HYPERSURFACES WITH SINGULAR LOCUS A PLANE CURVE AND TRANSVERSAL TYPE A₁

DIRK SIERSMA

Department of Mathematics, University of Utrecht, Utrecht, The Netherlands

1. Introduction

In [Si-1] we studied functions $f: (C^{n+1}, 0) \to (C, 0)$ where the singular locus Σ was a smooth line and with transversal singularities on $\Sigma - \{0\}$ of type A_1 . We called those singularities isolated line singularities. In this paper we generalize this to the case, where Σ is a plane curve in C^{n+1} .

We study the topology of the Milnor fibre with the help of a generic approximation, which has Σ as part of the critical locus, and where only special types of singularities are allowed:

- (a) A_1 -points; local formula $w_0^2 + ... + w_n^2$;
- (b) A_{∞} -points; local formula $w_1^2 + ... + w_n^2$;
- (c) D_{π} -points; local formula $w_0 w_1^2 + w_2^2 + ... + w_n^2$;
- (d) central type; local formula $u \cdot g^2 + w_2^2 + ... + w_n^2$ where g(x, y) = 0 is a reduced equation of the plane curve Σ and u is a unit.

The existence of the deformations follows from work of Pellikaan [Pe]. The homotopy type of the local Milnor fibres of the above elementary types are as follows:

- (a) A_1 -points: S^n ;
- (b) A_{∞} -points: S^{n-1} ;
- (c) D_{∞} -points: S^n ;
- (d) central type: $S^{n-1} \vee S^n \vee \ldots \vee S^n$.

The A_{∞} -points occur in 1-dimensional bundles along the critical set Σ . By methods similar to Lê (cf. [Br]) in the isolated singularity case, we construct the Milnor fibre of f by gluing together the local contributions. Our main result is:

THEOREM 3.11. Let Σ be a plane curve and $f: (C^{n+1}, 0) \to (C, 0)$ a holomorphic function with singular locus $\Sigma(f) = \Sigma$ and transversal type A_1 on

 $\Sigma - \{0\}$ and let $^*D_{\infty} > 0$, then the homotopy type of the Milnor fibre F of f is a bouquet of $\mu_n(f)$ n-spheres, where

$$\mu_n(f) = 2\mu(\Sigma) + {}^{\#}A_1 + 2{}^{\#}D_{\pi} - 1;$$

 $\mu(\Sigma)=$ Milnor number of Σ , $^*D_{\infty}=$ number of D_{∞} -points in the generic approximation with Σ fixed, $^*A_1=$ number of A_1 -points in the generic approximation with Σ fixed.

The proof is similar to [Si-1].

The method of the proof gives no result in the case ${}^*D_{\infty} = 0$. For this case and the more general case that Σ is a 1-dimensional complete intersection singularity (icis) and transversal type A_1 on $\Sigma - \{0\}$ we refer to [Si-2]. In that paper we first compute the homology of the Milnor fibre in terms of $\mu(\Sigma)$, ${}^*D_{\infty}$ and *A_1 . From the homology and additional information about the fundamental group from [Lê-Sa] we can determine the homotopy type of the Milnor fibre, which is as follows:

$$S^n \vee \ldots \vee S^n$$
 if ${}^{\#}D_{\infty} > 0$,
$$S^{n-1} \vee S^n \vee \ldots \vee S^n$$
 if ${}^{\#}D_{\infty} = 0$.

As general references for singularities of functions $C^{n+1} \to C$ we mention the book of Arnol'd-Gusein Zade-Varchenko [Ar]. For the topology of singularities we refer to [Mi] and [Lo]. For non-isolated singularities, see also [Lê] and [Yo].

Part of this work was done, while the author was a guest at the Institute des Hautes Études Scientifiques (I.H.E.S) at Bûres-sur-Yvette (France) and the Stefan Banach International Mathematical Center at Warsaw (Poland) during the Semester on Singularity Theory. We thank both institutions for their support and hospitality.

2. Generic approximations of the function

2.1. Let Σ be a 1-dimensional complete intersection with isolated singularity at $0 \in \mathbb{C}^{n+1}$. We consider $f: (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ a holomorphic function germ with critical locus $\Sigma(f) = \Sigma$. This situation is treated (in more generality) in the thesis of Pellikaan [Pe]. On every branch of $\Sigma(f)$ there is if $z \neq 0$ a well-defined transversal singularity type.

