) < oo}

is a subspace of L,(u) and that the function f— o(|f]) is & norm on L,(u)
turning it into a Banach space. Further under the ordering “< a.e.”
L,(x) is & Banach lattice (general reference [20]).

Our first theorem is the following:

5.1. THROREM. Let (2,5, u) be a probability space and let p be a function
norm on Ly(u). If B is o Banach space and T e B(E, L,(u)) then T is L,(p)-

order bounded if and only if there is a function p: Q — BE* with the prop-
erties:



5. Banach function lattices and the duality theorem of Schwartz 43

(1) (Tz)(8) = {p(t), x> for all xe B and almost all te Q.

(i) There is a function fe L,(u) so that |p(t)]| < f(f) for almost all
te 2.

Proof. The “if” part is trivial so let us suppose that T is L, (u)-order

bounded.
We can then find an fe L,(x) so that

(1) | T2l < fllz|| for all x¢ E.
Let us define the operator S: F — L (u) by
2D it 59 o,
(@) (8z)(t) =4 T
0 else.

We have clearly
3) 182, = esssup |(Sw)(t)|< |z for ze E
teld

so [IS)I< 1.
By the lifting theorem of Tulcea [34] we can find a y: 2 - L, (u)*
8o that

(4) lp(@) <1 for almost all te 2,

() g(t) = <{g, w(t)>, geL,(u) and almost all te Q.
Let us now define:.

(6) o(t) = f(B)8* (v (1)
Then for we B

(7) lp(3), @y = f(2) {p(¥), Szy = f(1)(8z)(1) = (T=)(?)

for almost all fe Q.

(8) lp@ < fEIS*I w1 <f()  a.a. te 2.

This finishes the proof.

Remark. In general the funetion ¢ will not be u-measurable, and
it need not be uniquely determined (mod y). However it is easily seen
that if Te By (B, L,(u)) and ¢ and y are two measurable functions
satisfying (i) and (ii) of 5.1, then ¢ = v a. e.

We have the following proposition concerning the possibility of
representing order bounded operators by measurable functions.

5.2. PROPOSITION. Let B, u and o be as in 5.1, let Te Ay, (B, Ly(w)
and let ¢ be associated with T according to 5.1.

(i) If B* is separable, then ¢ is measurable, and hence ¢ is uniquely
determined by T(mod u).
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(il) If B is reflewive, then there is a measurable function @ satisfying
(i) and (ii) of 5.1.

Proof. Case (i) is trivial, since ¢ has separable range.

(ii). Let fe L,(u) so that [lp(?)l < f(2) for almost all te Q,if It L,(u)
— Ly(u) is the fonna,l identity map, then § = ITe @Ll(,,)(E Ly (w))- By
corollary 4.21 there is a sequence {S,} of finite-dimensional operators.
so that §,—> 8 in &y (%, Ly(p)) i-e., there is a sequence {h,} = Ly(x)
with [[{h}|z,(m — O and so that for all ze E:

1) |(8) (1) — (8,2) (})] < hy(B) &2 Te L.

Without loss of generality we can assume that also h, — 0 a. e. Clearly
there exist measurable functions ¢,: @ — E* so that for ze E.

(2) (8, (1) = {p,(2), > a.a. te Q2
hence for all ¢ E and all natural numbers » and m
(3) 1@ (£) = P (B)y D) < By (B) + By (1) @ &1, T Q.

Sinee g, — @, a8 & mesurable function has essentially separable range
we can conclude using the technigue from [9], Theorem IIIL.6.11 that

@ (1) — @ (] < By (B + R (B) @ 2. te 2

hence there is a measurable function g: 2 — E* with ¢,(f) - ¢(t) a.e.
and therefore for ze F.

(4)  (8@)(?) = Um(8,x) (1) =lmlp,(t), 7> = p(t), &) a.a.tec L

which implies that
(T2)(8) = Cp(t), ®> 2. a. te 2.

But since [Tz < f a.e. and ¢ has essentially separable range we can
conclude that lp(-)|<fa.c. N

Throughout this section when we speak about a function norm ¢ on
Ly(u) we shall also assume that e is absolutely continuous, i. e.

(V) (B,) <& and u(B,) >0 then o(if|-1z)—>0 for every
fe Ly (p).

As examples of I,(u)-spaces satisfying (I)-(V) we can mention all
L,-spaces 1 < p < oo and all Orlicz function spaces Ly (u), where M is
an Orliez function satisfying the 4,-condition for large values of the
argument. For further information on the .IL,(x)-spaces we refer to [20],
which is our standard reference on that subject.

It is easy to see that if p is a function norm on L,(u) then the Banach
lattice L,(u) is boundedly complete. Indeed if &/ < L,(u) is a directed
set with f>0 for all fes/, and sup{o(f)| fe«#}< oo then also
sup{ffdu | fe £} =a< co; we may then find a sequence {f,} < #,
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so that [f,dut @ and hence there is a function fe L, (u) so that f,4f. It
iy easy to see if ge o7, then g < f a. e., also fe L,(x); by (II) and by (V)
we geb that o satisfies “the monotone convergence theorem of Lebesgue”
[20], and «f converges to f.

