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1. Imtroduction

Recently, several articles appeared regarding solving systems of linear
equations Az = b on parallel computers where 4 is a2 real n by # dense,
triangular or tridiagonal matrix ([1]-[6]). Essentially less effort has so
far been given to handling this problem on parallel computers if the
matrix had another structure, e.g. a band structure with non-scalar
constant coefficients, although there exist studies of that type for serial
computers.

Thus, while there exist several parallel algorithms requiring only
O(logn) (}) time steps to solve a tridiagonal system, there are no such
fast algorithms, for the time being, for band systems with bandwidth
2m-+1, where m > 1.

In this paper a new parallel direct algorithm for solving such systems
is discussed. This algorithm on SIMD type parallel machine requires
(2 +log2m)logn + O(mlogm) time steps using no more than (3m?-+m)n
processors. For a tridiagonal systems this means 3logn 4 0(1) steps using
4n processors, which is the least time we know of for solving tridiagonal
systems. The algorithm can be formally interpreted as parallel shooting
method. It is based on a factorization of A such as in [7]; in this way
the problem of solving a system with a band matrix gets transformed
to that of solving systems with a banded lower triangular matrix. The
algorithm ig a generalization of the algorithm to be published in [1] for
a tridiagonal system.

We also develop a parallel direct algorithm for solving a system
involving the inverse of such a band matrix. Its application is advan-

(1) Throughout this paper, logp = [log,p], and time is measured in steps.
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tageous if the computation of A~ is a part of the solving of Az =p
and it is necessary to know only certain selected rows or columns of 41,
If A is a symmetriec matrix, the solution of both problems together re-
quires (4-+log4m?)logn-+O(mlogm) time steps using mn?/4-+0(men)
Processors.

Throughout the paper we assume that any number of processors
can be used at any time, but we give bounds on this number. All pro-
cessors are assumed to perform the same operations; determining the
maximum magnitude of two numbers can be performed in one time
step.

2. A parallel band systems solver

Let us consider linear systems of equations 4x = b, where 4 is a non-
singular band matrix of order » with bandwidth 2m 41, i.e, ay; =0
for |i—j] > mand a,,,,, #0fori =1,2,...,n—m. Weassume a situation
frequent in practice, m <€ #, or, in a worse case, m < /3. Such a system

can be written in the form

¢ T M B
» o, 5[] <o)

where T and O,, are square matrices of order n—m and m, respectively,
Specifically, T can be a lower band triangular matrix with bandwidth
2m+1 and O, the zero matrix. The submatrices ¢ and § are generally
rectangular of size (h—m) X m and m X (n —m), respectively. The vectors
@ = (Zy, gy -.., @,) and b = (by, by, ..., b,) are partitioned into z) and
b%, i =1, 2, conformably with A.

Because I' is a non singular matrix, we get from the first equation
of (1)
(2) 2 = T (pW —xMy,
Let us assume the existence of a fast parallel method for the solution

of triangular linear systems. Let ¥®, ¢ = 0,1,2, ..., m, be the solutions
of such systems with the right-side vectors

(3) T(y(ﬂ) y(l) .. y(m)) = (b(l)O‘)

Thus, (2) can be expressed as

(4) o® = y©— ¥z,
ke

i.e. the last n—m elements of z are linear combinations of the first m
ones. When applying (4) to the second equation of (1) we get

(5) —8(y® @ ymyz — b® — 8y,
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By LU decomposition of A the following equality can be shown:
det.(_A) = det(T) . det(S(y(l) y(2) . y(m))) ( _l)mn—m.

Hence, the non-singularity of the matrix §(yV ... y"™) follows immedi-
ately from the assumptions. The elements of this matrix and the vector
on the right-hand side of (5) can be solved by extension of the triangular-
system of (3) to the system"

T O,_ p) ¢
(6) [S In m] (20 W .. 2M) = [b@) Om]'

m

Thus we get the following assertion.

LEMMA 1. Let A be a non singular band matriz of order n with band-
width 2m 41 and suppose that the elements of the uppermost line above
the diagonal are non-zero. Then the unknowns of the system Az = b fulfil.
the equalion

1 2 — —
[ z%ll)—mﬂ zz(;lm&l z((nl)mﬂ [ 1 B zsznlmﬂ
n) m+2 zn-—m+2 vee zn—)m+2 Ty zs;)_m+2
(M) o = ,
| 0 2™ 1 La, 20
(8) By = 240 — Zw M, 1=1,2,...,n—m,
kmm]

where 2 is the i-th component of the vector 2% which is the solution of (6).

Hence, the direct parallel algorithm for solving Az =b of order n,
can be divided into 3 stages. We present it, evaluating the time consumed.

Stage EL. The solution of the lower band triangular system (6) of
order n: There are fast parallel algorithms for solving such systems. Algorithm
II ([2]) requires the smallest number of steps and processors. If we apply
this algorithm for solving (6) in such a way that it solves simultaneously
m-+1 band triangular systems differing from each other only by the right-
hand side, then ihis stage requires (2-log2m)logn —(1/2)(log?2m +
+log2m)+ 3 steps using no more than (3m?-+m)n—8md processors.

Stage E2. The solution of the dense system (7} of order m: Solving
this system by Gaussian elimination with pivoting requires 3m(logm —1)+
4 O (log*m) steps using (m—1)> processms

Stage E3. The computation of (8): The computation of (8) consists
of n—m independent scalar products of two vectors of order m+1. They
can be performed in 1+log(m+1) steps using (m —1)(n —m)/2 processors.
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Thus we have proved the following theorem.

TEEOREM 1. Let A be a matriz as in Lemma 1. Then the solving of
Ax = b requires (2+log2m)logn+- O(mlogm) sieps using mo more than
(3m? 4 m)n processors.