Let g_1, \ldots, g_n define the complete intersection Σ as a reduced algebraic set and let $I = (g_1, \ldots, g_n)$. Then we have:

$$f$$
 is singular on $\Sigma \iff f \in I^2$ ([Pe] I 1.6).

In this case we can write $f = \sum h_{ij} g_i g_j$ with $h_{ij} \in \mathcal{C}_{n+1}$ and $h_{ij} = h_{ji}$. On I and I^2 acts the subgroup \mathcal{O}_{Σ} of \mathcal{O} defined by $\mathcal{O}_{\Sigma} = \{\varphi \in \mathcal{O} \mid \varphi^*(I) \subset I\}$. Let $\tau_{\Sigma}(f)$

be the tangent space to the \mathcal{L}_{Σ} -orbit and $J_f = \left(\frac{\partial f}{\partial z_0}, \dots, \frac{\partial f}{\partial z_n}\right)$ the Jacobian ideal of f.

Define

$$j(f) = \dim_{\mathbf{C}} \frac{I}{J_f}$$
 and $c(f) = \dim_{\mathbf{C}} \frac{I^2}{\tau_{\Sigma}(f)}$,

the Jacobi number and the codimension.

- 2.2. Proposition ([Pe]). Equivalent are:
- (a) $c(f) < \infty$;
- (b) $j(f) < \infty$;
- (c) the transversal type of f along $\Sigma \{0\}$ is A_1 .

Moreover if $c(f) < \infty$ then f is finitely determined inside I^2 .

2.3. We specialize now to the case that Σ is a plane curve. We can choose coordinates

$$(z_0, z_1, \ldots, z_n) = (x, y, z_2, \ldots, z_n)$$

such that Σ is given by

$$g_1 = g(x, y) = 0,$$

 $g_2 = z_2 = 0, ..., g_n = z_n = 0.$

So $I = (g, z_1, ..., z_n)$.

If f is \mathscr{C}_{Σ} -equivalent with $u \cdot g^2 + z_2^2 + \ldots + z_n^2$ then f is called of central singularity type (u unit in $\mathscr{C}_{(x,y)}$). According to the splitting lemma [Gr-Me] we can suppose in general:

$$f(x, y, z) = f'(x, y, z_2, ..., z_r) + z_{r+1}^2 + ... + z_n^2$$

with $f' \in (x, y, z_1, ..., z_r)^3$.

2.4. Consider the following deformation of f with fixed critical locus (cf. [Pe] (7.18))

$$f_s(z) = f(x, y, z) + \sum_{k,l} a_{k,l} g_k g_l + \sum_{i,k} b_{ik} z_i g_k$$

where we choose the matrix $(a_{k,l})$ in diagonal form with diagonal elements $(\lambda_1, \ldots, \lambda_r, 0, \ldots, 0)$ and $s \in S = \{(\lambda_1, \ldots, \lambda_r), (b_{ik})\}$.

PROPOSITION. There exists a dense open subset V of S and an open neighbourhood U of 0 in C^{n+1} such that for all $s \in V$ sufficiently small

- (i) f_s has only A_1 -singularities in $U \setminus \Sigma$;
- (ii) f_s has only A_{∞} and D_{∞} -singularities on $U \cap \Sigma \{0\}$;

(iii) f_s has the central singularity type in 0;

(iv) $j_f = {}^{\#} \{A_1$ -points of f_s on $U \setminus \Sigma\} + {}^{\#} \{D_{\infty}$ -points of f_s on $U \cap \Sigma\} + j_{f_s,0}$ where $j_{f_s,0}$ is the Jacobi number of the central singularity.

Proof. Almost all the assertions are shown by Pellikaan ([Pe], I (7.18)). The special choice of the matrix (a_{ij}) doesn't influence his proof. A computation shows that the 2-jet-extension

$$j^2 F: C^{n+1} \times S \to J^2_{(0)}(C^{n+1}, C)$$

is transversal to the A_1 -stratum outside Σ and to the D_{∞} -stratum on $\Sigma - \{0\}$. (For details cf. [Pe]). The assertions (i) and (ii) follow as an application of Sard's theorem.

For (iii) a more carefull analysis of Pellikaans proof is necessary. Write $f = h_{ij} g_i g_j$ where

$$(h_{ij}) = \begin{pmatrix} * & 0 \\ 0 & I_{n-r} \end{pmatrix}.$$

Since the 2-jet of f is equal to $z_{r+1}^2 + ... + z_n^2$ this implies that $h_{ij} \in m$ if $2 \le i \le r$ and $2 \le j \le r$ (m is the maximal ideal).

