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The Dirichlet problem for any elliptic second-order equation with sufficiently
smooth coefficients in a domain with sufficiently smooth boundary is always
Fredholm [7]. For systems of second-order equations the situation is much
more complicated. As shows the example of A. V. Bitsadze [2], the Dirichlet
problem for systems of two second-order equations may not even be normally
solvable in the sense of Hausdorfl. Systems of second-order equations were
divided by A. V. Bitsadze into two classes: strongly connected and weakly
connected systems [2]. For a strongly connected system without lower order
terms the well-posedness of the Dirichlet problem is always violated in some
half-plane [10], and for a weakly connected system the Dirichlet problem is
well-posed. So far, elliptic systems of second-order partial differential equa-
tions with constant coefficients have been studied fairly thoroughly [7].
Compared with the system of A. V. Bitsadze, nothing new arises in the
general case. Multidimensional systems of equations with constant coeffi-
cients and systems with variable coefficients are not well investigated.

The example of A. V. Bitsadze has considerably stimulated the investiga-
tions in the theory of elliptic systems of partial differential equations and has
shown that such systems should be classified more accurately. The first result
in the classification of elliptic systems was the singling out of the class of
strongly elliptic systems [13] for which the solvability character of the basic
boundary problems remains the same as for one elliptic equation. For well-
posed classical boundary problems the index is a homotopy invariant,
therefore it is natural to state the problem of homotopy classification of
systems of partial differential equations [5]. For systems of partial differential
equations with two independent variables this problem has been solved [4],
but for multidimensional elliptic systems there are only various estimates of
the number of homotopy classes [3].
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The definition of a strongly connected elliptic system of second-order
partial differential equations with two independent variables and with con-
stant coefficients is given via the structure of the general solution of the
system [2]; moreover, it is not explicitly expressed by means of the coeffi-
cients of the system. This makes it more difficult to generalize the notion of
strong connectedness to multidimensional systems. Since for strongly connec-
ted systems with two independent variables there is always violation of the
noetherity of the Dirichlet problem, we make this property a basis of our
generalization of the notion of strong connectedness to the multidimensional
case.

DerFiniTiON. An elliptic system of second-order partial differential equa-
tions with constant coefficients is called strongly connected if there exists a
half-space H = |y x; + ... +a,x, > 0} such that for the Dirichlet problem in
this half-space the noetherity is violated. Violation of noetherity of the
Dirichlet problem for the given system implies that the homogeneous prob-
lem has an infinite set of linearly independent solutions, or that for the
solvability of the nonhomogeneous problem it is necessary to impose an
infinite set of orthogonality conditions on the problems under consideration.

At present, all the facts known about the number of distinct homotopy
classes of multidimensional second-order elliptic systems are based on the
construction of examples of strongly connected systems not homotopic to
each other [3, 9]. Therefore the investigation and construction of the
classification of strongly connected systems is an important step in the
homotopy classification of elliptic systems. Overdetermination or underdeter-
mination measure of the Dirichlet problem is a fairly simple characteristic of
strongly connected systems, therefore in the investigation of elliptic systems it
is important to have a description of these characteristics and to know their
dependence on the structure of the system. Here we consider the properties
of a number of concrete strongly connected systems and mention some
questions arising when investigating general elliptic systems with constant
coefficients.

Among multidimensional strongly connected systems there is a well-
known system which is obtained from the system
¢ & Oy

ji=1

0, j=1,...,ni>1,

for A = 2, and for n = 2 reduces to the system of A. V. Bitsadze; therefore it
is natural to consider it to be a multidimensional analogue of the system of
A. V. Bitsadze [14]. It is easy to show that all solutions of system (1) which
are regular in the half-space H = {&; x, + ... +a,x, > 0} may be written in
the form

a
(2) uj=q0j+(a1x1+...+anx")5x‘-, j=1,...,n,
J
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where ¢;, j =1, ..., n, and y are arbitrary harmonic functions regular in the
half-space H connected by the relation

0p; (7 u _a_ﬂl’_
G Ai;1 73; == igl % ox;

By means of formulae (2) and (3) it is easy to find out that for A # 2 the
Dirichlet problem for system (1) in any half-space is solvable for any
differentiable boundary data, and its solution is always unique. If A = 2, then
the homogeneous Dirichlet problem for system (1) in a half-space has an
infinite set of linearly independent solutions of the form
u; ={a; x;+ ... +a,,x,,)—2l, j=1,...,n.
Xj

The underdeterminedness of the homogeneous Dirichlet problem is character-
ized here by one, arbitrary harmonic function y regular in H. For 4 =2
equality (3) turns into a relation connecting the functions ¢;, j =1, ..., n. To
the system of this relation, for the solvability of the nonhomogeneous
Dirichlet problem it is necessary to impose an infinite set of orthogonality
conditions upon the boundary data. '

Thus system (1) for 4 = 2 is strongly connected, and for 4 # 2 it is not
so. This example shows that the property of the system to be strongly
connected i1s not a homotopy invariant: it may disappear after a continuous
deformation of the system.

