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Introduction

The present paper (1) deals with properties of relations expressible
in the simple theory of types. For the sake of simplicity we consider
only one, say ternary, relation N. Let @ be a formula of the simple theo-
ry of types with one free variable V whose type is that of ternary rela-
tions between individuals. Speaking intuitively the formula & “expres-
ses” a property of ternary relations. Thig intuitive formulation, however,
is inaccurate because the “meaning” of @ depends on the meaning of
logical and extra-logical constants which occur in &. Hence, before we
can speak of the meaning of @, we must first choose a model # of the
theory of types. Usually we have in mind a standard model, i.e. one
whose individuals form a set X, whose sets of 18t type are arbitrary sub-
sets of X and, generally, whose sets of the k- 1st type are arbitrary
sets of sets of the kth type. Let us denote this model by St(X). It is
eagy to see that the property expressed by @ in the standard model may
depend on X. To avoid this complication we will speak not of proper-
ties of N alone but of pairs (M, N) where M is a set containing the field

of N. When we speak about the property of (M, N) “expressed” by
@ we mean the property:

(0.1) N satisfies @ in the standard model St(M).

Now we know (cf. Henkin [3]) that there are non-standard (or general)
models of type theory(2). Let .# be such a model and let the set of in-
dividuals of .# be again M. It is easy to define when an element n of the
model represents N in : this means simply that N(x,y,2) is equiva-
lent to the statement:

(\) The results presented in sections 1-8 of this paper were reported on at the
International Congress of Mathematicians, Edinburgh, 1958; the results presented
in sections 7-8 were reported on at the Mathematical Symposium held in Berlin in
November 1960.

(‘) General models are understood as sequences consisting of collections C;
(which intorpret universes of various types) and relations R; holding between the
elements of collections C; and C;); these relations interpret the notion of belonging of
an clement to another element of the next higher type. In Henkin’s treatment of the
subject C; is always a collection of objects of type ¢ and R; is the ¢ relation, ¢ = 1,2, ...
Some of the subsequent definitions could be slightly simplified if we adhered to Hen-

kin’s notion of the general model. Our more abstract approach, however, will be
needed in section 6 below.
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There is an element u of # which satisfies in .# the formulas ““u is an
ordered triple of x,y,2” and ‘“u is an element of n’’ (3).

Now if .# is a general model and » an element of .# which repre-
sents N in .#, then we may take the statement

(0.2) n satisfies the formula @ in A

a8 an explication of the loose statement that N has the property
expressed by @. With this explication the property expressed by &
depends in general on the model .#.

We call @ a formula absolute with respect to the class K of (general)
models if for every pair (M, N) and every model .# of K whose set of indi-
viduals is M and which confains an element »n representing N conditions
(0.1) and (0.2) are equivalent (ef. [7])(%). If (0.2) —» (0.1), then we
call @ invariant with respect to K; if (0.1) — (0.2), then we call @ dual
invariant (cf. [0] and [8]).

We can now formulate the problem discussed in this paper. If @ is
an absolute formula, what can be said about the property (0.1)?

We shall show (theorem 6.3) that if K is the family of models which
safisfy a recursively enumerable set of formulas true in each standard
model, then the property is elementary (i.e. can be defined within the
first order logic). We also show that (0.1) is elementary under the follow-
ing assumptions: (1) K is the family of models which satisfy the set
of all formulas true in each standard model, (2) M is infinite (theorem 7.4),
We also obtain a characterization of (0.1) in the case of invariant and
dual invariant formulas (theorems 6.1 and 6.2).

(3) Had we adopted the notion of general model as defined by Henkin, we could
simply say that n represents N in .# if n = N.

(%) The definition given in this paper lacked precision and should be replaced
by the definition given above (or by the still more formal definition given below on

. 12),
P We take this opportunity to correct certain statements made in [7]:

(a) The definition of models (p. 33, line 6 from bottom) is incorrect and should
be replaced by the following: a model is an ordered triple <(4,, A, a) where ¥ is a set
of subsets of A, and a a set of subsets of A.

(b) The statement made at the bottom of p. 34 to the effect that A contains
the axiom of extensionality is incorrect. It is true, however, that if A satisfies (2)
then the set A’ obtained from A by adjunction of axiom (3) also satisfies (2); thus we
can replace A by the larger set A’ in the whole subsequent proof.

(¢) On p. 41 it is stated that the property of being inductive is an absolute
property of a set. This is clearly false: the property is dually invariant but not
absolute.



1. Lemmas concerning first order formulas

We denote functional variables by Roman capitals and individual
variables by lower case Roman letters. First order formulas are denoted
by German capitals. We assume that the identity predicate may occur
in the formulas. To avoid confusion we use the colon as the symbol for
the identity of two formulas.

