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REMARKS ON PEBBLE GAMES ON GRAPHS

Abstract. We briefly survey some applications of pebble games to main problems in the
¢omplexity theory. In the second part of the paper we analyse a new pebble game introduced by
the author and related to the complexity of parallel computations. This new game changes the
Structure of the graph during the game, adding some extra edges, whxle previously known games
are played on static graphs.

1. Introduction. Directed acyclic graphs (dags, for short) can be used to
describe the structure of a computation. Each node of the graph can
Tepresent a piece of information, initially unknown, which should be comput-
ed. Instead of saying that this information for a given node x is computed we
say that x is pebbled. Such an abstraction allows us to forget about many
technical details and to concentrate on the structure of the computation
graph.
| Dags can be viewed as generalizations of trees. Such notions as root
leaves, father, sons are defined for dags in the same way as for trees. We
assume throughout the paper that the number of sons is bounded by a
Constant.

The dag G models a computation associated with its root if initially the
information asociated with its leaves only is known. To compute information
Ielated to a node x we need information associated with its sons. This
Implies the following rules of the black pebble game (pebble game, for short).
At any point in the game some nodes will have pebbles on them (one pebble
Per node). If all sons of a node have pebbles on them, a pebble may be
Placed on that node (hence a leaf can always be pebbled); a pebble may be
Iemoved from any node. The goal of the game is to pebble the root.

We show how the pebbles are related to variables in straight-line
Programs. Such a program is a sequence of assighment statements

X =W, x3:= W, v Xgi= Wy
Where W, are some algebraic expressions involving O (1) number of variables

X (for a given W,, k <i). W, involves zero variables iff it is a constant. The
Computation graph for the straight-line program is constructed as follows.
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The nodes are variables x,. The root is x, and the sons of x; are all
variables occurring in W;. The minimum number of pebbles needed to pebble
the graph corresponds to the minimum number of variables needed to
compute x,. Hence the space complexity corresponds here directly to the
number of pebbles. The natural combinatorial question is: what is the
minimum number of pebbles with respect to n, where n can be interpreted as
the time of the original program? However, if we decrease the number of
variables (pebbles), then computation time can increase. This corresponds to
another fundamental problem in complexity theory: time-space trade-off.

2. Pebble games and question in complexity theory. The presentation in
this section is informal. We shall refer to the bibliography for many details.
The main problems in complexity theory concern relations between time and
space, and between types of computations: dcter:mmstlc nondeterministic,
parallel, sequential.

Let X > Y mean that X is, computationally, essentially stronger than Y,
where X and Y are resources (time, space) or types of computation. We
consider the following problems:

(1) space > time (see [3]);

(2) time-space trade-off; less space more time is needed (see [6]);

(3) nondeterministic time > deterministic time (see [9]);

(4) nondeterministic space > deterministic space (see [4] and [6]);

- (5) parallel time > sequential time (see [1]).

Graph-theoretic results about pebbling gave affirmative answers to
problems (1), (3) and (5), and gave some insight into problems (2) and (4).

The black pebble game defined in the Introduction corresponds to
deterministic sequential computations. Another game, called a white-black
pebble game, was introduced to model nondeterministic computations. Be-
sides black pebbles we have here also white pebbles, which correspond to a
nondeterministic guessing of information (such guessing should be verified
later). The rules for black pebbles are as before. The rules for white pebbles
are: a white pebble can be placed on any node; a white pebble may be
removed from a node if all its sons are pebbled. The goal of the game is to
place a black pebble on the root or to place a white pebble, which later is
removed (verified), starting and ending with no pebbles.

Yet another pebble game, called a two-person game, was introduced to
model parallel computations. The two-person pebble game is played between
two players, called the Challenger and the Pebbler. The Challenger begins by
placing his token, called the challenge, on some node. The Pebbler responds
with placing -some of his tokens, called pebbles, on some set of nodes. The
pebbles are never removed. In each succeeding round, the Challenger may
leave the challenge where it is or may move it to a node pebbled by the
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Pebbler in the immediately preceding round. If, in the move of the Challen-
ger, each node which can be challenged has all its sons pebbled, the Pebbler
Wins. It is clear that the Pebbler always has the winning strategy, e.g.
Pebbling all nodes in the first move. We say that the Pebbler wins in R
founds and time T if he has a strategy that ensures that he wins after making
at most R moves and placing a total of T pebbles.

