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1. Introduction

In [Si-1] we studied functions f: (C"*?, 0) — (C, 0) where the singular locus
X was a smooth line and with transversal singularities on X — {0} of type
A,. We called those singularities isolated line singularities. In this paper we
generalize this to the case, where Y is a plane curvé in C"*'.

We study the topology of the Milnor fibre with the help of a generic
approximation, which has X as part of the critical locus, and where only
special types of singularities are allowed:

(@) A,-points; local formula w3+ ... +w2;

(b) A_-points; local formula w?+ ... +w3;

(c) D,-points; local formula wow? +wi+ ... +w};

(d) central type: local formula u-g°>+w3+ ... +w? where g(x, y) =0
is a reduced equatton of the plane curve X and u is a unit.

The existence of the deformations follows from work of Pellikaan [Pe].

The homotopy type of the local Milnor fibres of the above elementary
types are as follows:

(a) A,-points: S";

(b) A,-points: $"1;

(c) D,-points: §";

(d) central type: S ' vS§S'v...vS"

The A_-points occur in 1-dimensional bundles along the critical set X.

By methods similar to Lé (cf. [Br]) in the isolated singularity case, we
construct the Milnor fibre of f by gluing together the local contributions.
Our main result is:

THEOREM 3.11. Let X be a plane curve and f. (C"*! 0)—(C,0) a
holomorphic function with singular locus X (f) = X and transversal type A, on
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X — 10} and let *D, > 0, then the homotopy type of the Milnor fibre F of f'is a
bouquet of u,(f) n-spheres, where

() = 2u(Z)+ *A,+ 2% D, —1:

p(Z) = Milnor number of X, *D_ = number of D -points in the generic
approximation with X fixed, *A, = number of A,-points in the generic approxi-
mation with X fixed.

The proof is similar to [Si-1].

The method of the proof gives no result in the case *D = 0. For this
case and the more general case that 2 1s a 1-dimensional complete intersec-
tion singularity (icis) and transversal type 4, on X — {0} we refer to [Si-2]. In
that paper we first compute the homology of the Milnor fibre in terms of
w(X2), “D., and “A,. From the homology and additional information about
the fundamental group from [Le-Sa] we can determine the homotopy type
of the Milnor fibre. which is as folows:

S"v..vS8 il *Dg>0,
sty S§v...vS if *D,=0.

As general references for singularities of functions C"*' — C we mention the
book of Arnol'd-Gusein Zade-Varchenko [Ar]. For the topology of singular-
ities we refer to [Mi] and [Lo]. For non-isolated singularities, see also [Lé]
and [Yo].

Part of this work was done, while the author was a guest at the Institute
des Hautes Etudes Scientifiques (I.LH.E.S) at Bires-sur-Yvette (France) and
the Stefan Banach International Mathematical Center at Warsaw (Poland)
during the Semester on Singularity Theory. We thank both institutions for
their support and hospitality.

2. Generic approximations of the function

2.1. Let X be a 1-dimensional complete intersection with isolaied
singularity at 0e C"*'. We consider f: (C"*!, 0)— (C, 0) a holomorphic
function germ with critical locus X (f) = 2. This situation is treated (in more
generality) in the thesis of Pellikaan [Pe]. On every branch of Z'(f) there is if
z # (0 a well-defined transversal singularity type.

Let g,, ..., g, define the complete intersection 2 as a reduced algebraic
set and let I =(g,, ..., ¢,). Then we have:

S is singular on £ < fel* ([Pe]ll.6).

In this case we can write f =) h;;g;g; with h;€¢,,, and h; = h;. On I and

n

I? acts the subgroup &, of & defined by o, = \p e | o*() = 1!. Let 1,(f)
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be the tangent space to the “y-orbit and J, = (a—a‘_f— —f—{—) the Jacobian
-0 =n
tdeal of f.
Define

1 N &
j(f)=dimc-J—f and c(j)=d1mc;(—f)-,

the Jacobi number and the codimension.

2.2. ProvposimioN ([Pe]). Equivalent are:

(@) c(f) <oo;

(b) j(f) < mo;

(c) the transversal type of f along X — 10} is A,.

Moreover if c(f) < oc then f is finitely determined inside I°.

2.3. We specialize now to the case that £ is a plane curve. We can
choose coordinates

(Zos 21y cven Zg) =%, ¥, 22, ...y 2,)
such that X 1s given by
g, =9g(x,y =0,
g, =2z;,=0,....¢9,=2,=0.