¥ &: FPy,..., P, x,,...,x;) has the free variables indicated,
if I is a set, R,,..., R; are relation with fields contained in I such that
R; has a8 many arguments as P;, j =1, ..., k, and if a,, ..., a; are ele-
ments of I, then the formula |=;&[R,, ..., Ry, a;,..., 4] means that
G is satisfied in I by the assignment which correlates R; with P;, a; with
x; (J=1,...,k ¢2=1,...,1) and the identity relation restricted to I
with the identity predicate.

The formula Re#(I) will mean that the field of R is contained
in I.

1.1. For every &: &(P,, ..., P.) with the free variables P,, ..., P, there
is a formula ®(P,, ..., P;) such that for arbitrary sets I, J and relations
Ry, ..., R, if J—I i3 infinite and R,,..., R e #(I), then

=y G [Ryy..., B] ==168[R,, ..., R;].

Proof. We shall formulate a more general theorem. Call a formula
numerical if it contains no predicate variables. Let & be a first order
formula whose free variables are some of the variables P,,...,P,,
X1y ...y Xy We shall prove that for every partition

{1y .cym} = {iyy oony 0} O{j1y oy Jg} = TVIT

there are: an integer h, first order formulas &,(P,,..., Py, x; , ey X))
and numerical formulas N,(x; , ..., X;), 8 =1,...,h such that if ICJ,
R,, ..., Bye B(I), a;, oeyaiel, and a;, ..., e ¢J—I, then

|=J%[-R11 '-~7Rk7 Byyeeey ] = 8\</h|=I®a[R17 ---yRk’ Birgoeny a’ip]&
[ o/ A [ P A P

(V is of course an abbreviation for repeated alternations).
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Cask L. & is atomic, &: Py(x,,...,X,). We take b =1, N,: (x)(x =Xx)
and G,: F if ¢, ..., tel, B;:~(x, =%)&... & ~(x, = x,) if at
least one ¢;eII.

Case ILI. & has the form x, = x,. We distinguish several subcases:

IMa. u,vel; =1, 6,:F, N, :(x,)(x; = Xxy). .

IIb. uel, vell; h =1, B, :~(x, = X,), N, :~(x, = X,).

ITe. uell, vel; (as above).

IId. %,vell; =1, B,:(x)(x =x), N,:(x, =X,).

CAsE III. The theorem is valid for a formula &. We shall show that
it is valid for the formula ~ &. Indeed,

l=5 ~&[Ryy ... By 01y ...y pn] = /\h(l=l~@o[Ru ooy By @iy oeny aip]v
<
=1 ~N, (85, - 25 a5,])
and the right-hand side of this equivalence can (by means of Boolean
transformations) be reduced to the required form.

CASE IV. The theorem is valid for formulas &, &F2. Multiplying
both sides of the equivalences

|=Jgi[R11 vy By @yy ooyl =V |=I@:[R17 ooy By, Bilyeeey aip]&
8
|=J—192§[ajly'"aa’fq]’ 1=1,2,
and performing suitable Boolean transformations on the right-hand side,
we obtain the theorem for the formula F'& .
CASE V. The theorem is valid for a formula &. We shall prove it
for the formula &,: (Ex;)&. We obviously have
|:J91[R11 RS | Rk’ Byyeeey Byqy Byygy g evy a’m] =
(Ba)r1=;F([Ry, ..., R, 84y ..., 6,1V (Ea)s_11=yF[R,, ..., By, 04,y ..., Gn])
and thus it is sufficient to reduce both formulas on the right-hand side

to the desired form.

- Va. Reduction of the first formula. Change the given partition into
a new one, I'UII’, which differs from IUII only by assigning ¢ to the
class I'. Hence teI’ and consequently é¢II'. Put I' = {¢, 4, ..., iy},
II' = {jiy..-»j,}. According to the inductive assumption there are:
an integer h’, formulas (B;(Pl,...,Pk,x,;,xii,...,xi;m) and numerical
formulas N, (x,;, ...,x,-;,) (8 < W) such that if ICJ, R,,..., R, e #(I),
Biy Bify ooy ai;"sI, By eeny a,j;z,eJ—I, then

=sG[Byy ...y By @1y 00vy Ol Eegh,\':lﬁi;[Rl’ voey Biey @5y 015 -0y ai;r']&

l=s_1Ns[ar, -5 a1,
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whence
(Ea)rl=yF[Ryy ..., By @1y ooy O] =
V=1 Dul Ry -y Buy 8y -y 0,1 & =g il ooy 0]

where 9,: (Ex;)®,. Since x; is free neither in $, nor in N,, the right-
hand side can be written as

a!h}:Iba[-Rl! vony B, Gigy oeey aip]&l=.7_1m;[a11’ ey afq]7

where we assume that a;,..., aipaI, Uy yonny Oy ed —1I.