Let
$$f_s = \sum H_{ij} g_i g_j$$
 where

$$H_{ij} = h_{ij} + a_{ij} + \sum z_i b_{it} \delta_{ij} = h_{ij} + (\lambda_i + \sum z_i b_{it}) \delta_{ij}.$$

Remark that:

$$H_{ii} = h_{ii}$$
 for $i \neq j$

and

$$H_{ii} = h_{ii} + \lambda_{i.} + \sum z_i b_{ii}$$

so

$$H_{ii} \equiv \lambda_i \pmod{m}$$
 if $2 \le i \le r$,
 $H_{ii} = 0$ if $i \ge r + 1$,
 $H_{ij} \equiv 0 \pmod{m}$ if $i \ge 2$ and $j \ge 2$.

For λ_i sufficiently general we can suppose that H_{ii} are units. Moreover we can suppose: det H_{ij} is invertible (this corresponds to Pellikaan's statement $\delta_{f_{s},0} = 0$).

We next transform the matrix (H_{ij}) into a normal form with standard technics from quadratic forms. We first treat z_2 . Set

$$\bar{z}_2 := z_2 + \frac{H_{23}}{H_{22}} z_3 + \dots + \frac{H_{2n}}{H_{22}} z_n + \frac{H_{1n}}{H_{22}} g$$

which defines a coordinate transformation on $(C^{n+1}, 0)$. Remark $\bar{z}_2 \equiv z_2 \pmod{m}$. Also mod m we have:

$$(H_{ij}) \equiv \begin{pmatrix} * & * & * \\ -\frac{1}{+} & - & - & - \\ * & \lambda_2 & 0 \\ \vdots & \vdots & \ddots & \lambda_n \\ * & \vdots & 0 & \lambda_n \end{pmatrix}$$

The form of this matrix and the $\lambda_2, \ldots, \lambda_n$ are not changed by this coordinate transformation (nb. $\lambda_{r+1} = \ldots = \lambda_n = 1$).

We treat $z_3, ..., z_n$ in the same way and get

$$f_s = H_{11}^* g^2 + \lambda_2 \bar{z}_2^2 + \ldots + \lambda_n \bar{z}_n^2$$

Since $\bar{z}_k \equiv z_k \pmod{\mathfrak{m}}$ we have $(\bar{z}_2, \ldots, \bar{z}_n, g) = (z_2, \ldots, z_n, g)$. Moreover $\det(H_{ij})$ remains invertible. So H_{11}^* is a unit in \mathcal{O}_{n+1} . Since f_s is finitely determined we can change coordinates again (by completing squares) such that H_{11}^* is a function of x and y only. So f_s is right-equivalent to

$$u \cdot g^2 + z_2^2 + \ldots + z_n^2$$
 (u unit in $\mathcal{O}_{(x,y)}$).

- 2.5. Remark. It can happen that ${}^*D_{\infty} = 0$. In the case of isolated line singularities, this only happens for type A_{∞} .
 - C. Cox showed me the examples

$$f = xyz + z^p \qquad (p \geqslant 2).$$

The critical locus is the union of the x-axis and the y-axis, the transversal type is A_1 . The deformation

$$f_s = xyz + z^p + sz^2$$

has the properties:

$$^{\#}D_{\infty}=0,$$
 $^{\#}A_{1}=p-2,$

and has central type for $s \neq 0$.

Also $f = z \cdot g + z^p$ $(p \ge 2)$, where g = 0 is a plane curve, has the property ${}^\#D_\infty = 0$.

Pellikaan [Pe] showed in Lemma I.7.17, that if Σ is a reduced 1-dimensional complete intersection, defined by the ideal I and ${}^{\#}D_{\infty}=0$, then there exist generators g_1,\ldots,g_n of I such that f is equivalent to $g_1^2+\ldots+g_n^2$. This shows that in general there are plenty possible f with ${}^{\#}D_{\infty}=0$. At the other hand it is not difficult to degenerate such f to $\xi \cdot g_n^2+\ldots+g_n^2$ ($\xi \in \mathbb{M}$) with ${}^{\#}D_{\infty}>0$.

2.6. Remark. It is in principle possible to classify the non-isolated singularities of this paper in the same way as isolated singularities. Proposition 2.2 makes this possible.

