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1. Introduction

Let H=(f, g): U~ C? 0eU < C?% be a holomorphic mapping having an
isolated zero at the origin. By the Lojasiewicz exponent of the mapping H at
the point 0 we mean the number

A(H)=inf!lveR: 34> 0,3B >0, V|z| < B, A|z|" < |H(z)|}.

This exponent plays an important part in the theory of singularities. In the
case where H is the gradient of a holomorphic function h, the complex
E(A(H)+1)-th jet of h at 0 is Csufficient (here E(v) denotes the greatest
integer < v). This means that any holomorphic function k with the same
complex E(A(H)+1)th jet is of the form h=hod where & is a
homeomorphism of a neighbourhood of 0e C? (see [1]).

The Lojasiewicz exponent has been studied by several authors. In [7]
Lejeune-Jalabert and Teissier (in the multi-dimensional case) proved that
A(H) is a rational number, that the infimum in the defining formula of i(H)
is attained and that there exists an analytic path through 0 on which H has
order of growth equal to A(H). They also gave other characterizations of
A(H) which are, however, not easy to use for an effective calculation.

In [6] Kuo and Lu obtained an effective formula for A(H) in the case of
the mapping H being the gradient of a holomorphic function h. They
expressed A(H) in terms of the Puiscux expansion of h.

In the general case A(H) was estimated in [2], [8] in terms of the
multiplicity of the mapping and the orders of its components, the estimates in
[3] were given in terms of the intersection multiplicities of factors of fand g
having the same tangents and their orders.

Recently, Ploski ([9]) obtained, under the assumption that f and g are
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irreducible, an exact formula for A(H), dependent on the multiplicity of H
and the orders of f and g¢.

The aim ol the present paper is to show that in the general case one can
also obtain an exact formula for A(H) in terms of the intersection
multiplicities of irreducible factors of f and g and their orders. From this
result we immediately derive the above-mentioned results of Lejeune-Jalabert
and Teisster (in the two-dimensional case), the result of Ploski and an
effective method for calculating the l.ojasiewicz exponent.

The proof of the fundamental formula is carried out according to the
elementary “horn neighbourhoods” method used by Kuo and Lu in [6].

2. Notation and definitions

If / is a holomorphic function in a neighbourhood of the point 0e C*, k =1,

2,and f(z) = Y fi(2), f # O, where f; is a homogeneous polynomial of degree
i, then the number n is called the order of the function { at the point O C*
and denoted by ordf. When f =0, we put ordf = 0.

By ¢? we denote the ring of germs of holomorphic functions at the
point 0e C2. If f is a holomorphic function in a neighbourhood of the point
0e C?, we denote by f the germ in (* generated by f. Further notations
concerning germs of holomorphic functions will be taken after Hervé (see
(5D

Let f and g be functions holomorphic in a neighbourhood of the origin
in C? and having a common isolated zero there. The multiplicity of this zero
(cf. [4]) will be denoted by u(f, g)- If H = (f, g), then, instead of u(f, g), we
write u(H).

If z=(x, y)e C?, then |z| = max(|x|, | y|).

3. The main results

Let U be a neighbourhood of 0e C* and H = (f, g): U - C? a holomorphic
mapping. Let f =f, ... [, =9, ... g; in U, where f =f, ...1f.,d=4, ... g,
are factorizations of f and § into non-invertible and irreducible factors in (.
Let I = {zeU: fi(z)y =0} fori=1,...,rand I',,; = {ze U: g;(z) = 0} for j
=1,...,s

MaIN THEOREM. If H has an isolated zero at the origin, then:

) A(H) = max(u(f, gVordf,, w(f, gplordg);
ij=
(i) A(H)e!lveR:3A>0,3B >0, V|z| <B, Alz]' < |H(2)|};
(i) i A(H) = ufy gfordf, or A(H)=pu(f, g)jordg, then |H(z)
~|zZ*® onT,orT,.,.
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From the above theorem we immediately obtain the {ollowing
corollaries.

CoroLrary 3.1 (cf. [2]). If H =(f, g9) satisfies the assumptions of the
Main Theorem, then:

(a) A(H) 2 u(/, g)/min(ordf, ord g);

(b) A(H) < max(ordf, ordg)+ u(f, g)—ordfordy.

CoroLLaRY 3.2 (cf. [7]). If H =({f, g) satisfies the assumptions of the
Main Theorem, then A(H) is a rational number, the infimum in the defining
formula of A(H) is attained and there exists an analytic path through 0 on
which the order of growth of H equals A(H).

CoroLLARY 3.3 (cf. .[9])' If H={(f, g) satisfies the assumptions of the

Main Theorem and [, § are irreducible germs in (2, then A(H)
= p(H)/min(ordf, ord g).