Vb. Reduction of the second formula. Change the given partition
into I'"UII”, in which seII”. Put I" = {i’, ..., 4, }, II” = {4, 5,y ..., Jg }-
According to the inductive assumption there are: an integer A’, first
order formulas &, (P,,...,P;, Xy ...y X7 ) and numerical formulas
Ny’ (X35 X774 o X)) (8 < h" such that if ICJ, R,,..., R e#(I),
@y eey ai;”sI @iy G5y ..ey l-;;'sJ—I, then

|=J§[R1y seey Rln Byy oeey a,] =
V =18, [R,,..., R, a'i;" veny ai;.,]&|=.l_1 RN, (a;, ai;'a ceny ai;..]-

aghu
It follows that

(Eai)s l=s_1F[RBy, ..y Bry 01y ...y Gp] =
V Er @" [RU Rk: B’ yeeey a’i;;,,]& |=J_Igz: [aj"y vy a)'"u]
s<h? 1 1
where N;: (Ex;,)N,’ .
Since x; is free neither in @, nor in N;, we can write the right-
hand side as

V =16y [Byy ...y By, Qiyy oony By 1& |=J_Ic-n:[a'jlr ooy @1
s<<hr L e
where we assume that a;,...,a; &I, a;,...,a; eJ—1I.

Assume now that & has no free 1nd1v1dual va,rla,bles We obtain an
integer h, closed formulas ®,(P,, ..., P,) and closed numerical formulas
N, (s <h) such that for arbitrary ICJ, R,,..., R e B(I)

|=Jg[R19 ey Byl = Vh‘=I@a[Rn very Bi]1& |=J_Icﬁa-

If J—I is infinite, then the N, have definite truth values ¥, in J —1I
independent of I,J. The formula G:8,&ZT,v ... Vv 6G,&T, satisfies
the equivalence stated in 1.1.

Let & be a formula and H a one-argument predicate variable. We

denote by &, (H,...) the formula resulting from &F by the relativiza-
tion of all quantifiers to H.
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12. If HCI and R,, ..., R e Z(H), then
|=I%re1[H1 Ry, ..., By] E|=H$[Ru cery Byl

Proof by induction on the number of operators in &.
We introduce the following abbreviations:

HCTI: (x)[H(x)DI(x)],
Gy, ..., G,,s.@(H):a/g\k(xl, vy Xp ) Gy (Xyy ovey Xp ) D H(X)) & ... &H(x,, )]
(where p, is the number of arguments of G,),
co(J—1I,R): (x, 7)[R(x,¥)2J ()& ~I(x)&J(y) & ~I(y)] &
(x,¥,2)[R(x,y)&R(y,2) O R(x,2)]&(x)[J(x) & ~I(x)D (Ey)R (x,¥)] &
(®)[~R(x, x)]&(Ex)[J (x) & ~ I(x)].

13. If I,J,Re%#(U) and |=pyoo[J—1I,R], then J—I is infinite
Let &, ® be formulas with the functional variables P,, ..., P, and
the free individual variables x,,...,x;. We say that F implies ® and write
& =@ if for every I, every R,,..., R e#(I) and every a,,..., ;eI the
formula |=; §[R,, ..., R, a,, ..., a;] implies =; ®[R,, ..., Ry, ay,...,a].

1.4. & => B holds if and only if |=; F(R,,..., By, @y, ..., a;] implies
=1 ®[R,,..., Ry, 8y, ...,4;] for an arbitrary at most denumerable I,
arbitrary R,, ..., R,e#(I) and arbitrary a,,...,ael.

1.5. Let F(M,N,Q,,...,Q.), B(M, N, S,,...,S;,) be closed formu-
las with the vartables indicated (M has 1 and N 3 arguments). Assume that

(151) (MCJ)& oo (F—M,R)& Q,, ..., Que B(T) &N e B(M) &
Fa(J, M, N,Q,, ..., Q)

~MC K& oo (K—M, 8)&S,, ..., e B(K) & N ¢ Z(M)
| I8, (K, M, XN, §,, ..., ).

Under these assumptions there is a formula € (M, N) such that for
an arbitrary set M and an arbitrary ternary relation Ne B (M)

(1.5.2) - (1.5.3) — (1.5.4),
where

(1.5.2) there is a J 2 M and @Q,,...,Q.eB(J) such that J—M 1is infi-
nite and

|=J$[M1 -Na Qly ---,Qk]v
(1.5.3) =uC[M, N],
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(1.5.4) for an arbitrary set K O M and arbitrary 8,,..., 8$1e2(K), if
K —M is infinite, then |=g®[M, N, S,,...,8].
Proof. By the interpolation lemma ([1], [6]) there is a formula
D(M, N) such that

(1.5.5) MCJ& oo(J—M,R)&Q;, ..., Qe Z(J) &Nc Z(M) &
Fa(J, M, N, Q,, ..., Q)

(1.5.6) = DM, N),

(1.5.7) >MCK& oo (K—M, 8)&S,, ..., ;e Z(K)&NeZ(M) D
B, (K, M,N,S,,..., S).