Our Theorem 5.1 shows that the ideal of operators normable by Ly(u),
1< p< o for some probability measure u coincides with the operator
ideal considered by Badrikian (3], Kwapied [17], Schwartz [31] and
others under the name of p-decomposable operators, and they have
discussed in detail the connection between these operators and the p-
radonifying operators (cf. [31] for the definition).

Our next theorem shows that a similar connection holds in case we
are working with function norms. Before we can prove it we need a few
notational remarks and definitions from the theory of radonifying opera-
tors. (The basic reference is [31].)

Let £ be a Banach space over the reals.

Suppose that for all ne N' and all Te¢ B(®, R™) we have given a
Radon measure up in R™. If for all n, m N’ m < » and all §¢ B(R™, R™)
we have pgp = S(up) for TeB(H, R™), then we say that the system
{up | Te B(B, BR™), ne N'} defines a cylindrical measure x on E.

Let E and F be Banach spaces and T'e B(E, I'). If 4 is a cylindrical
measure on ¥ determined by the system {ug| Se B(H,R™), ne N'} then
we denote by T'(x) the cylindrical measure determined by the system
{1sr | 8¢ B(F, B™), ne N'}.

Clearly every Radon measure on a Banach space is a cylindrical
measure, and hence if x is & cylindrical measure on F, we can write that
4 is determined by the system {T(u) | Te B(H, R™), ne N'}.

It Q2 is a topological Hausdorff space with a Radon probability u
and 4: B* - L,(u) is a linear operator, then A defines a cylindrical

measure v, on F; v, is given by
(@Y, @3y ooy @) (va) = (AT, ..., Aa)(p) {w’f, reey .’B:} c B*neN'}.

It is welllmown that for every cylindrical measure » on E, there
is a pair (2, ) and an 4 as above so that » = »,. It 4: B" — Lo(Ly, po)
and B: B* - L,(Q,u,) are linear maps then v, = vp if and only if 4
and B have the same marginal distributions (i.e. (dal, ..., Aah)(4,)
= (Ba¥, ..., Ba})(u,) for all finite sets {al,..., 2y} < B").

‘We now introduce the following definition

5.3. DErINITION. Let 7 be a Banach space and £ a topological space
with a Radon probability u. If ¢ is a function norm on L,(u), then a Radon
measure » on I is said to be of order o, if there is a measurable function
@: Q- H with [lp(-)lle L,(u) so that g(u) = ». A cylindrical measure v
is of called of type o, if there is an 4 ¢ B{E", L,(u)) with » = »,.
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If 7 is another Banach space and TeB(H, F) then 7T is called
o-radonifying, if T maps all cylindrical measures of type ¢ into Radon
measures of order p.

Remark. If ¢ =|-[, 1 <p< oo, then we get exactly the p-rado-
nifying operators of [31].

5.4. THEOREM. If one of the two conditions:

(i) I' is veflexive.

(ii) F = G*, where G* is separable, is satisfied, then am operator
TeB(E,T) is g-radonifying if and only if T" is mormable by L,(p).

Proof. Assume that T is normable by L,(u).

Case 1. F reflexive. Liet » be a cylindrical measure on E, and let
AeB(E* L,(u)) be an operator determining ». By Theorem 5.1 and
Proposition 5.2 there is a measurable function ¢:  — F so that

(1) (AT* %)) = {&*, ¢(¢)> for almost all 1, x*e B¥,
(2) llp (- )lle Lo(u).

It follows that the operator AT™ determines the cylindrical measure
T(v). Further from (1) we infer that ¢(u) =T(»). N

Case 2. F = G% @ separable. Let » be a cylindrical measure on
E of type ¢ and let Ae B(E*, L,(u)) be an operator determining » and
let p: Q— @™ Dbe associated to AT* as in 5.1.

Considering G* as a subspace of G*** there is a matural projection
P of @™ onto G*. Define

y(t) = P(tp(t)), te 2.

Since G* is separable p is p-measurable. We define §eB(&, L,(u))
formal by
(89) (1) = (yp(t), 90y telyge@
hence § = ATj.
It is easily seen from this that i I: ¢*— (%, 0(G*, @) is the
identity map, then

(IT) () = I(p(p)).

Continuing now as in ([31], Proposition X1I, 2.1) we infer from this that
T =9k N

The following proposition is special case of 4.16.

5.6. PROPOSITION. Let B and ¥ be Banach spaces, where F satisfies
one of the conditions in 5.4. An operator TeB(E,F) is o-radonifying
if and only if T is {f,}-absolutely summing with respect to every sequence
{fa} € L,(u), where the functions f, have disjoint supports.
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Remark 1. It follows f. ex. from [26] that if ¢ is a function norm
on Ly(u), then L,(x) has the metric approximation property.

Remark 2. In general there is probably a connection between
operators T« B(E, I) with T normable by L,(u) and operators Te B(E, F)
mapping cylindrical measures on E of type ¢ into Radon measure on
(B™, o(I™*, F*)). However we did not check it.