Now counterparts of problems (1)5) in the pebbling theory can be
formulated as follows:

(1'y Every dag G of size n can be black-pebbled using O (n/log n) pebbles
(see [37]). n corresponds here to time and the number of pebbles to space.
There are graphs which require such a number of pebbles, they are construct-
ed using difficult graphs called superconcentrators (see [10] and [2]).

(2) Let S,(n) = n/loglog(n) (S, is a space-jump function). Then there are
Constants ¢, ¢, such that if S(n) = ¢,'S,(n), then every dag G of size n can be
Pebbled using S(n) pebbles in polynomial time; if S(n) < ¢, S;(n), then there
are graphs of size n that can only be pebbled with S(n) pebbles in
Superpolynomial time (see [6]).

(3') Let G be a computation graph of a multitape Turing machine (see
[9] for the definition) or, more generally, let G be the dag with page number
bounded by a constant. If n is the size of G, then the Pebbler can win in two
Tounds and time T = O (n/log* (n)), where log*(n) is the iterated logarithm. T
Corresponds to the parallel time measured by the depth of alternating
Computations. The correspondence is very technical and we refer the reader
to [9]. The main application to complexity theory here is the following
Tesult: nondeterministic linear time is essentially more powerful than determin-
istic linear time (this solves the problem similar to P = ?NP, where polyno-
Mial is replaced by linear).

(4) There is a class of dags for which there are whlte-black pebblmg
Strategies that use asymptotically less pebbles than black strategies (see [16]).
f- S(n) white-black pebbles suffice for a given dag, then O(S?(n)) black
Pebbles suffice (see [7]).

(5') For every dag of size n there is a winning strategy for the Pebbler
With T = O (nflogn) pebbles in the two-person game. This implies a parallel
Speedup by the factor logn for some models of parallel computations (see

.

3. A parallel pebble game on trees. As a model of parailel computation
We consider the parallel random access machine without erte conflicts (P-
R~AM for short), see [12]. The action of the instruction

foracS parallel do instruction(a)

Consists of: assigning a processor to every aesS, assigned processors have
ACcess to their value of a; executing each instruction(a) simultaneously. The
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processors can use common memory; however, two different processors
cannot attempt to write into the same memory location simultaneously.
Let T be a binary tree of size n, where by size we mean here the number
of leaves. Denote by T, the subtree of T rooted at x. Associate with each
node x a node cond (x); initially cond is the identity function. We say that a
node x is activated iff cond(x) # x. We treat the pairs (x, cond(x)), if x is
activated, as the additional edges. We show later in examples how to
compute the information associated with a node x (pebbling x) if we know
some information corresponding to the edge (x, cond(x)) and if the node
cond(x) is pebbled (which means that information associated with cond (x) is
known). The main role of additional edges is that we can pebble x iff cond (x)
is pebbled. We define the operation activate, square and pebble as follows:

activate:
for each nonleaf node x parallel do ,
if x is not activated and one of its sons is pebbled, then set cond(x) to
the other son; if both sons are pebbled, then one of them is (arbitrarily)
chosen.

square:
for each nonleaf node x parallel do cond(x) : = cond (cond(x)).

pebble:
for each node x parallel do if cond(x) is pebbled then pebble x.

Let one pebbling move (move, in short) consist in executing the
sequence of operations activate; square; square; pebble, in that order.
Initially, all leaves are pebbled.

Remark (added in proof). This is related to Rake and Compress
operations in [8]. Our game and a construction from [8] were introduced
independently. In fact, the first version of the parallel pebble game (slightly
different from the game introduced here and without proof) was presented by
the author in 1984 (see [13]). The theorem below does not follow from the
result in [8]. i

THEOREM 1. Let T be a bmary tree with n leaves, all initially pebbled.
 Then after [logn | moves the root of T is pebbled.

Proof. We consider a modified pebbling move consisting of the follow-
ing sequence: pebble; activate; square; square. It is enough to prove that
after [logn1+1 such moves the root will be pebbled. Observe that if the
node is pebbled after k+1 such modified moves, then it is pebbled after k
originally defined moves, the first pebble operation and the last operations
activate, square, square are redundant in this context Let size(x) denote the
number of leaves of T, and :

size (x/y) = size(x)— sizre( y).
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¥y is a descendant of x, then size(x/y) is the size of T, with gap y. The
Modified moves are numbered from 0 to [logn |.