Determine € by 1.1 so that for arbitrary sets H, M and an arbi-
trary relation N:eZ (M) if H— M is infinite then

=rD[M, N] = |=u €[M, N].

If (1.5.2) holds, then J, M, N,Q,,...,Q; satisfy (1.5.5) in J (cf.
1.2) and hence =,D[M, N], whence (J—M being infinite) we obtain
(1.5.3). If (1.5.3) holds and K is a set such that K —M is infinite, then
= D[M, N]. If § is an ordering of K—M and 8,,...,8;¢6%(K), then
the antecedent of (1.5.7) is satisfied (in K) and hence 80 is its consequent,
whence by 1.2 we obtain =z ®[M, N, 8,,...,8;]. This proves (1.5.4).

2. Representability of recursively enumerable sets

Let 2 be the theory described in [10]. We adjoin to its axioms a sen-
tence stating that every integer n is uniquely representable as 1/2(z+ y)
(#+y+1)+y. Let A,B,C,D,E be functional variables with 1,1, 2,
3, 3 arguments. Write axioms of 2 (together with the additional axiom)
using predicates x = 0,x = y+1,x = y+2z, x = y.z instead of functions.
Replace these predicates by B(x), C(y, x), D(y, z, x), E(y,z,x) and
relativize all quantifiers to A. Call the resulting formula F,(A, ..., E).

We shall denote by A,, ..., E, the standard model of &, in which
A, is the set of integers and relations B,, ..., E, have their arithmetical
meaning.

Instead of numerals we use formulas 3,(A,B,C, x) defined by
induction as follows:

3ot B(x) & A(x); 3n+1: A(x) & [(Ey) 3'n.(A’ B,C, y)&C(y, x)].
2.1. &, = (E'x)3,(x).

2.2. For every recursive funclion f(ny,...,m,) there is a formula
®,: 8,A,...,E,x,,...,X,,y) such that

80&3,,1(111)&...&3%@,,) >0 (xy,...,%,5) = 3f(n1,....np)(Y)-
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For n = 1 this theorem is proved in [10]. For n > 1 it results from
the case n = 1 and from the provability (in our extension of the theory

2) of theorems about the representability of p-tuples of integers by single
integers.

2.3. For every recursively enumerable set X of p-tuples of integers
there is a formula Xx(A,...,E,x,,...,X,,y) such that

(23.0) (kyyooey Bp)e X = (E)[Fo &3y, (%) &... &3, (x,) &34(y) =

> Xx(X1y +ovy Xp, Y],
(2.3.2) for arbitrary k., ..., k,,1 either

Fo& 3y, (x1) &... &3y, (%) &3,(y) = Xx (1, .-, %5, 7)

go&slcl(xl)&“'&Skio(xw)&BI(Y) > ~Xx(Xyy .0y Xy ¥).

Proof. Let f be a recursive function such that (k,,...,%k,)eX =
(ED[f(kyy ...y kp, 1) = 0] and put X x: (Ez)[B(x,, ..., X Y z)&so(z)]-

3. Simple theory of types

In the version of the type theory adopted here all formulas are built
from the constants |, E and variables V}, k,j =0,1,2,... (cf. [9]).
Formulas are expressions which belong to the least class containing
“atomic’ formulas V5! Vi (k,m,n = 0,1,2,...) and containing |®,P,
and EVE®, whenever it contains @,, &, (k,m = 0,1,2,...). The set
of formulas is denoted by 7,. We also denote by 7, the whole system of
the theory of types; the (semantical) notion of consequence in 7, wil
be described below. We assume the usual abbreviations for connectives
and quantifiers definable by means of the stroke and the existential
quantifier. Formulas of 7, will be denoted by Greek capitals. The Godel
number of @ will be denoted by "®@" and the formula with the G6del num-

ber n by n. We assume that "®” is larger than the (upper and lower)
indices of any variable which occurs in .

We introduce the following abbreviations(®):
A, (VE, V7)) (VITH[VIHVE = VITIV]]

) (Vi and V} are identical).
A'n(v?-‘—l; V?, V‘l’cl) : (V;) {V?+1V; = [An(v;:y V;n)v A'n(V;1 W:)]}

(p =j+k+1; Vi*' is the (unordered) pair of V7, V).