In the theory of p-radonifying operators the so called Schwartz
duality theorem [31] plays an essential role, and it is therefore of interest
to investigate, if this result can be extended to other classes of radonifying
operators; more generally the above investigations of the connection
between the Schwartz ideals and ideals of radonifying operators give
us an idea of how to formulate the Schwartz duality theorem for general
Banach lattices; it can be stated in general ag follows: “Let E be a Banach
space and X be a Banach lattice. If 7: E -» X is order bounded, then 7™
is normable by X”. It is then natural to ask for which Banach lattices
X such a statement is true for all Banach spaces E. We are going to
show that this property actually characterizes the I,-spaces 1< < oo
among boundedly complete Banach lattices.

Of notational reasons we introduce the following definition:

5.6. DEFINITION. A Banach space X is called an (&)-lattice if the
following implication holds for every Banach space H

Te Bg(B, X) = T*e Px(X*, BY).

The fact that the lattices L,(u), 1 < p < oo, u finite are (&)-lattices
is exactly the Schwartz duality theorem. Kwapien’s proof [17] of this
is perhaps the casiest in the present context, since his formulation of the
Schwartz duality theorem is the same as ours.

The following proposition is slightly stronger:

5.7. PrROPOSITION. Let (2, %, u), be @ measure space, and let E be
@ Banach space. T (1<p < co) and Te By | B, L,(u) then T is p-
integral.

Proof. Since every order bounded subset of IL,(u) is contained in
a band in L, (u), which is lattice isomorphic to L,(») for some finite »
it is no loss of generality to assume u finite. If T': B — L,(u) is order
bounded then T has a factorization

B _T—* I’p ([J)

N

L (1)

where S, is order bounded (cf. Theorem 5.1). Hence by Kwapied’s version
of the duality theorem, it follows that S, is p-absolutely summing, and
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from Persson and Pietsch [24], Theorem 46, we get that in fact S, is
p-integral, and therefore T is also p-integral. M

Remark. Combining 5.7 with 4.4 we get that L,(u), 1< p < oo,
u arbitrary, is an (&)-lattice. Before we continue towa.rcls our a,un let
us also mention.

5.8. PROPOSITION. Let X be a boundedly complele Banach lattice and
let ¥ be @ Banach space. If Te B(E, X) is 1-integral then T is order bounded.

Proof. A direct application of the factorvization of 1-integral maps
[24] and Corollary 4.10.

We can now prove

5.9. TEEOREM. If X 48 a Banach lattice of minimal type then the
following statements are equivalent.

(i) X 48 an (&)-lattice.

(ii) Te Bx(cy, X) = T"e 5 (X", 1)

(iii) Either there is a measure space (2,5, u) and a p, 1< p< oo
so that X s lattice isomorphic to L, (u) or there 48 o set I' with X lattice iso-
morphic to ¢o(1").

(iv) If Te #(X*, X) and T"X" < X, then T*e P5(X*, X).

Proof. (i) = (ii) is trivial; for IL,(u), 1< p << oo, (iil) = (i) and
(iii) = (iv) follow from 5.7 and for c,(I") these implications are trivial.

(ii) = (iii): Let {z,} = X and {y,} = X be two normalized sequences,
each consisting of mmtually disjoint positive elements. We want to show
that {z,} is equivalent to {y,}

To this end let e [v,] with & = Z’t #,. and define T': ¢, ~ X by

ITf = Etwf("’)wm. f‘ Co»
n=1

T is clearly order bounded, and using our assuthption together with
Theorem 4.4, we get that T™e IIg (I, X) and hence T ITy, 4(c,, X).

Let {e,} denote the unit vector basis of ¢,; since ) g(n)y,, is convergent

for all gel, we get that the series =t
2 1 Tenlly, = D'ty
n=1 n=1

is convergent.

By interchanging the role of {z,} and {y,} in the above argument,

we obtain that {z,} is equivalent to {y,}; hence the conclusion follows
from Theorem 2.12.
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If we prove that (iv) = (ii) then we are done. Hence suppose (iv)
and let T'e Zx(cy, X) and 4 eB(l;, X). Since X is of minimal type we
get that T"*(l,) = X and that T** is order bounded, hence T**A*
€ Bx(X*) X); it is easily checked that (T**A*)*(X*)<c X and that
(T** A*)* = AT*. By assumption AT* is then order bounded and thus,
since 4 was arbitrary T"e¢ #x(X% 7). N

Let us conclude the present section with an application of the above
theorem:

Let (2, %, x) be a probability space and let p be a funetion norm
on Ly(u). If fe Ly(uxp). and xe £ then we define f.e Ly(u) by fr(y)
= f(#,¥), ye 2 and we put o,(f(z, ¥)) = o(f;)- It is easy to see that the
function @ — g,(f(#, %)) i3 p-measurable. We shall say that o satisfies
the Fubini inequality, if there exist constants K, > 0 and K, > 0 so that

K, 0:0,(f(@ 1)) < gy0e{f(@ 9) < Kooy (fl2, 9)
for all f Iy (u X ).

The following theorem is a consequence of Theorem 5.9.