For the case that Σ is a smooth line, we refer to [Si-1]. In the case that Σ is of type A_1 :

$$g(x, y) = xy = 0, \quad z = 0$$

the beginning of a list of singularities is as follows:

Туре	f	corank	jŗ	c_f	* A 1	* D &
$T_{\infty, \infty, 2}$	x^2y^2	2	1	0	0	0
	$x^2 y^2 (y + x^n) (n \ge 1)$	2	2n+2	n	n	n+1
$T_{x,x,r}$	$xyz+z^r \ (r\geqslant 3)$	3	r-1	r-2	r-2	0
	$xz^2 + yz^2 + x^2y^2$	3	5	2	2	2

The list contains all simple singularities and all singularities with ${}^{\#}D_{\infty} = 0$.

2.7. We next are interested in the Milnor fibres. Let $f: (C^{n+1}, 0) \to (C, 0)$ and let ε_0 be an admissible radius for the Milnor fibration, that is $\varepsilon_0 > 0$ such that for all ε with $0 < \varepsilon \le \varepsilon_0$ holds

$$f^{-1}(0) \dagger \partial B_{\varepsilon}$$
 (as a stratified set).

For each admissible $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

$$f^{-1}(t) \dagger \partial B_{\varepsilon}$$
 for all $0 < t \le \delta(\varepsilon)$.

We fix now $\varepsilon \leqslant \varepsilon_0$ and consider $0 < \delta \leqslant \delta(\varepsilon)$ and take the representative

$$f: X_{\Delta} = f^{-1}(\Delta) \cap B_{\varepsilon} \to \Delta$$

where Δ is a disc of radius δ .

LEMMA. Let f_s be as above. Consider the restriction

$$f_s: X_{\Delta,s} := f_s^{-1}(\Delta) \cap B_{\varepsilon} \to \Delta.$$

For $s \in S$ and $\delta > 0$ sufficiently small we have:

- (1) $f_s^{-1}(t) \dagger \partial B_{\varepsilon}$ for all $t \in \Delta$;
- (2) above the boundary circles $\partial \Delta$ the fibrations induced by f and f_s are equivalent;
 - (3) X_{Δ} and $X_{\Delta,s}$ are homeomorphic.

3. The homotopy type of the Milnor fibre

3.1. From now on we choose s such that $f_s: X_{A,s} \to \Delta$ satisfies the conditions of Proposition 2.4 and Lemma 2.7.

We ommit the suffix s and write again

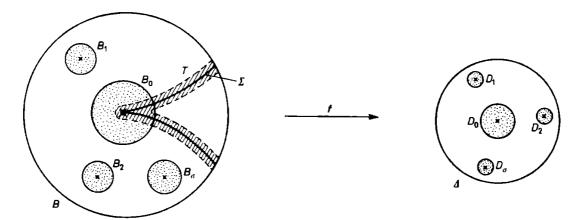
$$f: X_A \to \Delta$$
.

The critical set of f consits of

- (a) The 1-dimensional icis Σ , where local singularities are A_{∞} , D_{∞} or the central type.
- (b) isolated points $\{c_1, ..., c_\sigma\}$ where the local singularity is of type A_1 . We can suppose that all critical values of f are different (this is mostly for notational convenience). The critical value 0 corresponds to the non-isolated singularities on Σ . We follow now the construction in [Si-1].
- 3.2. Define $B_0, B_1, \ldots, B_{\sigma}$ disjoint (2n+2)-balls around $c_0 = 0$, $c_0 = 0, c_1, \ldots, c_{\sigma}$ and inside $B = B_{\varepsilon}$. Let D_0, \ldots, D_{σ} be disjoint 2-discs around $f(c_0), \ldots, f(c_{\sigma})$ and inside $D = D_{\eta}$ chosen in such a way that we get locally

$$f: B_i \cap f^{-1}(D_i) \to D_i$$

which are Milnor fibrations above $D_i - \{f(c_i)\}\$.



Let $\Sigma^* = \overline{\Sigma - B_0}$. The number of topological components of Σ^* is equal to the number of irreducible branches of Σ . Each branch Σ_k^* (k = 1, ..., r) is a disc with one hole.