(5) The connectives of the propositional calculus and the general quantifier
are to be thought of as defined by means of the stroke and the existential quantifier.
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To(Vi; V5) : 44(VE, V5),
Tpy1 (Vi+5 Vi) (EVE) [To(Vie; Vi) & An i (VIH'5 VE, VIO
(k =4+j+n+1; V*! is the unit set of the unit set ... of V).
B, (VE, V3) : 4y(V?, V2),
By (VI VS, ..., V2

7n+1) :
(EVE" IV IV V) (Do (V™5 V7, ) &
B, (Va3 Viy voey Vi) &hgn o (V2715 V3070, VI ) &
A (V7 Vi, VD) & A (V5 V3, V)]

(p = max (i, ...y fnr)+1, g =p+1, r =q+1, s =r+1; Vgﬂ is the
ordered n+ 1-tuple with the elements V7 ,...,V; . ).

A model of T, is an ordered pair # = (R, S) consisting of a se-
quence R = (R,, R,,...) of sets and of a sequence S = (S,, §,,...)
of binary relations. R; is the range of the variables of the j-th type and
8; interprets the e-relation between elements of types j and j+1. In
order to be a model .# must satisfy the following conditions (in which

A, denotes the set of integers, cf. p. 7):
1. (j){jedo D [j = 02 (Ez) (e Ry},
Gy B)[J, kedoD (j+1 = kD (e, y) {(@89) D [(ee By &y e B,
Gy )Gy ke dy D {j # kD (@) [(we By) D ~ (@e R,
Gy R)G Redo D(jH1 =KD (y, V)Y e Ry &y e R &
(z)[ze R; D (28;y = «8;9")] D (v = y")})],
. (4, k) [j, ked,D (j—{—l =kD(z,2)|(zeR;) &(z'eR;) D
(Ey)|(y e Bi) &(0)((te By) D {(t8;9) = [(t = @)V (¢ = &)W} ]-

We assume as known the notion of safisfaction in a model. We write
=4 P[a,,...,a] for “a,,...,a, satisfy @ in .#”. It is of course assumed
that @ has k free variables Vj!, ..., Vit and that a,eR; for s =1,...,k.
The notion of consequence in 7', is defined as usual: @ follows from a set
Z of closed formulas if @ is valid in every .# in which all the formulas
of Z are valid.

If R;,, is the family of all subsets of E; and §; is the ¢ relation be-
tween members of E; and R;,, then . is called a standard model and is
denoted by St(R,).

Let M be a set and N a ternary relation such that NeZ(M). We
say that the pair (M, N) is contained in .# if M = R, and there is an m
in R; such that

(3.1) (z)[zeRD(x8,mD(Ey,2,t) {y e R, &2e Ry & e Ry & =4 By[2;9,2,11})],

= W N

=41
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(32) (¥,2,t)|yeR,&zeR,&te Ry D [N(y, z,t) =
(Em)(‘”sn'm' &=« Bs[w; 9, 2, t])” .
If an m satisfies the above eonditions then we say that m represents

N in # (®). It is easy to prove that there is at most one such element

in R;.

We can now express precisely the definitions which were sketched in
the introduction.

Lez 2" be a class of models, @ a formula of T, with the unique free
variable V;. We say that & is (a) invariant, (b) dual invariant, (¢) abso-
lute with respect to J¢ if for every model .# in X and every pair (M, N)
contained in .# and represented therein by an element »n

(8) |=.4P[n] implies \=syonP[N],

(b) |=syay P[N] implies |= 4P[n],

(0) I=staryP[N] is equivalent to = 4 P[n].

4. Formalization of the satisfaction relation

It will be convenient to present formally the basic semantical defini-
tions. Let .# be a model. We call an S-system for .# a system consisting
of a relation U, of a doubly infinite sequence of binary relations W;; and
of a sequence of sets Y, and satisfying the following conditions 6-13:

6. (EfifeU,
<Gy B, kedo D ()[feU O (E! a)W, 5(f, a)]},
. (jrk){j:ksAo-D(fa a')UEU&‘Wk,a'(fv a) D acR;]},
c(){iede D (NIfeY; D feUT},
10. (jy k, L, myn){j, k,l,m,nedg D[k =j+1&n = ViV, D

(n (fSU J{feX, = (a, b)[Wf.m(fv a)&W, . (f,b) D anb]})]lv
11. (G, &y D[d, kyleAg D (1= "7 D (N {feUD [fe, =

(feY; v fe YD)

© W =2

Definition:
Qp,q,m(f’yfv a’) = Wp,q(f" a')&(pl’ QI) (pn qls‘Aﬂ‘D
Pr<m&{<M&E (P, #PV @, # 9O (b)[Wpl.ql(f, b) = Wpl.ql(f'a b)]})

12. (p, ¢, m)(p’ g,y meA, D (f,0){feU&acR, D (Ef)[feU&
'Qp.q,m(f’r Iy a)]})v

13. (p,q,m,n)|p, g, m,nedyD|n = EVEm D (f)(feU D
{feY, = (E‘“’f')[f'ev&gp.q,m(f"f’ a)&'f'EYm]})” .