5.10. TurorReEM. If (2, &, u) is a probability space, and o is a function
norm on Ly(u) satisfying the Fubini inequality, then there ewists a positive
measure v on &, having the same zero-sets as p and a p, 1 < p < oo, so thae
L,(u) is lattice isomorphic to L, ().

More specyfically: as sets L @) and Ly(v) are equal and the formal
identity map is a topological isomorphism.

Proof. We want to show that under the assumptions L,(ux) is an
(&)-lattice. Hence let E be a Banach space and Te 4y (,,)(E L, (u).
By Theorem 5.1 there is a ¢: @ — E* so that for ze E

(1) (Tz)(t) = {p(1), z) for almost all i 2.

(i) ()| < f(t) for almost all te 2 where fe L,(x).
Let now {f,} be a sequence of positive mutually disjoint elements

o
of L,(x) and let {#,} = B so that } z*(w,)f, is convergent for all a*e E*.
If & is a natural numbel , then: "1

(2 o(|Tz,|) fn) = 93(2 Qt(l(‘P(t): wn)])fn(s))

n=1

= goar 2 K@ (2)y 23 1f(8))
k

< K0 2 K@ (t)y 2ad1fa(8))

< Kyo(f) sup o 2 2% (@) f2)

le*l<t f=1
hence T is {f,}-absolutely summing.

4 — Dissertationes Mathematicae CIX
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Hence we have proved that L,(u) is an (&)-lattice and from Theorem
5.9 it follows that L,(u) is lattice isomorphic to L, (») for some p, 1< p
< oo and some measure . However from the proof of 5.9, the proof of
Theorem 2.10 and the results of Bohnenblust it follows that we can find
an equivalent norm g, on L,(x) in the present case, so that the measure »
can be chosen to be defined on & by the formula

r(d) = oi(ly), Aes.

Further it follows from the quoted places that then L (u) and L,(») will
be equal as sets and the formal identity map will be a lattice isomorphism.
Hence obviously x4 and » also have the same zero-sets. W



Section 6

SCHWARTZ IDEALS DETERMINED BY UNCONDITIONAL BASIC SEQUENCES
IN T,(0, 1)

In this section we determine completely the Schwartz ideals defined
by an unconditional basic sequence {z,} in L,(0,1), p > 2 so that [x,]
contains an isomorph of a Hilbert space, and we give some partial results
for 1 < » < 2 and for basic sequences, whose closed linear span does not
contain a Hilbert space. We prove for example that if {»,} is an uncondi-
tional basis in L,(0, 1), p > 2 then an operator is normable by {z,}, if
and. only if its adjoint in 2-absolutely summing.

To prove our main theorem we need the following lemma on uncondi-
tional basic sequences in IL,-spaces, which can be found in [10]. However,
for the sake of completeness we prefer to give the following proof.

6.1. LEvMMA. If {x,} 78 an unconditional basic sequence in IL,(0, 1)
1< p < oo, then there exist constants m, and M, , so thai:

n m
1/2
(1) my || ( D 1enltienl?) |, < || X v,
k=1 k=1

n
12
<||( X1l mi?),
k=1

for el n =1,2,... and all n-tuples (a,, as, ..., a,) e B"
Proof. Let {r,} be the sequence of Rademacher functions on [0, 1],
i. e.
(1) = signsin2¥nt, $e[0,1], &k =1,2,...
We recall that by the Khinchin inequality (see for example [18]),
we can find constants 4, and B, so that

n

(2) 4, (]anl Iaklz)mé ( _fl Z a7 (1) |p dt)l’p

k=1
S I
1/2
< Bp{ D ll?)
k=1

for every natural number » and all n-tuples (a,, a,, a,)¢ R™.
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Let K be the unconditional constant for {z,}. If ay, a3, ..., 0, ave
scalars, then by (2)

B Ay Dl o) <

kel

o,

]Za,,r,, (&) @y (s | )"
=1

By( 2 )

Taking the p-norm on. both sides of (3) and using the Fubini theorem
we get

@ 4| g_,‘ Jaaf#lael?) [, < ( f | ,; a7 (1) [ )
<3, { et

k=1

akla | (8

WM=

For almost all te [0, 1] we have

n T n
1
(6) 7 "g'rk(t)akwk pg“; oy, T p<KHk_21 o (8) T ||

Combining (4) and (5) we get the existence of the constants m, and M,
and inequality (1). W

Our main theorem of this section is:

6.2. THEOREM. Let p > 2 and let {w,} be an unconditional basic sequence
in L,(0,1). We have

(i) Bvery linear operator with 2-absolutely summing adjoint is normable
by {z,}.

(1) If [@,] contains a subspace tsomorphic to 1,, then a linear operator
is normable by {z,} if and only if it has 2- -absolutely summing adjoint.

(iii) Bvery linear operator with p- absolutely summing adjoint is mor-
mable by {z,} (k.|| =1, n =1,2,...) if and only if {z,} is equivalent to
the unit vector basis of 1,,.

Proof. Throughout the proof let # an F be Banach spaces and
let Te B(H, ).