So I =(g.2,,....2,).

If [ is ‘s,-equivalent with u-g*+:z3+ ... +z7 then f is called of ceniral
singularity type (u unit in (|, ). According to the splitting lemma [Gr-Me]
we can suppose in general:

fy.z)= (%, V.22 .. Z)+ 221+ .. 22
with f"e(x, v, z;, ..., 2,)°.

2.4. Consider the following deformation of f with fixed critical locus (cf.

[Pe] (7.18)

L@ = f(xy, Z)+Z ah,lgkgl+z bix zi g
K ik

where we choose the matrix (g, ;) in diagonal form with diagonal elements
(A4 ..y 4, 0,...,0) and seS = {(44, ..., 4,), (b)}.

ProposiTiON. There exists a dense open subset V of S and an open
neighbourhood U of 0 in C"*' such that for all seV sufficiently small

(1) f, has only A,-singularities in U\,

(i} f, has only A.- and D ,-singularities on U X —10!;
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(m) f, has the central singularity type in 0; ‘
(iv) Jjy = * (A -points of f, on U\Z} + *{D-points of f on U N Z} +j; o
where jy o is the Jacobi number of the central singularity.

Proof. Almost all the assertions are shown by Pellikaan ([Pe], I (7.18)).
The special choice of the matrix (g;;) doesn’t influence his proof. A computa-
tion shows that the 2-jet-extension

jZFZ Cn+l XS—'J(ZO)(C"+ 1’ Q

is transversal to the A,-stratum outside X and to the D ,-stratum on £ —{0!.
(For details cf. [Pe]). The assertions (1) and (ii) follow as an application of
Sard’s theorem.

For (1) a more carefull analysis of Pellikaans proof is necessary. Write

* 0
(hij) = (0 In—r).

Since the 2-jet of f is equal to z2.,+ ... +z} this implies that h;em if
2<i<rand 2<j<r (mis the maximal ideal).
Let f, =Y H;;g.g; where

Hu‘ = hu+au-+Zzl b;, 5:‘1‘ = hij"”(}-i‘*'zzx b, 551-

Remark that:
Hj;=h; fori#j
and
Hi=hi+Ai+) z,b,
SO
Hy=A(modm if 2<i<r,

Hﬁ=0 1f!>r+l,
>

H;=0(modm) ifi>2and j>2.
For 4 sufficiently general we can suppose that H; are units. Moreover we
can suppose: det H;; is invertible (this corresponds to Pellikaan’s statement
d5.0=0).

We next transform the matrix (H;;) into a normal form with standard
technics from quadratic forms. We first treat z,. Set

— H23 H2n Hln
2 i=Zy+——2zZ3+ ... + Z,+ g
Ha, H,, " Hy,
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which defines a coordinate transformation on (C"*' 0). Remark z,
=z, (mod m). Also mod m we have:

N *
l
e
(H;)) = * :12 0
|
* I 0 Hll
The form of this matrix and the 2,, ..., 4, are not changed by this coordi-
nate transformation (nb. 4,,, =...=4,=1).

We treat z,, ..., z, in the same way and get
fi=H¥ g*+ A, 25+ ... + 4,22

Since z, =z, (modm) we have (z,,...,2,,9) =(23,...,2,, g). Moreover
det(H;;) remains invertible. So HY, 1s a unit in €,,,. Since f; is finitely
determined we can change coordinates again (by completing squares) such
that HY, i1s a function of x and y only. So f, is right-equivalent to

u-g*+zi+ ... +z}  (u unit in C,). O

25. Remark. 1t can happen that *D_ = 0. In the case of isolated line
singularities, this only happens for type 4.

C. Cox showed me the examples
[ =xyz+2z" (p=22).

The critical locus is the union of the x-axis and the y-axis, the transversal
type is A;. The deformation

fo = xyz+zP+sz?

has the properties:
#Dw=0. #Al =p—-2,

and has central type for s # 0.

Also f =z-g+zP (p = 2), where g = 0 is a plane curve, has the property
D, =0.

Pellikaan [Pe] showed in Lemma 1.7.17, that if X is a reduced 1!-
dimensional complete intersection, defined by the ideal I and *D_ =0, then
there exist generators g, ..., g, of I such that fis equivalent to gi + ... +g72.
This shows that in general there are plenty possible f with *D_ = 0. At the
other hand it is not difficult to degenerate such f to & g2+ ... +g2 (Eem)
with *D_ > 0.