CLaM. After the k-th modified move the following invariants are preserved:

(11) if size(x) < 2* then x is pebbled; '

(12) size(x/cond(x)) = 2* or both sons of cond(x) are not pebbled or
Cond(x) is a leaf.

The proof is by induction on k. After the move O all nodes of size 2° are
Pebbled, since they are leaves. Hence (I1) holds. (I2) also holds.

Assume now that (I1) and (I2) hold after the move k—1. First we prove
that (1 1) holds after the move k. Let x be a node such that s1ze(x) < 2*. Then
€ach nonleaf node of T, has a son of size not greater than 2*~!. This implies
that every nonleaf node after the move k—1 has one of its sons pebbled.
Hence (I2) implies that after the move k—1 '

size (x/cond (x)) > 2*~!

Or cond(x) is a leaf. In both cases cond (x) was pebbled after the move k— 1,
Since if it is not a leaf, then

size (cond (x)) < 271,
because size (x/cond (x)) = 2*'. In the move k the operation pebble places a
Pebble on x. This proves (I1).

Next we prove that (I2) holds after the k-th move. Let cond(x) = y after
the move k—1. We know from the inductive hypothesis that y is a leaf
(Which ends the proof), or both sons of y are not pebbled or size(x/y) = 2¥~1,

€ consider the last two alternatives.

Case 1. size(x/y) = 2~ 1.

Let z = cond(y) after the move k—1. If size(y/z) > 27, then after the
Operation square

size (x/cond (x)) > 2*

If not, then both sons of z were not pebbled after the move k—1 or z was a
leaf, 1¢ s enough to consider only the first possibility. Let z, and z, be sons
of z. We need to consider only the case where one of them, say z,, is pebbled
In the k-th move.
size(z,) > 2*~ !, because z, was not pebbled in the previous move. Now
¢ operation actlvate sets cond(z) to z,; hence

size (z/cond (z)) = size(z,)

at this moment, and after two operations square cond (x) =z5, where z; is a
descendant of z3,

size (x/cond (x)) > size(x/y)+size(z,) 2
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Case 2. y is not a leaf and both sons of y are not pebbled in the move
k—-1.

Let z, and z, be the sons of y. We consider only the case where one of
Zy, Z5, Say z;, i1s pebbled in the k-th move. The operatlon activate sets
cond(y) to z,. We have

size (y/z,) = size(z,) > 2¥71,

because z, was not pebbled in the move k—1. After the first operation
square we have

cond(x) =z, and size(x/cond(x)) > 2¢" 1,

We have now one more operation square. Let v be the value of cond(z,)
after the move k—1. If size(v/cond(v))>2*"", then now after the next
operation square cond(x) is set to a descendant of cond(v) and
size (x/cond (x)) > 2*. Otherwise, we consider the subcase where the sons v,
and v, of v are not pebbled in the move k—1 and one of them is pebbled in
the move k. Assume that v, is pebbled. It can be proved analogously (as for
the node z before) that after the operation activate (in the move k) cond (v)
= v, and size(v/v,) > 2*~1. In the first operation square, cond(z,) is set to
v,. At this moment we have cond(x) = z;, cond(z;) = v,. In the second
operation square, cond(x) is set to v, and -

size (x/cond (%)) = size(x/z,)+ size (v/vy) >

The invariant (I2) is preserved.

If none of the sons of v is pebbled in the move k or v is a leaf, then the
invariant is also preserved; after the move k we have cond(x) = v and it will
be a leaf or both its sons will not be pebbled. This completes the proof of the
Claim and of the theorem.

THEOREM 2. For each n there is a tree with n leaves which requires
[lognl moves to pebble the root. |

Proof. It is enough to consider only the numbers n which are powers of
2. In this case the regular full binary tree with n leaves satisfies the assertions

One can ask if analogous results hold for any binary dag. The paraliel
pebble game works in the same manner for binary dags as for binary trees:

THEOREM 3. For n > 3 there is a binary dag which requires L(n— 2)/2,|
moves to pebble the root, where n is the number of nodes.

Proof. We construct the required graphs G, recursively. G, has nodﬁs
1, 2 and 3. The nodes 1 and 2 are sons of the node 3. The graph G,,, 15
constructed from G, by addmg the node n+ 1, which is the root, and whos¢
sons are n and n—1. After the first moves, nodes 3 and 4 are pebbled. Aftef-
the second, nodes 5 and 6 are pebbled, and so on. The root is pebbled aftef
L(n—2)/2] moves. This completes the proof.
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- It can be proved_that for binary dags G the number of moves is bounded
by rlog (tree-size (G))_|, where tree-size(G) is the number of paths from the
Toot to a leaf. Tree-size of the graphs G, is exponential.