(1) Assume that T* is 2-absolutely summing, and let K denote the

unit ball of ™ equipped with the w*- -topology. There is a positive Radon
measure 4 on I, so that

(1) Iy 1< ( [ ™ @Heauy™)).
K
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Let now {y,} = F* so that

(2) Zy,, y)x, is convergent for all Ye B,

Nl

=]
©3 In view of Theorem 4.2 it is enough to prove that > |T™ypla, is
=1

convergent, and hence, since {z,} is boundedly complete, it follows from
Lemma 6.1, that it is enough to prove that there is a constant M, so that

forall ¥ =1,2,... we have
2tz )| < 22

k
g (3]

Now by (1) we get for every e [0, 1].

™y

( D1 ysie e, (012)* < J Z,‘m** (Yl | (1) du(y*) |
fe=1

n=1

and hence:

(4) f (

i

NT™ g5, (1))

Nw

k
<[( ] X wewiriespany) " a

°'“u-- °%H Lo

J ( () 12 2 (1)) Ay dt
K

fj(ﬁl

Y (Y12l (8)12)" dtdu(y**)

o P

ne=1

(y**)

0.,

)
<my mﬁg”% aeIEN
This proves (i).
(ii) The “if” part follows from (i), and the “only if” part follows
from 4.4.
(iii) The “if” part is trivial, so let us assume that every operator
with p-absolutely summing adjoint is normable by {@,}.

1
Let ael,, and let p* denote the dual number to p, i. e. —+ — =1L
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Define 8: l,« -1, by
Sg =ga for all gely.

Since 8* is p-absolutely summing (it is in fact even p-nuclear) we
get by assumption that § is normable by {z,}. Let {¢,} denote the unit
vector basis of ¢,. From Theorem 4.2 we get that there is a constant K,
so that for all k =1, 2, ...

sz |w(n)|m,,,” =“Zk: IIS:nllwnHiK sup llf}f(en)am,I
1=l =1 n=1

Ifll<1
f‘ll

-
Hence D a,x, is convergent.

=l 00

On the other hand from Lemma 6.1 we get that if ) a,x, is convergent,
then for all 2 =1, 2, ... n=1

] k k /
i/p||p
Dl = 3 iaaPlaig = || 3 1ol lzy#) |2
n=1 n=1

Tim]
k / 1 k
12 ||»
<[[{ Zeat w7 <oz ]| X ana

N ]

D

o0
and hence ) [a,|? < co.

n=1
The above shows that {z,} is equivalent to the unit vector basis
of 1.
As a special case of Theorem 6.2 we get
6.3. COROLLARY. Let p > 2 and let {x,} be an unconditional basis in
L,(0,1). A linear operator is normable by {w,} if and only if it has 2-abso-
lutely summing adjoint.

Remark. Note that the assumption p > 2 was heavily used in the
proof of Theorem 6.2, both in (i) and (iii).

. 6.4. QOROLLARY. Let p > 2 and let X be an & ,-space with an uncondi-
tional basis {x,}. If Eis an Lspace with q=2 and T 1is an Z£,-space, then
every bounded operator from E to I is normable by {z,}.

Pr.oof. A direct application of 6.2 (i) and Theorem 4.3 of [18]

Using 4.4 we get immediately:

6.5. PROPOSI’II‘ION. If {x,} is an unconditional basis in L,0,1)1<yp
< oo, then every linear operator which is normable by {z,} has p-absolutely
summing adjoint.

Let p,q >_1 and .{a:n} and {y,} unconditional bages in L,(0,1) and
..LQ(O, 1) respectively; it follows from Theorem 6.2 and its corollary that
if p, ¢ > 2 then {x,} and {#.} are equinorming. On the other hand we see
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from 6.5, that if p <2 and p < ¢, then {z,} is finer norming than {y,},
but {z,} and {y,} are not equinorming.

We would also like to point but that in Proposition 6.5 the term
“basis” can be interchanged with the term “basic sequence” if p > 2,
since it follows from [15] that any basic sequence in I, (0, 1), » > 2 contains
an isomorph of either I, or I,. Ilowever this interchangement is not possible
in case 1< p <2, since here L,(0, 1) contains a subspace isometric to
I, for each 7, p < r < 2, [15]. )

Our main problem in this section is of course

6.6. ProBLEM. What is the Schwartz ideal determined by an uncondi-
tional basis in L,(0,1), 1< p<2.

Or a more concrete one:

6.7. PROBLEM. Let {x,} be an unconditional basis in L,(0,1), 1 < p < 2.
Is an operator normable by {x,} if and only if its adjoint is p-absolutely
summing ?

On unconditional basic sequences in L,(0, 1) we have the following
proposition, which we state without proof (the proof is almost trivial).

6.8. ProrosiTION. ZLet {z,} be an wunconditional basic sequence in
L,(0,1) so that [»,] 18 non-reflexive.

Then an operator is normable by {z,} if and only if it has 1-absolutely
summing adjoint.