For solutions regular in the ball £ = {x}+ ...+ x} < R*} we have the
representation [10]

N
ox;’

J

where x,,..., x», ¥ are harmonic functions regular in the ball £ and
satisfying the relation

22-4) & " O,
) Ez_z)glx,.%uw:x; <

@) u;=y;+ (x}+ ... +xZ—R? i=1,..,n,

n—>2

Using formulae (4) and (5) it is easy to show that the Dirichlet problem in

the ball X for system (1) is solvable for any differentiable boundary data and

its solution is unique for all 4 > 1 except

n—2
k

).,,=2+ ,. k=1,2,

For A = 2 the Dirichlet problem is also solvable and the solution is unique,
but it is necessary to have twice differentiable boundary data. For all 4 = 4,
the Dirichlet problem in X is Fredholm; moreover, with the growth of k the
number of linearly independent solutions of the homogeneous Dirichlet
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problem grows unboundedly. For those 4 it is sufficient to have differentiable
boundary data.

The above example shows that for strongly connected systems various
new phenomena in the character of the solvability of the Dirichlet problem
may occur which have no analogies in the case of one second-order equation.
Among such phenomena one should mention the loss of smoothness and the
influence of lower order terms upon the solvability of boundary problems.
The phenomenon of the influence of lower order terms is known for
equations with two independent variables [7], and for multidimensional
systems it can easily be shown by the example of the system

Ou;
— =0, j=1,...,n.
(6) Au; +28x1 .Zx o + cu; j=1,..,n

The system
(7) L(u,)+ Z Z v j=1...,n,

Jtlkl

where L is a fixed elliptic operator with constant coefficients, is a direct
generalization of system (1). Upon the jth equation of system (7) we act by
the operator

. 0
lj = kgl a_’-ka—xk

and add all the results. Then for the function

Q= o
lkz:l ka Xk
we obtain the equation (M —L)Q = 0, where
: »
M=
',‘Zla;k 0x; 0%

It is easy to verify that for the ellipticity of system (7) the ellipticity of the
operator M is necessary and sufficient. If the characteristic form of the
operator M,

x(2) = Z @5 6i )

ij=1
is not divisible by the characteristic form of the operator L,

A(E) = Z aijéiéja

i,j=1

then it is easy to show that all solutions of system (7) which are regular in
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some domain D may be written as

.
(8) uj:(pj+aj9 J=1,'--sna
where ¢;, j =1, ..., n, are solutions of the equation L(¢;) = 0 regular in the
domain D and connected by the relation
. do;
9 a;— =0,
i.jz=l ! ox;

and ¥ is a solution of the equation N(y¥) =0 regular in the domain D.
Moreover, N = M — L. If the domain D is a half-space, the Dirichlet problem
for system (7) may be investigated by means of the Fourier transformation,
using formulae (8) and (9). This allows one to determine which systems of the
form (7) are strongly connected.

Consider a specific case of system (7) in a three-dimensional space:

0
—Au+—Qwu,v,w) =0,
Ox

0
(10) —Av+—Q(u, v, w) =0,
dy

—Aw+£Q(u, v, w) =0,
0z

Q= a; u+ pu,+yu, — o, +a, v,+ v, —yw,—ow, +az w,.
Here L is the Laplace operatof, and the operator N has the form
az 2 62
N = (13—1)52—2+(a2—1)w+(a1—1)w

Therefore system (10) is elliptic when the «;, i = 1, 2, 3, are all smaller than 1
or all larger than 1. Formulae (8), equality (9) being taken into account, may
now be written in the form

u= 7qox+5cpy'_a3 (pz+wxa
(11) v =yl)[/x+6"l’y'_a3 l11’2-*_(’-)):7

W =a, (px+ﬁ¢y+'y(pz _ﬁIIIx+a2 \Ily_'_‘s'wllz +w,,
where ¢ and  are arbitrary harmonic functions, and ® is a solution of the
equation N (w) = 0.