3.3. We want to construct a nice tube neighbourhood of Σ^* . To do this we consider the map $w: (C^{n+1}, 0) \to (C^n, 0)$ defined by

$$w_1 = g,$$

$$w_2 = z_2,$$

$$\cdots$$

$$w_n = z_n.$$

Let

$$r(z) = |w_1(z)|^2 + ... + |w_n(z)|^2.$$

Remark that

$$r^{-1}(0) = w^{-1}(0) = \Sigma.$$

For $\varepsilon^* > 0$ sufficiently small, define:

$$T = \{ z \in \overline{B \setminus B_0} \mid r(z) \leq \varepsilon^* \},$$
$$\partial T = \{ z \in B \setminus B_0 \mid r(z) = \varepsilon^* \}$$

T and ∂T have topological components, which we denote by T_1, \ldots, T_r and $\partial T_1, \ldots, \partial T_r$, where the numbering corresponds to the branches $\Sigma_1^*, \ldots, \Sigma_r^*$.

3.4. Lemma. $T = \Sigma^* \times Q^n$ where Q^n is a closed n-ball in C^n .

Proof. The lemma follows from the Ehresmann fibration theorem since f is submersive on T and so are its restrictions to $T \cap \partial B_{\epsilon}$ and $T \cap \partial B_{0}$.

- 3.5. Lemma. (a) There exist ε^* such that for all $0 < \varepsilon \le \varepsilon^*$ $f^{-1}(0) \uparrow \partial B_0$ and $f^{-1}(0) \uparrow \partial T$.
- (b) For every $0 < \varepsilon \le \varepsilon^*$ there exist a $\tau = \tau(\varepsilon)$ such that for all $0 < |t| \le \tau$

$$f^{-1}(t) \dagger \partial B_0$$
 and $f^{-1}(t) \dagger \partial T$.

Proof. Application of the curve selection lemma and the openness of the transversality conditions.

3.6. Along Σ we have 3 types of singularities: A_{∞} , D_{∞} and central type. In each case we consider the pair, consisting of the Milnor fibre of f and the Milnor fibre of the restriction of f to a nearby slice transversal to Σ . The topology of these pairs can be described as follows:

 A_{∞} : Milnor pair $\simeq (S^{n-1}, S^{n-1}),$

 D_{∞} : Milnor pair $\stackrel{h}{\simeq}$ $(S^n, S^{n-1}),$

central: Milnor pair $\simeq (S^{n-1} \vee S^n \vee ... \vee S^n, S^{n-1})$.

The first two cases are treated in [Si-1], for the central type we refer to the next proposition.

3.7. Proposition. Let f be of central type

$$f = u \cdot g^2 + z_2^2 + \dots + z_n^2$$

and let f' be the restriction of f to a transversal slice $w_0 = \text{const}$ at a point of $\partial B_0 \cap \Sigma_k^*$. The pair consisting of the Milnor fibres of f and f' is homotopy

equivalent to the pair $(S^{n-1} \vee S^n \vee ... \vee S^n, S^{n-1})$ where the wedge contains $2\mu(\Sigma)$ copies of S^n and one S^{n-1} .

Proof. We first consider n = 1. It is sufficient to consider

$$f(x, y) = g(x, y)^2 = 1$$
.

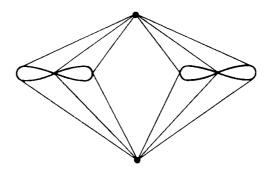
We get two components: g(x, y) = 1 and g(x, y) = -1, each corresponding to a Milnor fibre of the curve g = 0. This Milnor fibre is a bouquet of $\mu(\Sigma)$ n-spheres.

At points of $\partial B_0 \cap \Sigma_k^*$ we can use w_0 and g as local coordinates from 3.4. So the transversal Milnor fibre is given by

$$f = g^2 = 1$$
, w_0 const

and consists of two points, one in each of the two components of the Milnor fibre of f.

So the pair is homotopy equivalent to $((S^1 \vee ... \vee S^1) \cup (S^1 \vee ... \vee S^1), S^0)$. If n = 2 we have to take the double suspension of the spaces and we get $((S^2 \vee ... \vee S^2) \cup (S^2 \vee ... \vee S^2), S^1)$ where the copies of $S^2 \vee ... \vee S^2$ are connected in 2 points of S^1 .



This pair is homotopy equivalent to $(S^1 \vee S^2 \vee ... \vee S^2, S^1)$. For $n \ge 3$ further double suspension gives the result.