The problem of finding the Schwartz ideal determined by an uncondi-
tional basic sequence {x,}e¢ L, (0, 1) for which [«;,] is reflexive is exactly
the same as the problem of finding the Schwartz ideals determined by
unconditional basic sequences in the spaces L,(0,1),1 < p<< 2 Indeed
L,(0,1) contains subspaces isometrie to L,(0, 1) for all p, 1 < p < 2, and
on the other hand it was proved recently by Rosenthal [28] that every
reflexive subspace of L(0, 1) is isomorphic to a subspace of Z.,(0, 1) for
some p, 1< p<2.

Let us finally state the following problem on basic sequences in
L,(0,1), p> 2.

6.9. PrOBLEM. Let {2,} be an unconditional basic sequence in L,(0, 1},
P > 2. Does one of the following two possibilities occur:

(i) The class of operators normabdle by {z,} is exactly the class of opera-
tors with 2-absolutely summing adjoints.

(ii) The class of operators normable by {x,} is exactly the class of operators
with p-absolutely summing adjoints.

In view of Theorem 6.2 it iy natural to ask, the question: “Let {z,}
be an unconditional basic sequence in L,(0,1), p > 2, so that [#,] does
not contain a Hilbert space. Is every p-abolutely summing operator nor-
mable by {z,} ?” The answer to this question is negative as it is seen from
the next proposition.
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6.10. PROPOSITION. In the space l,, p > 2, there is an wnconditional
basis {x,} so that the Schwartz ideal determined by {w,} is ewactly the ideal
of operators with 2-absolutely summing adjoints.

Proof. It was proved by Pelezyriski [21] that the space X, = ( > l;‘),p

Nl
is isomorphic to %,, hence the natural basis in X, is equivalent to an uncon-
ditional basis {=,} in I,, and it is clearly not equivalent to the unit vector
basis of 1,. Since {z,} contains the spaces I3 in blocks, it is readily seen
that every operator normable by {#,} has 2-absolutely summing adjoint.
The rest now follows from the proof of Theorem 6.2.

Since also the space X, defined above is isomorphic to I,, in case
1< p <2, the following question is of vital interest for problem 6.6.

6.11. ProOBLEM. What is the Schwartz ideal determined by the natural
basis in X, in case 1< p < 2.

Inspired from Proposition 6.10 we can pose

6.12. PROBLEM. Let {z,} be an unconditional basis in L,(0, 1)1 < p < 2,

Does there exist an unconditional basis {y,} in 1,, so that {»,} and {y,} are
equinorming %

Remark. For p > 2 it follows from 6.3 and 6.10 that the answer
to 6.12 is positive.
If {z,} is a basis in L,(0,1) 1< p < oo and B, = span {&,, ..., 2,},

then (ZlEn),p is isomorphic to ,. Indeed there are finite-dimensional
Ne=

subspaces F, < I,(0,1) so that d(1,"™F», F,)<2 and B,< F,, and
hence

but since there are uniformly bounded projections P, of I, onto %,,

we also get that ( ZE,,),I, is iSomorphic to a complemented subspace of
n

l, and hence isomorphic to 1,,.

The next problem is somewhat more concrete than the preceding
one.

6.13. PROBLEM. Let {x,} be an wnoconditional basis in L,(0,1)
1 <P < oo, and let B, be defined as above. Are {x,} amd the natural
basis in (ZEn),p equinorming %
n
The Problems 6.12 and 6.13 have corresponding problems for basic
sequences. Let us end this section by stating these.
6.14. PROBLEM. Let {2,} be an unconditional basic sequence in L, (0,1);



6. Schwartz ideals determined by unconditional basic sequences in L,(0, 1) 57

1< p< oo. Does there exist an unconditional basic sequence {y,} in 1,
so that {x,} and {y,} are equinorming?

If {z,} is a basic sequence in L, (0, 1) we define the space E, as before
and using the first part of the argument preceding 6.12 we get that
(Z‘E,,),p is isomorphic to a subspace of I,,.

n

Hence the following problem is more concrete that 6.12.
6.15. ProBLEM. Let {,} be an unconditional basic sequence in L, (0, 1)
1< p< co. Are {w,} and the natural basis in (5 B}, equinorming ¢
n



Seclion 7

SOME CONCLUDING REMARKS AND SOME OPEN PROBLEMS

It seems, as the assnmptions in Theorem 4.7 can be weakened; here
we do not think so much on the approximation assumption as on the
boundedly eompleteness of X. We can pose

7.1. PROBLEM. Can the condition “X boundedly complete” be weakened
in Theorem 4.7 1%

Is 4.7 true, if X is just of minimal type ?
The following problem is very interesting

7.2. ProBLEM. Let X be a Banach lattice of minimal type and let E
be @ Banach space, so that B(E, X) = By (B, X). Is E finite dimensional ¥
What is the situation, if X = ¢, ¥

It follows from the results in Section 4 that to solve Problem 7.2
it is enough to consider the case, where the lattice structure in X is defined
by an unconditional basis {z,} in X. If {x,} is boundedly complete and X
contains a subspace isomorphie to I, for some p, 1 < p < oo, then it follows
from Corollary 4.6 that I is finite-dimensional; hence in particular, if
{z,} is boundedly complete, but X is not reflezive, then ¥ is finite dimen-
sional. However it is a wellknown problem, whether every reflexive
Banach space with an unconditional boundedly complete basis contains
a subspace isomorphic to I, for some p,1 < p < oo. We feel that 7.2 might
be easier than this problem and has a positive solution.