We will study the Dirichlet problem for system (10) in the half-space H
= {z > 0} with the conditions

(12) u=f, v=/f, w=f;
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on the boundary of H, by means of the Fourier transformations in the
variables x and y. The Fourier transforms of the functions ¢, ¥ and w,
bounded on infinity, have the form

A(G, mexp(—egz), B(, mexp(—e2), C( mexp(—e,2),
o =(E*+n)2, oy = {las 1) [(ay — 1) €2 +(a, — D) p*]} V2

Passing to Fourier transforms in (11) and (12) and substituting (11) into
(12), we obtain a system of linear equations for the functions 4, B and C
with determinant given by the formula

(13) D . n)=(e1—0[—ase+i(yc+mILE+on+az0,—01—e].

The determinant D (¢, n) may be zero at points different from the point
& =n = 0 just due to the first and the third factor, and it may be identically
zero only due to the third factor. For D(&, n) to be identically zero, it is
necessary and sufficient that

PK+on=0, (x3—1)g;,—e=0,

hence it follows that
(14) y=8=0, o =0, ay=o,(a,—1)""

From the ellipticity of the operator N it follows moreover that a«, > 1,
a, > 1, a3 > 1. Conditions (14) guarantee the strong connectedness of system
(10). However, system (10) may also be strongly connected when conditions
(14) are violated, since the noetherity of the Dirichlet problem for (10) may
be violated in another half-space, not necessarily in the half-space H. For
instance, for § = y = é = 0 the noetherity of the Dirichlet problem for (10) is
violated in the half-space G = {x > 0} if

x; = a3, a1=a2(c12—1)_1.

Thus generally speaking, from the strong connectedness of a system there
does not follow the violation of the noetherity of the Dirichlet problem for
the system in any half-space.

For a, > 1, a; > 1 and a; > 1 system (10) is homotopic to a three-
dimensional system (1) with A > 1. Concerning the above example it is
natural to ask the following two questions. Is it possible to deform two
strongly connected systems contained in the same homotopy class into each
other without leaving the set of strongly connected systems? May strongly
connected systems fill in an open set in a homotopy class?

For a3 < 1, the determinant D (&, n) may be zero only due to the first
factor, but this does not affect the well-posedness of the Dirichlet problem
since system (10) for a; <1, a;, <1, a3 <1 is strongly elliptic. For a; > 1,
a, > 1, ay > 1, this determinant may be zero if

(15) Y+dn=0, (x3—1eg, =g¢.
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Equalities (15) may hold simultaneously at points different from the point ¢
=n = 0 iff the quadratic form

NAFI A FI A

is not of fixed sign. The function D is zero on the straight line [ = {y&+dp
=0, y2+6* £ 0} if

(52 (al - %3 ""}’2 (az— % = 0,
ay—1 oy —1

but if y =6 = 0 and the form o (¢, ) is not of fixed sign, then D is zero on
two straight lines. These zeros of the function D undoubtedly influence the
solvability character of the Dirichlet problem, but their influence requires a
further study. Note that for strongly connected systems o (&, n) = 0. The
cases when D is zero at some points different from ¢ =# =0, but is not
identically zero, have no analogies in the theory of systems with two
independent variables, their study is therefore of great interest since new
phenomena may be discovered here.

To every elliptic system of first-order partial differential equations with
constant coefficients one may, in a standard way, associate a strongly
connected system of second-order equations [11]. We take a system of m
first-order equations in a space of n independent variables in the form

Ou ” Ou
16 —+ ) A;— =0,
19 0x4 l';.’. 0x;
where u = (u,, ..., u,,) 1s a vector and A; are quadratic (m x m)-matrices. For

the ellipticity of the system it is necessary that m be an even number. Denote
the operator on the left-hand side of the system by
0 " ¢
D=—+ ) A—
o, Sy O
and consider the system of second-order equations
(17) D*v=0, v=(vy,..., V).

It is easy to show that all solutions of system (17) which are regular in the
half-space H = {x; > 0} may be represented as v = u+ x, w with Du = 0 and
Dw = 0. Hence it follows that the homogeneous Dirichlet problem for (17) in
the half-space H has an infinite set of linearly independent solutions of the
form v = x, w, where w is a solution of the first-order system Dw = 0, regular
in H; and for the solvability of the nonhomogeneous problem it is necessary
that the vector f =(/,, ..., f.) of boundary data be the boundary value of a
solution of the first-order system Du = 0, regular in H. It is in this way that
the first examples of multidimensional strongly connected systems [1, 6] have
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been constructed; moreover, the initial first-order systems taken were multi-
dimensional generalizations of the Cauchy—Riemann system.