(®) Sometimes we shall also say that m represents the whole pair (M, N).
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A particular 8-system for .# is obtained as follows:
U is the set U° of mappings f such that fV, eRy; Wyi(f, @) means

that f (V,) —a; Y? is the set of feU® such that » is satisfied by the assign-
ment V§ — f (V, }(**). In this case the formula 2, ,,.(f",f, a) means that
(V7)) = a and f(V3!) = f(Vg)) for arbitrary p,,q, such that p, <m,
@ <m, (P, @) # (p, q). The S—system U°, Wi, Y, is called the stan-
dard S-system for #. In the sequel we aBSume that # = (R, S) is a mo-
del and (U, W, Y) any S-system for ..

4.1, Let 6yy...ytpy iy ooeyJr e integers and let a, e R;, fo'r §s=1,2,...,k.
Then there 48 an f in U such that f(Vj 5) =a, for s =1,...,k.

Proof: By 6 and 12.

42, If @ is a formula, of T, with the free variables V;}, . V}k, if
a,eR; for s=1,2,...,k and if feU and f(Vj8) = a, for s =1,2,...,k, then

stro-l =|l=4Pay, ..., @]
Proof: By induction on the length of & using 10, 11, 13 and the
remark that 4,,j, <@ for s =1,2,...,k.
Now let A,U,R,Y,S, W be predicate variables with 1, 1, 2, 2,
3, 4 arguments. Note that conditions 1-11 have the form
(G ks lym,n){j, k,l,m,neAd,D[(j, k,1,m,n)eRD A]}

where R is a recursive set of quintuples of integers and A is a formula built
from the simple formulas of the form ac Ry, aS;b, feU, feY,, W, (f, a)
by means of connectives and quantifiers (actually all the variables j, %,
l, m,n oceur only in 10, in other formulas some of them are lacking).
We replace (j,k,...,n)e R by a suitable first order formula which defines
this relation (in the sense in which we can say of the formula &, of 2.1
that it defines f). Further we replace in A4 ac¢R, by R(k,a), aS;b by
S(j,a,b), feU by U(f) and feX¥, by Y(n,f). Finally replace j, k, I, m,
nedy, by A(j)&...&A(n). In this way we obtain 11 formulas B,-B,;:
B,y: (){AG) 2 [B() D (Ex)R(j, 1)1},
B,: (5, k) (A &A() D {C(, k) D (x,y)[S3, x,¥) DR(, )
&R (k, y)1}),
t (B (A &AR)D{j # kD (x)[R(j, x)D ~R(k, 1]},

B,: (J, MAG&AK) D [CG, k) D (¥, ¥) Rk, V)&R(K, )&
&®){R(j,x) D [SG, x,¥) =83, x,y)} 2 (v =),
B;: (j, K)[AG) &AK) D (C(j, k) D (x,x) [R(j, x) &R (j,x)) D
(Ey)[R (k, V) &) (R, ) D (8G, t, Y) =Lt = 1)V (&t = x)))],
Bs: (EHU(), |

(%) If n is not a Gdodel number of a formula, then ¥? = T°.
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B,: (5, K){A(G) &A(k) D ()[U(f) D (E! a)W (K, ], {, 2)]},
By: (j, k){A(j) &A(k) O (f,a)[U(f) &W(k, j, f, a) DO R(k, a)}],
B,: (H{AG) D BH[Y(, 5D UHI,
Bo: (j,k,1, m,n) [A(j)&A(k) &SEAN&A(m)&A(n) D
[G(’)(A, ey By 3y, n)&C(j, k) D ()(UE) D {Y(n,f) =
(a, b)[W(j, m,f, a) & W(k, 1, f, b) D S(j, a, b)]}})]},
Bu: (L EDAG&AK)&A() D [B%(A,...,E,j,k,1)D
OOE YA, ) =[(~Y(j, Hv ~Y(k, H]))}.
We denote by H(p, q, m, {’, f, a) the formula
W(p, q,1,a)&(py, 91, T, 8) {A(P:) & A(q,) & A(r) & A(s) &D(p,, r, m)&
D(q,,s, m)&(p, # pV q; # q) I (b)[W(p,, qy, £, b) = W(p,, q,, ', b)]},
and by B,,, B,; the formulas

B.s: (Pya, m)(A(P)&A(q)&A(m)D (£, a){U(f) &R (p, a) D
(Ef)[U(f)&H(p, q, m, ', f, a’)]})?
« Byt (P, a4, m,n){A(p) &A(q) &A(m)&A (n)D[BY(A,...,E,m,p,q,n)
D(H)(UE)D{Y(n, f)=(Ea, {)[U(f)& H(p, ¢, m, ', f,2)& ¥ (m,)})]}.
The formulas B, B®, B® are formulas &, of 2.2 corresponding
to the recursive functions ViV’ r|kl", "EVEm .
We shall now prove some theorems in which we discuss relations
between S-systems and arbitrary models of B: B,&...&B, (7).