In case X = ¢, almost nothing is known. If F has the property stated
in 7.2, then w*-convergence and norm convergence of sequences in E*
coincide, and therefore if the unit ball in F* is w*-sequentially compact
(f. ex. if F is weakly compactly generated, see [1] and the example in
Section 4), then ¥ is finite dimensional.

It follows from the example in Section 4, that if B(E, ¢,) = Bo, (B, o),
then every operator from F to a separable Banach space is compact,
and hence all separable quotients of F are finite dimensional. This gives
the link to the problem, whether every Banach space has a separable,
infinite dimensional quotient space.

The next problem is of a similar nature as 7.2.
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7.3. PROBLEM. Let K and F be Banach spaces and X a Banach lattice
of minimal type. Suppose that S« (E, F) = B(E, F). What can be said
about E and B %

Here very little is known, even incase X =1, 1<p< co. f X =1,
there are some partial solutions [18]. If X = ¢,, then it is easy to see that
if B is either reflexive or has separable dual and F is a O(K)-space, which
is a Grothendieck space (i.e. w*-convergence and weak convergence of
sequences in F™* coincide; I, is such a space), then B(H, F) = Z oo (B, F).
We make the following conjecture.

ConyEcTURE. If &, (B, F) = B(E, F), then E is either reflexive
or has separable dual, and ¥ is isomorphic to a C(K)-space, which is
a Grothendieck space.

Clearly a positive verification of this conjecture would imply a positive
solution to 7.2.

7.4. PROBLEM. Let <7 be an operator ideal. How can one decide, whether
or not &7 is determined by a Banach lattice ?

Another series of problems is concerned with determining the Schwartz
ideals for infinite product of Banach lattices.
Let {X,,,} be a sequence of Banach lattices and let 1 < p < oo, and

put X = 2 X)X = ( Z‘X )y it # = o0). X is & Banach lattice when
n=1l

Ne=1
equipped with the product ordering. We may ask:
7.5. PROBLEM. Under which assumptions can the Schwartz ideal be
determined by an expression, involving the ideals &y and the ideal of p-
absolutely summing operators ?

Problem 7.5 is probably easier, if we assume that the order structure
in every X, is induced by an unconditional basis in X,; the product
ordering will namely then be induced by the natural unconditional basis
in X, defined by the given bases in the X,’s.

Problem 7.5 can also be posed in a much more general manner,
involving the sum of a sequence of lattices in the sense of some uncondi-
tional basis; such sums are considered in [8].

It is clear that the solution of Problem 7.5 will have a great impact
on the problems we considered in Section 6 for 1 < p < 2. The following
special case of 7.5 is of particular interest for these problems:

7.6. PROBLDM Let 1< p< 2. What is the Schwartz ideal determined
by the lattice (S’Z)

=1
We recall that if 1<p<g< o and F and F are Banach spaces,
then an operator T'e« B(E, F) is called (p, ¢)-summaing if there is a constant
K >0 so that
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(Zn:"Tmi”a)llq < Ksup (i’ | (mi)lp)llp
=1

e

for every finite set {,, 2, ..., %,} S E.

It is casy to see that if T'e B(E, F) then T" is (p, ¢)-summing, if and
only if T has the property: For every operator. 4: F — I, IAT maps the
unit ball of E into an order bounded set in I,, I denoting the formal
identity map of I, into I,.

Using the same technique as in Section 4 we easily get that the roles
of T and T* in the above statement can be interchanged. From this wo
can for example prove that if T is (p, ¢)-summing, then so is 7™, Tt seems
that such & proof is simpler than the proof of Simmons [33], though we
also (as he does) use the principle of local reflexivity.

In general it would be of interest to see, if the above (rather simple)
characterization of (p, ¢)-summing operators can be useful in the theory
of these operators. For example, does it have any impact on the problems
concerning composition rules for (p, g)-summing operators ?

Concerning Section 6 we can make the following remarlks:

In [7] E. Dubinsky and M. S. Ramanujan define A-nuelear and
A-absolutely summing operators for certain sequence spaces A. If A is
the sequence space associated to some unconditional basis {»,} in a Banach
space, then “A-absolutely summing” is the same as our term ‘‘{z,}-abgo-
Iutely summing”. Furthermore an {®,}-order bounded operator is A-
nuclear in their terminology. They ask for which Banach spaces F and
F it is true that every A-nuclear operator is A-absolutely summing. Using
the theorem of Zippin and the technique of Theorem 5.10 we get the
following partial result concerning the above question.

7.7. PROPOSITION. If A is the sequence space associated to am uncon-
ditional basis in a Banaoh space then every A-nudlear operator is A-absolutely
summing, if and only if A =1, for some p, 1 < p < oo or ¢,.