We show two applications of the paraliel pebble game to compute
certain functions on trees. _

(1) Let val(x) be a value associated with each node of the tree, and let
© be an associative binary operation computable in constant time. We
compute for each node x the value

result (x) = val(y,) ©val(y) ©... ©val (3,

Where y,, y,, ..., )4 are all nodes of the subtree T,. Typical examples of the
Operation © are mm(vl, v,) or usual addition of numbers Our algorithm to
Compute result(x) is pebble-driven. We use the auxiliary table res and we
maintain the following invariant during the parallel pebbling:
If node x is pebbled, then
- res(x) = result (x)
else if cond(x) = y, then

res(x) = val(y,) ©Val(yz) ©.. ©Va1 ),

where y,, ..., y, are all nodes which are in the subtree T, and which are not
m the subtree T,. Whenever we are executing the operation square or pebble,
then we execute simultaneously

res(x) : = res(x) ©res(cond (x))

Whenever we execute the operation activate and we set cond(x):=z,
because the other son z, is pebbled, then we execute simultaneously

res(x) : = val(x) ©res(z,).

In this way, after pebbling the root, the value of res(x) equals the
fequired value result (x). Hence we can compute such a function on a tree in
logn parallel time using a linear number of processors on a P-RAM. If
val(x) = 1 for each node x, then the computed function is the number of
descendants of each node. |

(2) Define height(x) to be the length (number of edges) of the longest
Path from x to a leaf. We use auxiliary tables h, 1. We maintain, during the
Pebble game, the following invariant:

If x is pebbled then h(x) = height(x) else h(x) is the height of x in the
Subtree of T, with cond(x) treated as a leaf, hl(x) is the length from x to
Cond (x).

Whenever we perform the operation square or pebble, then we execute
Simultaneously:

h(x) 1= max (h(x) hi(x)+ h(cond (x)), hl(x):=hi (.x)+ h1 {cond (x)).
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When we set cond (x) : = z, in the operation activate because the other son Z4
of x is pebbled, then we execute

hl1(x):=1, h(x):=h(z,)+1.

In this way we compute height(x) in O(logn) parallel time on a P-RAM.
Analogously ‘we can compute the length of the shortest path from x to a leaf.

We introduce now another very simple game, which we call the top-
down game. The operations squar¢ and pebble are as before. Introduce the
operation activatel:

for each node x and its sons zy, z, parallel do cond(z,):= x; cond(z,)
=X,

The following fact can be easily preved:
Facr. After performing the sequence of operations

activatel ; (square)*; pebble,

each node is pebbled if initially the root is pebbled and k =[logn .

We describe an application. Let val(e) be a value associated with an
edge e. Let

result (x) = val(e,) ©val(e,) ©... ©val(e),

where e,, ..., ¢, are edges on the path from x to the root and © is an
associative binary operation, x is not the root. Introduce the table res(x) and
maintain, during the top-down game, the invariant

res(x) = val(e,) ©... ©val(e),

where e, ..., e, are edges from x to cond(x). Whenever we perform the
operation square, we execute simultaneously

reés(x) : = res(x) ©res(cond (x))

if cond(x) is not the root. In this way we compute the function result in logn
parallel time. When the node is pebbled, then res(x) = result(x). _

Let z, and z, be the left and the right sons of x, respectively. Define
val(z,, x) =0 and val(z,, x) = number of descendants of z,. Let © be the
addition of numbers. Now we can number the nodes in postorder if for each
node x we sum the value of result(x) and the number of descendants of x. In
a similar manner we can compute the preorder numbering of the nodes of a
given binary tree. The techniques can be generalized to trees with a larger
number of sons. The parallel preorder and postorder numberings of the tree
were computed in [4] using Euler tour technique; we have given an
alternative method, based on pebble games.

ConcLusioN. Pebble games show how graph-theory and combinatorial_
analysis can be used to obtain important results in complexity theory. Pebble
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8ames are also useful in the design of algorithms. We can say that the
algorithms obtained are pebble-driven. The algorithmic techniques obtain
are quite general. -
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