Let A,, ..., E, be the standard model of &F,, # = (R, S) a model

of T, and U°, W, Y, the standard S-system for .#. Define relations
R*, 8*, U*, W*, Y* as follows:

R*'(z,y) =2eA,&yeR,,
8*(z,y,2) =2eAd,&yS,7,
U*(f) =feU°
W*(z,y,2,t) = “’EAo&yer&Wg:,v(zy 1),
Y'(z,y) =2ed &yeY,.
We say that the system A,,...,E,, R*,..., Y* is determined by .#.
The field of these relations we denote by I*.
4.3. I* D R, and the set I*—R, 18 infinite.

Proof. Sets R; are disjoint (by 3) and non void by 1 and 5. The
field of R* contains all these sets.

4‘.4. ’=Io % [Ao’ caey .Eo’ .R*, S*, U*, W*, Y*].
() The method consisting in expressing the semantics of a formal system in

the first order calculus and considering models of the axiomatic system thus obtained
was invented and first used by Trahtenbrot [11].
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Proof. |=;,.B;[4,, ..., Es, B*, ..., Y*] follows from the fact that
the standard S-system for .# satisfies the ¢-th of the conditions 1-13.
We will verify this, say, for B,,. Assume that m,n,p,q are integers
and that |=,.8®[A4,,..., E,,m,p,q,n]. Since |=;.Fe[4e,-.., Eo)
we obtain by 2.2 n = "EVEm”. Assume further that fe U°, i.e. that f
is a mapping of variables into R,UR,u... such that f(V¥)eR, for arbi-
trary %,l. If Y*(n,f), then f satisfies the formula EVim (by 4.2) and
hence there are an @ in R, and a mapping f’ such that Q,,.(f,f, a)
and f’ satisfies m. Hence f'eU°, Y*(m, f’). Finally we easily see that

(4-4~1) ‘=I'3[A07 --'1E0)R‘7 LR ] Y.)py q’ mvfsf; a’]'

Conversely, if there are f’ and a such that f'eU°, Y*(m, f’) and (4.4.1),
then 2, ,n(f',f,a) and feY,, whence fe¥, and Y*(n,f), which
proves that |=7 B[4, ..., By, B, ..., Y*].

The proof for the formulas B,-B,; is similar.

Theorem 4.4 shows that every model .# determines a model for the
formula B. The next theorem shows that, conversely, certain models
of B determine a model .#.

Let A,...,E,R,S8,U, W, Y be relations with the same numbers
of arguments as 4,,..., E,, R*,..., Y*. Let I be the union of fields
of these relations. Define sets and relations Ry, S;, W, ,;, ¥, as follows

R, = {: (Ey)[ye A& =7 3:[4, B, C, y]1& R(y, )]},
8 = {(z,9): (E2)[2e A& =1 3[4, B,(C,2]& 8(2, %, ¥)1},
(4.4.2) Wi ={(z,9): (B2, 1)[26A&1c A& |=;3,[4,B,C,2]&
& =13,[4,B,C, t1&W (2,1, z,y)]},
Y, = {2: (Ey)[ye A& |=1 3,[4, B, C, y1&Y (y, 2)]}.

4.5. If =;%,[4,...,E] and =, B[4,...,E,R,S8,U, W, Y], then
M = (Ry, Ryy...,80,8,,...) i8 a model of T, and U, W;,;, Y, form
an 8S-system for A.

Proof. Condition 1: = ; B, can be written as (j){3,[j12 (Ez) R(j, 2)}.
Since there is a j such that |=;3,[j] and je A, we infer from |=; 3, that I
contains an z such that E(j, z). This proves z¢R,, i.e. condition 1.

Condition 2. Assume that j is an integer, ¥ = j+ 1, 28;y. Hence
there is a 2z in 4 such thet |=;3,{4,B,C,z] and S(z,z,y). Since
3,(z) = A(z), we obtain zeA. Let t be such thet C(z,1); the existence
of t is ensured by the assumption |=;%F,[4, E]. The seme zssumption
yields t¢ A; from the definition of 3;,, we obtein =;3;,,[(4, B, C,1].
From |=;8,[4,...,E,R,8,U, W, Y] we further obtain R(z,z) and
R(t,y), i.e. zeR; and yeR;,,.
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Conditions 3-9 are proved similarly.
We shall also discuss proofs of conditions 10 and 13 because of their

slightly more complicated form (conditions 11 and 12 can be treated simi-
larly).

Condition 10. Let j,k,l, m,n be integers such that k¥ =j+1
and # = "VfV!,". Since j=,F,[4,..., E], there are elements 8,t,u,
v,w of A such that

=43;08], |=43(t], F=adilu]l, E.3.0], |=43.[w].