In [15] the following generalization of the Moisil-Theodoresco system is
given: )
u,+v,+w,—as,—bs, =0,

Sx—U,+w,+au,+bu, =0,
S, +u, —w,+av,+bv, =0,
S, +v,—u,+aw,+bw, =0.

System (17) constructed by means of this first-order system falls into an
equation with respect to the function s,

L(s) = As+a?s,,+ 2abs,,+ b?s,, = 0,
and the system of three second-order equations

0 )
—L(u)+2 (u +v +w,)+2a (au,+bu,,—v,+wy)
0 :
+2b5}—](aux+buy—vz+wy)=0

0
—L(v)+2 (u,‘+v +w,)+2a (av +bv,+u, —w,)
(18) 5
+2b—(av,+bv,+u,—w,) =0
dy

0 0
—L(w)+2 (u +v, +w,)+2a—(aw +bw, 4+ v, —u,)

)
+2ba—y(aw,+bw,+v,—-uy) = 0.

This system is strongly connected.

The fact that system (17) may decompose as-above makes the study of
strongly connected second-order systems more difficult because distinct first-
order systems may generate equivalent strongly connected systems. Using
this property, V. I. Shevchenko [8] constructed an example of a strongly
connected system of three equations

0
—Adu+2 —(u +v, Tw,) +2 (u,+v w,) =0,

0 0
(19 -—Av+2 (u +o,+w,)+2 (v,+w u,) =0,

d
— (W, —v,+u) =0

ot

—Aw+2—(ux+v,,+w,)+2
cz

with four independent variables.
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In one specific case, in the above-mentioned way, one may construct a
family of strongly connected systems depending on a parameter. Consider the
first-order system

u—— Z 0, u=(uy,...,u,), m=2k,

such that the matrix E&, + Z,L,_A,- ¢; is skew-symmetric, and introduce the
operator

A¥
axl + JZZ

where A} is the transposed matrix. It is obvi01_Js that D+ D = 2E(0/ét) where
E is the unit matrix, and the operator DD = DD is strongly elliptic since the
product of a matrix by its transpose is positive-definite. Put

Ou
'6x

since for skew-symmetric matrices we have A¥ = — A;,. Hence

Du— Du—2Bu—22A

ou _ du
Du = —+Bu Du = — — Bu,
Ox, ox,

_ é
Du+ ADu = (1+,1)5xi+(1 — A)Bu,
1

where 4 is a real parameter. Thus for 1 <1 the operator D+ AD, upon
substituting the independent variable x, = (1+4)(1 —1)" ! 1, may be reduced
to the operator D, and for A > 1, upon substituting x, = (A+1}(A—1)"1'1,
this operator is reduced to the operator D. By these properties of the
operators D and D it is easy to write out the representation of solutions of
the systems

(20) (D+ AD)(Du+uDu) =0, A+ p.

A solution of system (20) is expressed as follows:

1-4 1-
u=q@, (mxl, ey x,,)+d§2 (1+Zx1, cies x,,), A<l u<l,

A-1 1—pu
21) u=V¥ Txl,...,x,l + X1, en X )y, A>1,pu<l,
U

A—1 -1
u:Wl(mxl,...,xn)'fwz(ﬁ—_xl,...,xn), /1>1,[.l>1,

+1

where @ and ¥ are arbitrary solutions of the systems
D=0 and D¥ =0
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respectively. From formulae (21) one may easily conclude that for A <1, u
<1 and A>1, p>1, the Dirichlet problem in the half-space x, > 0 for
system (20) is not Noetherian, i.e. for these values of the parameters system
(20) is strongly connected. '

To system (16) there corresponds the matrix A(¢) = E&; + ) 1o, A&,
and to system (17) the matrix B(¢) = [A(&)]%. It is obvious that system (17)
falls into systems containing less than m unknown functions iff the matrix B
has a block-diagonal structure. This reduces the problem of decomposition of
system (17) to a purely algebraic problem.

To be able to say anything about strongly connected systems, it is
important to investigate the solvability character of boundary problems for
non-strongly connected systems which are nevertheless homotopic to strong-
ly connected ones, and to expose the new phenomena which appear for
multidimensional systems. It is particularly important to study non-strongly
elliptic systems with variable coefficients which are not well investigated even
in the two-dimensional case.
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