3.8. For B_0 , T and D_0 small enough we define for $t \in \partial D_0$

$$F^* = f^{-1}(t) \cap T,$$

$$F_k^* = f^{-1}(t) \cap T_k,$$

$$F^c = f^{-1}(t) \cap B_0,$$

$$F^0 = F^* \cup F^c.$$

We use coordinates $(w_0, w_1, ..., w_n)$ in T with $w_0 \in \Sigma^*$ and $(w_1, ..., w_n) \in Q^n$. Consider the projection, which we can suppose to be holomorphic

$$w_0: T_k \to \Sigma_k^*$$

and its restriction to F_k^* . This projection is singular at point s of $\Gamma \cap F_k^*$ where Γ is the polar curve of f with respect to w_0 and is given by

$$\frac{\partial f}{\partial w_1} = \dots = \frac{\partial f}{\partial w_n} = 0.$$

Since Γ cuts Σ^* only in the D_{∞} -points of f ([Si-1]) it follows that

$$w_0: F_k^* \to \Sigma_k^*$$

can only be singular in the neighbourhoods of D_{∞} -points of f.

Let $S_{k,1}, \ldots, S_{k,\tau_k}$ be small disjoint discs around the D_{∞} -points in Σ_k^* . Set

$$S_k = \bigcup_i S_{k,i}, \quad M_k = \overline{\Sigma_k^* \setminus S_k}.$$

We also suppose that

$$f: w_0^{-1}(S_{k,i}) \cap f^{-1}(D_0) \to D_0$$

satisfies the Milnor conditions with respect to the polyball $S_{k,i} \times Q^n$.

3.9. LEMMA. For the diameter of T sufficiently small the projection

$$w_0: F_k^* \to \Sigma_k^*$$

is locally trivial above M_k with fibre equivalent to the Milnor fibre of the quadratic singularity: $w_1^2 + ... + w_n^2$.

Proof. For families of quasi-homogeneous singularities there is a stable radius for the Milnor construction (cf. [Ok] or [Os]). This implies that the various transversality conditions are satisfied and the lemma follows from Ehresmann's fibration theorem.

3.10. Proposition. Let $^*D_{\infty} > 0$, then F^0 is homotopy equivalent to the union of the Milnor fibre of the central singularity and the Milnor fibres of the D_{∞} -singularities, glued together along a common S^{n-1} . So

$$F^0 \simeq S^n \vee ... \vee S^n; \quad b_n(F^0) = 2\mu(\Sigma) + 2 * D_{\infty} - 1.$$

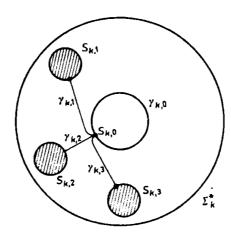
If
$${}^{\#}D_{\infty} = 0$$
 then
$$F^{0} \simeq F^{c} \simeq S^{n} \vee \ldots \vee S^{n} \vee S^{n-1}; \quad b_{n}(F^{0}) = 2\mu(\Sigma).$$

Proof. Let $\gamma_{k,0} = \Sigma_k^{\bullet} \cap \partial B_0$ and $s_{k,0} \in \gamma_{k,0}$. Choose a system of paths $\gamma_{k,1}, \ldots, \gamma_{k,\tau_k}$ from $s_{k,0}$ to $S_{k,1}, \ldots, S_{k,\tau_k}$ (in the usual way; see the diagram). Set

$$\gamma_{k} = \bigcup_{i} \gamma_{k,i}.$$

 $S_k \cup \gamma_k$ is a deformation retract of Σ_k^* and $\gamma_{k,0}$ is a deformation retract of γ_k . Since we can suppose that w_0 is locally trivial above M_k it follows from the homotopy lifting property that

$$(F_k^*, w_0^{-1}(\gamma_{k,0})) \simeq (w_0^{-1}(S_k \cup \gamma_k), w_0^{-1}(\gamma_k)).$$



If ${}^{\#}D_{\infty} > 0$ on Σ_k^* this is homotopy equivalent to $(w_0^{-1}(\gamma_k) \cup E_k, w_0^{-1}(\gamma_k))$ where E_k is the disjoint union of $2 {}^{\#}D_{\infty}$ n-cells, which are attached to the vanishing cycle S^{n-1} in the standard way. The attachment takes place in $w_0^{-1}(s_{k,0})$.

If
$${}^{\#}D_{\infty} = 0$$
 on Σ_k^* then $F_k^* \cup F^c \stackrel{h}{\simeq} F^c$.

In both cases

$$F^0 = F^c \cup F_1^* \cup \ldots \cup F_r^*.$$

From 3.7 we know that

$$F^c \stackrel{h}{\simeq} S^{n-1} \vee S^n \vee \ldots \vee S^n; \quad b_n(F^c) = 2\mu(\Sigma),$$

and that each $w_0^{-1}(s_{k,0})$ can up to homotopy be identified with the S^{n-1} of the wedge.