4. Auxiliary results

Let H =(f, g) satisly the same assumptions as in the preceding section, m
=ordf, n=ordg and let f, g be distinguished pseudopolynomials of the
form

Sx, p=x"+a (P)x"" 1+ ... +au(y),

4.1) ] oy
gix, y} =x"+b (Nx"""+ ... +b,().
Let D be the least common multiple of ordf], ..., ord /,, ordg,, ..., ordg,.
LemMa 4.1. There exist holomorphic functions a,, ..., &y, By, ..., B, in

a neighbourhood of 0¢ C, such that:
(a) orda; =D, ordf; = D and

f(x, t?) = ﬁ (x_ak(t)),
(4.2) k=

gx. 12) = T (x~Ai):

(b) for every k, there exists an i such that

n

(4.3) Y. ord (e, —B;) = Du(f;, g)fordf;

i=1
and, for every i, there exists some k such that (4.3) holds;
(c) for every I, there exists some j such that

(4.4) 2. ord(B,—~a;) = Du(/, g;)/ord g,

i=1

and, for every j, there exists an | such that (4.4) holds.
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Proof We may assume that f;,i=1,...,r,andg;,j=1, ..., s are also
distinguished pseudopolynomials of x of degrees m; and n;, respectively. Let

(U, @F, W) and (U3®, 0% W), where ®F(0) = (0! (1), ™), ®1*()

= (@¥* (1), t™), be canonical parametrizations of the set of zeros of f;, g; in a
neighbourhood of 0e C? (cf. [4]). It is easy to see that ord ¢} > m;, ord p**
= n; and

SiGxe, ™ = [] (x—oFef 1),
(4.5) "fj‘
g;(x, tY) =[] (x—e**(n30)),
q=1

where g;, 1, are the m-th and n;-th primitive roots of unity, rcspectwely
Hence

fix®) =TT TT (x=orere™™),
(4.6) et

glx. ) = I] U(x o3* (nfe™™),

which gives (a). Moreover, from (4.6) and (4.2) it follows that, for every k,

there exist i, p such that a,(t) = ¢F (e,FtD/"'i) and vice versa. From the
definition of the parametric multiplicity (cf. [4]) we have

u(fi, g) = ord godf (f 1).
Hence

(D/m) pf;, g) = ord g WX (e 1™) = ord g (x (1), 7).
On the other hand, (4.2) implies

ord g (a, (1), t°) = Y ord(a,—B),

i=t

which gives (b). We show (c) in an analogous way.

Now we formulate and prove a lemma playing a key part in the proof
of the Main Theorem. We shall carry it out according to the “horn
neighbourhoods” method.

Let us assume that (4.2) holds in a polydisc P = {(x, 1): |x| <3, [t
< ¢'/P). It is easy to see that there exist positive numbers ¢ and d such that

47) el <l () By(0) < dpe
and

4.8) 1Bi(t)— B; ()] < d|e™ PP
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for |t <g"P, i=1,...,m I, j=1,..., n provided B, # f,. Take a positive
number w such that w<c and put P={(x,1): |x] <g [t| <e"® ¢
= min(g, w/2d)}. Let us denote

(49) = max (u(f;, g)ord, w(f, g)fordg,).
i, j=
LEmMMA 4.2. There exists a constant A, > 0 such that
(4.10) |H(x, ) = A, t"®  for (x, t)e P.

Proof. We first show that (4.10) holds in any horn neighbourhood F,
of the form

F,={(x, e P: |Ix—a ()] < wle]™
where », = maxord(a; — ;). From the definition of F, and from (4.7) we

J
have

x=B,(0) = el —wie™
> (C—W)ltlmd(mk_ﬂj)—
Hence and from (4.2) we get

lg (x, t) = (c—w)"|d]

By Lemma 4.1 (b), there exists an i such that
lg(x, ) = (c—w)rjg) o

Hence and from the definition of v we get (4.10) in F,, where 4, = (c—w)".
Let

Fiqg={(x, DeP: [x—Bi(0) < wid™ "™ ")
for B, # B, and

Ft,qul.q— t_.) Ft_UFp.b

where p, k run over all indices such that F,, is a proper subset of F, . We
now show that (4.10) holds in F,q for any [ ¢4 such that B, # f,. Fix

iell, m}. Three cases can occur. In the first one, if ord (8, —a;) = »;, we
have the inequality
4.11) lx—a; (0] = wit™ 4,

In the second case, if

ord (8, —a;) < ord(B,—B,),



144 J. CHADZYNSKI AND T. KRASINSKI

then from the definition of F 14 and from (4.7) we get
(412) |x —a (t)l > ¢ |t|°'d(“i - Bp —w ,tlord(ﬁl* By
> (c—w) ™A,