We see that this means 3logn+ O(1) steps and 4» processors for
a tridiagonal matrix. A comparison with Theorem 3.1 of [2] shows that
the complexity of computation of a band system with bandwidth 2m 41
and the lower band triangular systems with bandwidth 2m 41 is the
same, for m < n. A difference occurs only in the number of processors
used. A band system requires 6 times more processors.

Although quite satisfactory from the viewpoint of algebraical com-
plexity, like many shooting methods, this algorithm suffers from the
exponential growth in roundoff crror and from the possibility of over-
or underflow. These drawbacks are due to the parallel algorithm for
solving lower band triangular systems (6).

On the other hand, the algorithm does not fail if any of the leading
principal submatrices is singular. It can be also used for solving band
systems with a different number of non-zero super and subdiagonal lines
or with matrices of semi-band form, but then the elements of the upper-
most line above the diagonal have to be non-zero.

3. A parallel matrix inversion algorithm

Let us assume that it is necessary, along with the solution of Az = b,
to know also some rows or columns of A~ Such a problem can ocecur
for example in the case when we want to obtain the solution of an equa-
tion By = w on the basis of the solution of Az = b, where B differs only
slightly from 4, so that B is naturally thought of as a modification of A [8].
Therefore it is useful to know algorithms which make it possible, on the
base of the solution of Az = b, to compute some selected rows or columns
of A1, In the sequel such a parallel algorithm will be designed. The
procedure is based on the following assertion.

LeEMMA 2. Let A be a matriz as in Lemma 1. Then for the elements
ay of the matriz A7, 1 <j, 1 =1, ..., n, the following relations hold:

I1.
(1) (2) (m) -1
al,n—m+1 a],n—m+2 e aln zn—m+l z’zm;m+1 z?—)m+l
1 2 mn
{9) Ay n—m+1 G2n—mys o+ Cap — Znimi? Prn—mis 0 Fp—m42
(1 (2 (m
am.n—m+1 am,n—m+2 e amn zn) ”n) zn)
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12.
(10) [aj11 Ay oeey aj.n—m]T = - [aj,n—m+1) Qi 2y <o) ajn]‘s':
J=12,...,m;
I3.
(11) ey = — 2 aydd,  J=m4l, m+2,...,m 8 =1,2,..,5—m.

k=l

Proof. Let us consider the matrix A~! in the form

M, M

-1 __ 1 2

47 = [M 8 M4]

where M, and M, are square matrices of order m and n— m, respectively.

Matrices M; and M, are partitioned conformably with M, and 2f,.
I1. From the equation 44~ = I, we have

(12) CM.+TH, = O(n—m)Xm9
SM, =1,.
By the elimination of 2, we obtain

—8(yWy® ...y, = T,

i.e.

2 1 Bt s - B
(13) My =(-S@uWyB .y t=] ... . . L

AV 2m)

12, The validity of (10) follows from A™'A = I, because we get
from it M, T = -1, 8.

I3. Let a.; represent the jth column of A~, where m < j <. Then
Aa.; = ¢;, where ¢; is the jth column of I,. According to Lemma 1 the
last % —m components of a., fulfil

m

0 3 :
{14) gty = A7 — 2 akjé Yy i=1,2,..,n—m,
E=1

where %™ is the solution of the band triangular system

T On—m (oh _
[5 2o o

It can be easily seen that y =0, for ¢ =1,2,...,j—1, and therefore

{14) reduces to (11).
The algebraical complexity of the stages I1-I3 is the following.
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Stage I1l. Any column of the inverse matrix of order m by Gaussian
elimination with pivoting requires 3m(logm—1)+0O(log*m) steps using
(m —1)? processors. In the same time all columns can be computed using
no more than m(m —1)% processors.

Stage I2. The system (10) can be readily adapted so that Algorithm
IT [2] may be nsed for its solution. Then this stage requires, with the
computation of the right-side vector, (2-4log2m)log(n—m)—(1/2)x
X (log?2m -+ log2m — 2logm) + 4 steps and 3m®n - mn — 8m?® processors,

Stage I13. The computation of (11) comsists of (n—m)(n—m-4-1)/2
independent scalar products of two vectors of length m, which can be
performed using (1/4)(mn?—(2m—1)mn)+4-0(m?) processors in logm-+1
steps.

Thus we can state a theorem.

THEEOREM 2. Let A be a matriz as tn Lemma 1. Knowing the elements
2D i=1,2,...,m; i =n—m-+l,...,n, the upper triangular portion of
A~ can be computed in (2+4log2m)log(n—m)+0(mlogm) sieps using
(1/4) (mn2 — (2m ~1}mn) +0 (m?) processors.

From the above theorems it follows that for a symmetric matrix 4
and for an » which is a power of 2, the solution of Ax = b and A~?! can
be obtained in (4-+log4m?)logn+0(mlogm) steps using mn?/4 +0(m2n)
processors, For a tridiagonal symmetric matrix this means 6logn +0(1)
steps using n(n—1)/4+0(1) processors.

If A is not symmetric, but all the elements of the lowermost line
below the diagonal are non-zero, it is also possible to compute the lower
triangular portion of A~! in such a way that the stages E1, I1, I2, I3,
are applied to the matrix AT (AT denotes the transpose of .4). The num-
ber of time steps remains the same but the number of processors is doubled
in such a case.

The algorithm for computation of A~' has the same drawbacks as
the algorithm for solving Az = b. Therefore it seems to be reasonable,
when implementing these algorithms, to use a double word length. This
will have a practical effect on stabilizing the algorithms and redueing
the error bounds.
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