If $^*D_{\infty} > 0$ on a Σ_k^* then this S^{n-1} is killed and we have

$$F^0 \stackrel{h}{\simeq} S^n \vee \ldots \vee S^n; \quad b_n(F^0) = 2\mu(\Sigma) + 2 * D_{\infty} - 1.$$

If
$${}^{\#}D_{\infty} = 0$$
 then $F^0 \stackrel{h}{\simeq} F^c$.

3.11. THEOREM. Let Σ be a plane curve and $f: (C^{n+1}, 0) \to (C, 0)$ a holomorphic function with singular locus $\Sigma(f) = \Sigma$ and transversal singularity type A_1 on $\Sigma - \{0\}$ and let $^*D_{\infty} > 0$, then the homotopy type of the Milnor

fibre F of f is a bouquet of $\mu_n(f)$ spheres S^n where

$$\mu_n(f) = 2\mu(\Sigma) + {}^{\#}A_1 + 2 {}^{\#}D_{\infty} - 1;$$

 $\mu(\Sigma)=$ Milnor number of Σ , $^{\#}D_{\infty}=$ number of D_{∞} points in the generic approximation with Σ fixed, $^{\#}A_{1}=$ number of A_{1} points in the generic approximation with Σ fixed,

Proof. Take Δ , D_0 , D_1 , ..., D_{σ} and B, B_0 , B_1 , ..., B_{σ} , T as before. Let $t \in \partial D_0$. Choose a system of paths ψ_1 , ..., ψ_{σ} from t to D_1 , ..., D_{σ} . For $T \subset D$ we set $X_T = f^{-1}(T) \cap B$. As in the preceding proposition there is a homotopy equivalence

$$(X_{\Delta}, X_{t}) \stackrel{h}{\simeq} (X_{D_{0}} \cup_{\psi_{1}} e_{1}^{n+1} \cup \ldots \cup_{\psi_{\sigma}} e_{\sigma}^{n+1}, X_{t}).$$

Moreover

$$(X_{D_0}, X_t) \stackrel{h}{\simeq} (X_{D_0} \cap (B_0 \cup T) \cup X_t, X_t).$$

Let $\phi_i: S^n \to F^0 = X_t \cap (B_0 \cup T)$ represent the $2\mu(\Sigma) + 2 \# D_{\infty} - 1$ generators of $\pi_n(F^0)$. Use $\{\phi_i\}$ to attach (n+1)-cells f_i^{n+1} to F^0 . The inclusion mapping

$$F^0 = X_t \cap (B_0 \cup T) \hookrightarrow X_{D_0} \cap (B_0 \cup T)$$

extends to a homotopy equivalence

$$F^0 \cup f_1^{n+1} \cup \ldots \cup f_q^{n+1} \to X_{D_0} \cap (B_0 \cup T)$$

since both spaces are contractable. So we get a homotopy equivalence:

$$(X_{D_0}, X_l) \stackrel{h}{\simeq} (X_l \cup f_1^{n+1} \cup \ldots \cup f_q^{n+1}, X_l);$$

 X_{Δ} is obtained from X_{t} by attaching $2\mu(\Sigma) + {}^{\#}A_{1} + 2 {}^{\#}D_{\infty} - 1$ (n+1)-cells. So X_{t} is (n-1)-connected, since X_{Δ} is contractable. Since X_{t} has the homotopy type of a *n*-dimensional finite CW-complex, it follows that X_{t} has the homotopy type of a bouquet of $\mu_{n}(f) = 2\mu(\Sigma) + {}^{\#}A_{1} + {}^{\#}2D_{\infty} - 1$ *n*-spheres.

3.12. Remark. As we already mentioned in the introduction we showed in [Si-2] in a slightly different way that in case of Σ a 1 dimensional isolated complete intersection singularity (icis) the homotopy type of the Milnor fibre F is as follows:

$${}^{\#}D_{\infty} > 0$$
: $S^{n} \vee \ldots \vee S^{n}$, $b_{n}(F) = \mu(\Sigma) + {}^{\#}A_{1} + 2 {}^{\#}D_{\infty} - 1$;
 ${}^{\#}D_{\infty} = 0$: $S^{n-1} \vee S^{n} \vee \ldots \vee S^{n}$, $b_{n}(F) = \mu(\Sigma) + {}^{\#}A_{1}$,

where ${}^{*}A_{1}$ and ${}^{*}D_{\infty}$ denote the number of A_{1} -points, respectively D_{∞} -points in an approximation f_{s} , which deforms Σ into a smooth singular locus. So

the notation ${}^{\#}A_1$ is used in [Si-2] in an other way and differs $\mu(\Sigma)$ with the notation in this paper.