In the third case, if

ord(f,—B,) <ord(f;—a;) <ord(f,—a) = x;,

we easily check that F,, c F;,. In fact, if (x, 1)eF
Ix— B, (0] < wir™ o™,
Hence and from (4.8) we have in this case

[x—Bi(t)] < (w+d)|t]°'d(”p"’l) < w|t|ordlﬂ1—ﬂq)’

s> then

that is to say, (x, r)e F,,. In consequence, from (4.7) we have
(4.13) Ix —a; (0 = wie] PP g8

> (le)mord(m_ai)-
Combining (4.11), (4.12) and (4.13), we find that, for (x, t)e F,,q,

rd —a; .
x—a (O = A [t 4, = min(w/2, c—w),

and so,

D _:anord(ﬂ,—:l,-)
|f (x, t9) = AT |7

By Lemma 4.1 (c), there exists a j such that
|f(-x, I‘D)l > A;:ItlDM(f»ﬂj)lordgj.

Hence and from the definition of v we get (4.10) in F,_q, where A, = A7.
Since (4.10) holds in F;, for all I, g, therefore it also holds in (J F,,.
Lq

To complete the proof, it suffices to establish (4.10) in the complement of
UFywlUFi, Take iel, ..., m}. Two cases are possible. In the first one, if
k l.q '

minord (f;, —a;) = maxord (B, —a;) = x;,
! i

we have

. min ord(f) — a;)
14 x—a () = wit] =wlt
4.14; (D] = i !

In the second case, if

ord(f,—a;) = minord (B;,—a;) < ord(f,—a;) = x;,
!



LOJASIEWICZ EXPONENT 145

we have
(41 5) !X —a; ([)' > w |f'0rd(ﬁp_ By d ‘t|0rd(ﬂp-ai)

min ord(ﬁ,—ai)

= (w/2)lt] !

From (4.14) and (4.15) we get in the general case

min ord(f; —a;)

[x—a; (1) = (w/2) ]} !

?
and so,

min ord(f; — ;)

I Cx, 290 2 (w2 o=

min_il ord(f—a;)
> (w/2m et

Further, from Lemma 4.1(c) we have

min Du(f,gj)ford g;
|f (x, ) = (w/2y" e’
Hence and from the definition of v we get also (4.10) in this case, where A,
= (w/2)".
This concludes the proof of the lemma. O

5. Proof of the Main Theorem

Since the Lojasiewicz exponent, as well as the multiplicities u(f;, g), u(f, ;)
and ordf, ordg, ordf;, ordg;, i =1, ...,r,j =1, ..., s, are invariants of linear
automorphisms of C?, we may assume that ordf(x, 0) = ordf (x, y) and
ordg(x, 0) = ordg(x, y). Then, by the Weierstrass Preparation Theorem,
there exist distinguished pseudopolynomials f § associated with f, g. By
putting H = (f, §), it is easy to check that A(H) = A1(H). Then, without loss of
generality, we may assume that f and g are distinguished pseudopolynomials
of form (4.1).

Let U = {z: |z} < ¢}. We first show that there exists a positive constant
A such that

(5.1) [H(z) = AlzI* for zeU,

where v = n;;x(,u(j,i, g)fordf;, utf, g;)fordg;). From Lemma 4.1(a) it follows
ij=1

that there exists a constant ¢ > O such that, for each iell, ..., m},

(5.2) Jo; ()] < eel®.

10 - Banach Center t. 20
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Let us consider two cases. In the first one, if |x| = (e+1)]y|, we put y =?
and then, by (4.2) and (5.2), we obtain

£ (x, %)) = (Ixlfte+ 1)) = (1xlfe+ 1)

Hence we get (5.1), where A4 =(1/(e+1))". In the second case, if |x]
<(e+1)]yl, then putting (* =y in Lemma 4.2, we get |H(z) = A4,y
Hence we also obtain (5.1), where A = 4,/(e+1)".

Let us now assume that, for some peil, ..., riorgell, ..., s}, we have
v =ul(f,, g)fordf, or v = u(f, g,)fordg,. Let (Uy, 3, W,*) be a canonical
parametrization of the set of zeros of f, in a neighbourhood of 0e C?, such

that W* < U. It is easy to see that |[Ho®¥ (0) ~ [¢/*/?® and |®3 (¢)] ~ Jo| ">,
Hence, on the curve I', we have |H(z)| ~ |z|]". Analogously, in the second case
|H (z)] ~ |z|" on the curve I',,,. Hence and from the definition of A(H) we
conclude that A(H) = v. On the other hand, by (5.1), we have A(H) <v. In
consequence, A(H) =v and the proof of (1) is completed.

Condition (i) follows from (5.1), and (iii) is obvious. This ends the proof
of the theorem. O
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