26 - Banach Center « 20
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2.6. Remark. 1t is in principle possible to classify the non-isolated

singularities of this paper in the same way as isolated singularities. Proposi-
tion 2.2 makes this possible.

For the case that X is a smooth line, we refer to [Si-1].
In the case that 2 is of type A;:

gix,»=xy=0, z=0

the beginning of a list of singularities is as follows:

Type f corank | j, ¢ | *A, | *D,
Tm:-,'lu.z xz)’z 2 l 0 0 0
2y (y+x) (n2= 1) 2 2n+2] n n |n+l
Texr xyz+z" (r 2 3) 3 r—1|r=21r=2] 0
xzZ+yz2+xty? 3 5 2 2 2

The list contains all simple singularities and all singularities with *D_, = 0.

27. We next are interested in the Milnor fibres. Let f: (C"*!, 0)
-»(C, 0) and let &, be an admissible radius for the Milnor fibration, that is
€0 > 0 such that for all ¢ with 0 <& < ¢, holds

f~1()haB, (as a stratified set).
For each admissible ¢ > O there exists d(c) > O such that
{1 @A éB, for all 0 <r<de).
We fix now £ < g, and consider 0 < < 8(¢) and take the representative
[ X,=f"'4)nB,—4
where 4 is a disc of radius 4.
LemMa. Let f, be as above. Consider the restriction
fii X405 = 7Y (A B,— 4.

For seS and & > 0 sufficiently small we have:

(1) £ ')A OB, for all te A;

(2) above the boundary circles 04 the fibrations induced by f and f, are
equivalent ;

(3) X, and X, are homeomorphic.

Proof, cf. [Si-2]. O

3. The homotopy type of the Milnor fibre

3.1. From now on we choose s such that f: X,  — 4 satisfies the
conditions of Proposition 24 and Lemma 2.7.
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We ommit the suffix s and write again
f X, 4.

The critical set of f consits of

(a) The 1-dimensional icis X, where local singularities are A, D, or
the central type.

(b) isolated points {c,, ..., c,} where the local singularity is of type A,.

We can suppose that all critical values of f are different (this is mostly
for notational convenience). The critical value O corresponds to the non-
isolated singularities on X. We follow now the construction in [Si-1].

3.2. Define By, B,,..., B, disjoint (2n+2)-balls around c,=0,
co=900¢,...,c,and inside B = B,. Let D, ..., D, be disjoint 2-discs around
f(co), ..., f(c,) and inside D = D, chosen in such a way that we get locally

f: Binf~1(D) — D,
which are Milnor fibrations above D;— {f(c)!

i

Let X* = Y — B, . The number of topological components of X* is equal
to the number of irreducible branches of X. Each branch 2 (k =1, ...,7) is
a disc with one hole.

33. We want to construct a nice tube neighbourhood of 2*. To do this
we consider the map w: (C"*!, 0) — (C", 0) defined by

w, =g,
W, = 227
W,y =2,

Let
r(z) =Iwy (22 + ... +iw, (2%
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Remark that
rri0)=wl(0)=ZX.

For ¢* > 0 sufficiently small, define:
T = {ze B\By| r(z) <¢&*},
0T = {ze B\By| r(z) = ¢*}

T and 0T have topological components, which we denote by T, ..., T, and
0T,, ..., @T,, where the numbering corresponds to the branches X¥, ..., Z*.

34. Lemma. T =ZXZ* xQ" where Q" is a closed n-ball in C".

Proof. The lemma follows from the Ehresmann fibration theorem since
[ is submersive on T and so are its restrictions to TN ¢B, and T ndB,.

a

35. Lemma. (a) There exist €* such that for all 0 <g < &*
f-YO)RBy, and f1(0) AT

(b) For every 0 <e < ¢e* there exist a v =1t(e) such that for all 0
<|t| <7
ST )H B, and fT'(AT.

Proof. Application of the curve selection lemma and the openness of
the transversality conditions. O

3.6. Along X we have 3 types of singularities: 4., D, and central type.
In each case we consider the pair, consisting of the Milnor fibre of f and the
Milnor fibre of the restriction of f to a nearby slice transversal to XZ. The
topology of these pairs can be described as follows:
h

Ay: Milnor pair ~ ($*71, $"™ 1,

h

D,: Milnor pair ~ (8", $"° 1),

h
central: Milnor pair~(§"'v §"v...v 8" §" ).