3.13. Example.
$$f = x^2 y^2 + y^2 z^2 + z^2 x^2$$
.

Now the critical locus is not a plane curve, even not a complete intersection. It consist of the three coordinate axis in C^3 . The transversal type is A_1 .

Consider the deformation

$$f_s = x^2 y^2 + y^2 z^2 + z^2 x^2 + sxyz$$
.

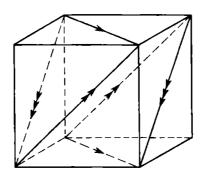
The singular locus of f_s consists of

- (a) four isolated A_1 -points;
- (b) the three coordinate axis with each two D_{∞} -points and a central singularity at the origin, which is equivalent to xyz.

The Milnor fibre of the central singularity is homotopy equivalent to a 2-torus. In fact in polar coordinates this fibre is given by:

$$|x| \cdot |y| \cdot |z| = 1$$
,

 $\arg x + \arg y + \arg z \equiv 0 \mod 2\pi$ (on 3-torus).



The transversal Milnor fibres (corresponding to the 3 axis) are three independent circles (up to homotopy) and indicated by \longrightarrow , \longrightarrow , and \longrightarrow . Every two of them form a basis of $\pi_1 = H_1$.

The constructions of this paper, apply also to this example. For the definitions of the tubes along Σ^* one can use here the ordinary distance function.

The part F^0 of the Milnor fibre is homotopy equivalent to the union of the torus and the Milnor fibres of the D_{∞} -points, which are glued together along the torus above three 1-spheres on the torus. Since on every branch of Σ we have $^*D_{\alpha}>0$, the generators of the fundamental group of the central singularity are killed and so

$$F^0 \stackrel{h}{\simeq} S^2 \vee ... \vee S^2, \quad b_2(F^0) = 11.$$

For the full Milnor fibre F we must also consider the contributions from the A_1 -points and we get

$$F \stackrel{h}{\simeq} S^2 \vee \ldots \vee S^2, \quad b_2(F) = 15.$$

In this example

$$2\mu(\Sigma) + A_1 + 2 D_{\infty} - 1 = 2 \cdot 2 + 4 + 2 \cdot 6 - 1 = 19$$

which is different from 15.

References

- [Ar] V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differential Maps I, Monographs in Mathematics 82, Birkhauser, Boston-Basel-Stuttgart 1985.
- [Br] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperstächen, Manuscripta Math. 2 (1970), 103-161.
- [Gr-Me] D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361-369.
 - [Lê] D. T. Lê, Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I. N. Yomdin), in Sém. sur les Singularités, Publ. Math. Univ. Paris VII, Université Paris VII, Paris, 87-95.
- [Lê-Sa] D. T. Lê and K. Saito, The local π_1 of the complement of a hypersurface with normal crossings in codimension one is abelian, Ark. Mat. 22 (1984), 1-24.
 - [Lo] E. J. N. Looijenga, Isolated Singular points on Complete Intersections, London Math. Soc. Lecture Note Ser. 77, Cambridge University Press, Cambridge 1984.
 - [Mi] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud., Princeton University Press, Princeton 1968.
 - [Ok] M. Oka, On the topology of the Newton boundary, III, J. Math. Soc. Japan 34 (1982), 541-549.
 - [Os] D. B. Oshea, Vanishing folds in families of singularities, Proc. Sympos. Pure Math. 40, American Mathematical Society, Providence 1983, part 2, 293-303.
 - [Pe] G. R. Pellikaan, Hypersurface singularities and resolutions of Jacobi modules, Thesis, Rijksuniversiteit Utrecht, 1985.
 - [Si-1] D. Siersma, Isolated line singularities, Proc. Sympos. Pure Math. 40, American Mathematical Society, Providence 1983, Part 2, 485-496.
 - [Si-2] –, Singularities with critical locus a 1-dimensional complete intersection and transversal type A_1 , Topology and Appl., to appear.
 - [Yo] I. N. Yomdin, Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Zh. 15 (1974), 1061-1082.

Presented to the semester Singularities 15 February-15 June, 1985