We conclude the present section here. For problems and remarks
0 Section 6, we refer to that section itself.



(1]
2]
[3]
[4]
(5]
6]
7]
[8]
[9]

[10]

[11]

(12]

[13]

[14]
{15]
(18]

(17]
[18]

[19]
(20]
[21]

[22]
[23]

REFERENCES

D.Amir and J. Lindenstrauss, The structure of weakly compact sets in Banack
spaces, Ann. of Math. 88 (19G8), pp. 35—46.

W. Bade, The Banach space 0(S), Lecture Note Series 26, Aarhus University
1969-1970.

A. Badrikian, Séminaire sur les fonctions aléatoires linéaires et les measures
cylindriques, Université de Clermont 1069,

C. Bessaga and A. Pelczynski, On bases and unoconditional convergence of
series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.

H. I'. Bohnenblust, An aziomatic characterization of Ly-spaces, Duke Math.
J. 6 (1940), pp. 627-640.

M. M. Day, Normed linear spaces, Berlin-Gottingen-Heidelberg 1958,

E. Dubinski and M. 8. Ramanujan, On A-nuclearity, to appear.

— A. Pelezyndski and H. P. Rosenthal, On Banach spaccs X, for which
II)(# e, X) = B(Z, X), Studia Math. 44 (1973) pp. 617-648.

N. Dunford and J. T. Schwartz, Linear operators, part 1, London, New
York 1958,

V. F. Gaposhkin, On a properly of unconditional basis in Ly, Uspehi Matem.
Nauk 14, 4 (88) (1959), pp. 143-148 (Russian).

A. Grothendieck, Produits tensoriels et espaces nucléaire, Mem. Amer. Math.
Soc. 16 (1955).

— Sur les applications linéaires faiblement compacies d'espaces du type O(K),
Canad. J. Math. V (1953), pp. 129-173.

W.B.Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional
decompositions and weaker structures in Banach spaces. Israel J. Math. 9, no.
4 (1071), pp. 488-5086.

J. Hoffmann Jorgensen, The theory of analytic spaoces, Varions Publication
Series 10, Aarhus University 1970.

M. I. Kadec and A. Pelezyiiski, Bases, lacunary sequences and complemented
subspaces Ly, Studia Math. 21 (1862), pp. 161-176.

S. Kokutani, Ooncrete representations of abstract M-spaces, Ann. of Math.
42, no. 4 (1941), pp. 994-1024.

S. Kwapiet, On a theorem of L. Schwartz, Studia Math. 38 (1970), pp. 183-201.
J. Lindenstrauss and A. Pelezyiski, Absolutely summing operators im
Zp-spaces and their applications, Studia Math. 29 (1968), pp. 2756-326.

— and H. P. Rosenthal, The #,-spaces, Israel J. Math. 7 (1968), pp. 326-349.
W. A. J. Luxemburg, Banach Function Spaces, Van Gorcum-Assen 1955.
A. Pelezytiski, Projection in certain Banach spaces, Studia Math. 19 (1960),
pp. 209-228.

A. J. Peressini, Ordered topological vector spaces, New York 1967.

A. Persson, On some properties of p-nuclear and p-integral operators, Studia
Math. 33 (1969), pp. 213-222.



62

[24]
[25]
[26]
[27]
[28]
[26]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

Dissertationes Mathematicae

A. Persson and A. Pietsch, p-nukledre und p-iniegrale Abbildungen in
Banaochraiimen, Studia Math. 33 (1969), pp. 19-61.

A. Pietsch, Absolut p-summierende Abbildungen in normierten Baiimen, Studia
Math. 28 (1067), pp. 333-353. )

M. M. Rao, Linear operations, tensor products, and ocontractive projections im
funetion spaces, Studia Math. 38 (1970), pp. 131-186.

H. P. Rosenthal, On injective Banaoh spaces and the spaoces Ly (u) for finite
measures p, Acta Math. 124 (1970), pp. 205-247.

— On subspaces of L,, Ann. of Math. 07 (1973), pp. 344-373.

H. H. Schaefer, Topological vector spaces, 1966.

L. Schwartz, Adpplications p-radonifiantes el le thdordme de dualité, Studia
Math. 38 (1970), pp. 203—213.

Applications radonifiantes, Seminaire Paris 1969-1970.

Z. Semadeni, Banach spaces of continuous functions, Warazawa 1971.

8, Simmons, Local reflexivily and (p, q)-summing maps, to appear.

C. and A. Ionescu-Tulcca, On the lifting property, J. Math. Anal. and Appl.
3 (1961), pp. 537-546.

L. Tzafriri, 4 isomorphic characterieation of L, and cq-spaces, Michigan Math.
J. 18, no. 1, (1971), pp. 21-31.

— Reflexivity in Banach lattices and thewr subspaces, J. Funct. Analysis, 10,
no. 1 (1972), pp. 1-18.

M. Zippin, On perfeotly homogeneous bases in Banaoh spaces, Israel J. Math.
4 (1966), pp. 265-272.

INSTITUTE OF MATHEMATICS, ARAIUS UNIVERSITY, ARHUS, DENMARK.