The first two cases are treated in [Si-1], for the central type we refer to
the next proposition.

3.7. ProrposiTiON. Let f be of central type
f=u-g‘+zi+... 422,

and let [’ be the restriction of f to a transversal slice wy = const at a point of
OBy N X¥. The pair consisting of the Milnor fibres of f and f' is homotopy
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equivalent to the pair (S" ' v §" v ... v §", 8"~ ') where the wedge contains
2u(X) copies of S" and one S" 1.

Proof. "We first consider n = 1. It is sufficient to consider

flx, )=g(x, =1
We get two components: g(x, y) =1 and g(x, y) = — 1, each corresponding
to a Milnor fibre of the curve g = 0. This Milnor fibre is a bouquet of u(X)
n-spheres.
At points of 0B, N 2Z¥ we can use w, and g as local coordinates from
34. So the transversal Milnor fibre is given by

f=g*=1, w, const

and consists of two points, one in each of the two components of the Milnor
fibre of f.

So the pair is homotopy equivalent to (S v ... v $Y)U(S' v ... v §'), §9).
If n =2 we have to take the double suspension of the spaces and we get
(S* v...vSHU(S?* v... v 8%, §') where the copies of §% v ... v S? are
connected in 2 points of S!.

This pair is homotopy equivalent to (S' v S*v...v $% S'). For n>3
further double suspension gives the result. O
38. For B,, T and D, small enough we define for te dDy
F*=f"1)nT,
FE="1nT,
Fe = f71(t) " Bo,
F°® = F* U F°,
We use coordinates {wq, w,, ..., w,) in T with woe 2* and (w,, ..., w,)eQ".

Consider the projection, which we can suppose to be holomorphic

Wq! 7;—’2:
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and its restriction to F{. This projection is singular at point s of I' N F¥
where I' is the polar curve of f with respect to w, and is given by

qg
B =

Since I' cuts X* only in the D -points of f ([Si-1]) it follows that

=0.

can only be singular in the neighbourhoods of D,-points of f.
Let Sy, ..., S, be small disjoint discs around the D -points in Z}¥. Set

Sl = Usk.i’ Mt = 2:\81;'

We also suppose that
J: wo (S ) 0 f (Do) — Dy
satisfies the Milnor conditions with respect to the polyball S,; xQ".

39. LemMma. For the diameter of T sufficiently small the projection

is locally rtrivial above M, with fibre equivalent to the Milnor fibre of the
quadratic singularity: wi+ ... +w?.

Proof. For families of quasi-homogeneous singularities there is a stable
radius for the Milnor construction (cf. [Ok] or [Os]). This implies that the
various transversality conditions are satisfied and the lemma follows from
Ehresmann’s fibration theorem. O

3.10. ProrosiTioNn. Let *D_ >0, then F° is homotopy equivalent to
the union of the Milnor fibre of the central singularity and the Milnor fibres of
the D -singularities, glued together along a common S"~ 1. So

h
FO~S" v .. vS:  by(F%=2u(Z)+2*D,—1.
If "D, =0 then
"
FOxF~§v..vSvSl  b,(F°=2u(2).

Proof. Let y,o=2X¢ 0By, and s, 9€7,0. Choose a system of paths
Pty -+ Vi, fTOM S0 10 Spyy.ony Sy, (in the usual way; see the diagram).

Set
= U Yii-
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S; Uy, is a deformation retract of Z¥ and y, o i1s a deformation retract of y;.
Since we can suppose that wy is locally trivial above M, it follows from the
homotopy lifting property that

1]
(F¥, wo ' (7.0) = (wo ' Sy w i)y wo ' (1))

If D, > 0 on X} this is homotopy equivalent to (wg ' (y) v Ex, wg ' ()
where E, is the disjoint union of 2 *D_ n-cells, which are attached to the
vanishing cycle $"~! in the standard way. The attachment takes place in
wo ! (Sk,0)- .

If D, =0 on X} then FfuUF* ~F°
In both cases
FO=F UFfuU...UF?*.
From 3.7 we know that
FAStysiy...vS" b(F)=2u(2),
and that each wg ! (s, o) can up to homotopy be identified with the $"~* of the
wedge.

If *D,>0 on a X then this $" ! is killed and we have

FOAs"y .. vS" b(F)=2uX)+2*D,—1.
If *D_ =0 then F° 2 Fe. 0

3.11. THeOReM. Let X be a plane curve and f- (C"*',0) =(C,0) a
holomorphic function with singular locus X(f) = X and transversal singularity
type Ay on £—1{0} und let *D, > 0, then the homotopy type of the Milnor
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fibre F of f is a bouquet of u,(f) spheres S" where
t(f) =202+ * A, +27D, — 1;

u(Z) = Milnor number of Z, *D_ = number of D, points in the generic
approximation with X fixed, * A, = number of A, points in the generic
approximation with X fixed,

Proof. Take 4, Dy, Dy, ..., D, and B, By, B,, ..., B,, T as before. Let
t €¢Dgy. Choose a system of paths yy, ..., ¢, fromtto D,,...,D,. For T< D

we set Xy = f~'(T) " B. As in the preceeding proposition there is a homo-
topy equivalence

h
(X4, Xi) :(XDOU.ple';H U---Uwaeﬁﬂ, X1

Moreover
(Xpg> X) % (X0, N(Bou )L X, X,).

Let ¢;: $"— F° = X, n(Bou T) represent the 2u(X)+2 *D_ —1 genera-
tors of =,(F°. Use {¢;} to attach (n+1)-cells f"*! to F° The inclusion
mapping

FO = X,F\(BOU T) C»XDOKW(BOU T)

extends to a homotopy equivalence
FPufftu.  uff" = Xp,n(Bou T)

since both spaces are contractable. So we get a homotopy equivalence:
h n n
(Xpg X) 2 (X, U UL U X))

X , is obtained {rom X, by attaching 2u(X)+ *A,+2 *D_—1 (n+ 1)=<cells. So
X, 1s (n—1)-connected, since X , is contractable. Since X, has the homotopy
type of a n-dimensional finite CW-complex, it follows that X, has the
homotopy type of a bouquet of p,(f)=2u(Z)+ *A4,+ *2D,—1 n-spheres.

O

3.12. Remark. As we already mentioned in the introduction we showed
in [Si-2] in a slightly different way that in case of £ a 1 dimensional isolated
complete intersection singularity (icis) the homotopy type of the Milnor fibre
F is as follows:

*Dy>0: S"v..vS" by(F)=pZ)+*A,+2%D —1;
*D.=0: S"'vS"v.. vS" b(F)=uD)+*4,,

where * 4, and * D, denote the number of A,-points, respectively D ,-points
in an approximation f;, which deforms X into a smooth singular locus. So
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the notation * A, is used in [Si-2] in an other way and differs x(Z) with the
notation i1n this paper.

3.13. ExaMpLe. [ = x?y24+y2z2 422 x2%

Now the critical locus is not a plane curve, even not a complete
intersection. It consist of the three coordinate axis in C>. The transversal
type is A,.

Consider the deformation

fo=x2yr 4yt 22422 x2 +sxyz.

The singular locus of f, consists of

(a) four isolated A,-points;

(b) the three coordinate axis with each two D _-points and a central
singularity at the origin, which is equivalent to xyz.

The Milnor fibre of the central singularity is homotopy equivalent to a
2-torus. In fact in polar coordinates this fibre is given by:

x| (¥l 1z] =1,
arg x+arg y+argz = 0 mod 2n (on 3-torus).

IS SEm— A

The transversal Milnor fibres (corresponding to the 3 axis) are three indepen-
dent circles (up to homotopy) and indicated by —, —»-, and —»>. Every
two of them form a basis of n, = H,.

The constructions of this paper, apply also to this example. For the
definitions of the tubes along X* one can use here the ordinary distance
function.

The part F° of the Milnor fibre is homotopy equivalent to the union of
the torus and the Milnor fibres of the D -points, which are glued together
along the torus above three l-spheres on the torus. Since on every branch

of £ we have *D, > 0, the generators of the fundamental group of the
central singularity are killed and so

FOx~S*v...vS§? b,(F9)=11.
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For the full Milnor fibre F we must also consider the contributions from the
A,-points and we get

FA8*yv ... vS% by(F) =15.
In this example
2u(X)+*A,+2*Dy—1=224+4+42-6—1=19

which is different from 15.
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