Since all the quantifiers in &, and in 3; (¢ = 0,1,...) are relativized
to A, we can replace here |=, by [=;. By 2.2

=, ®V[A,...,E,8,t,u,v,w] =n="VEV"
and obviously C(t, s). Hence we obtain (by 1.2)
= BW[A,...,E,s,t,u,v,w],
and since |=;B8,,, we infer that the formula
(f)[U(f) 2{Y(w,f) =(a,b)[W(s,v,f,a)&W(t,u,f, b)DS(s,a, b)]}]

is satisfied in I if u, v, w, s, t are interpreted as u, v, w, s,?. From this
we infer that for an arbitrary f in U

fe¥n =(a, b);[W; m(f, a) &Wy,(f, b) O a8;b].

This proves that condition 10 is satisfied.

Condition 13. Let p, g, m,n be integers such that n = "EVim”.
As above, we determine elements 8,t, #, v of A such that

|=A‘3p[3]s I=A‘3q[t]~ |=4 3m[u]7 =4 37&[”]
and show that the formula

(4.5.1) (H{UE D [Y(v,f) = (Ea, &)[UF)&D(, b, u, f,f,2) &Y (u, £)]}

is satisfied in I if u, v,s,t are interpreted as u, v, s,?.
Now let f be an element of U. We have to show that

(4.5.2) fe¥n =(Ea,[)feU& Ly qm(fs [y 0)&fe¥n].

Assume that f¢Y,. Since (4.5.1) is true in I, there are a, f’ in I such that
feU, feY,, and |=;9[s,t,u,f,f,a)l. The last condition implies that
Wy q(f', @) and that '

(B)[W (81, by, fy b) = W(sy, 1, f, )]
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for arbitrary elements s, , ¢, of 4 satisfying (for certainr, win 4) D(s,, r, u),
D(t,, w,u) and 8, # 8 or t, *#t. Now we notice that

go&sm[“]&(so[sl]vsl[sﬂv "-v‘sm[sl]) => (Er)D(sy, 7, u)

([10], p. 54). It follows that for arbitrary integers p,, q, < m such that
Py # P OT ¢, # g we have '

(O)[Wp,,q,(f5 b) = W o, (F, )],

i.e. that Q, ; n(f',f, a).

Conversely if f',a are such that f'eU, feY, and Q,,.(f,f,a),
then we show, as above, that |=; H[s, t, », [, f, a] and hence, by |=; B,,,
that feY,. Equivalence (4.5.2) is thus proved.

Remark. Theorem 4.5 represents the crucial step towards our
final result. The circumstance which makes possible the proof of this
theorem is the fact that conditions 1-13 have a form of general statements
concerning integers and that in the formulas following the initial general
quantifiers either there are no bound number variables (the case of con-
ditions 1-11) or at most such number variables as are bound by a quan-
tifier with limited scope (the cases of conditions 12 and 13, in which
there are bound number variables in the formulas 2, ,.(f, f, a)).

Definition. The model .# and the §-system U, W, ,, ¥, defined
in (4.4.2) are said to be determined by relations 4,..., ¥, R, 8, U, W, Y.

5. Formulas M, and N,

Let Z be a recursively enumerable set of (Godel numbers of) closed
formulas of T, and let M, (A, ..., E,Y) be the formula

(x,y,HAX)&A(Y)&U()&X;(A, ..., E,y,x) D Y(x, f)].

5.1. If # is a model of T, and A,,...,E,,R*, 8", U*, W*, Y*
is the system determined by M, then |=r.Mz[4,,...,Ey R*,..., Y*]
if and only if =4 O for every @ in Z.
Proof. Assume |=;. M, and let @cZ. It follows by 2.3 that there is
an integer ! such that
Fo& 3ren(x) & 3i(y) = %X2(A, ..., B, ¥, x).
Since |=;.3re:["@7] and |=;.3;[!], we obtain from }=;. M,

fet* 2 Y*("0", f),

i.e. fe¥re,. Since U*, W} ;, ¥, form ap S-gystem, we find by 4.2 that

. 6. @

Rozprawy Matematyczne XXIX
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Assume now that (=4 @ for every @ in Z, that z,y are elements of
I* guch that @, yed, and |=;. Xz[4,, ..., By, ¥, ] and that fe U*. Since
l=7.Fo[4,,..., E,] we infer by 2.3 that x¢Z and hence f¢Y,, i.e. Y*(x, f).
This proves that =, M;[4,, ..., E,, R*, 8*, U*, W*, Y*].

9.2, If A,...,E, R, 8, U, W, Y are relations whose fields are
contained in I such that |=;F,[4,..., El, =/ B[4,...,E,R,..., Y]
and |=fMz(A,...,E,R,..., Y] and if # i3 a model determined by these
relations, then |=, O for every @ in Z.

Proof. Let ©eZ; determine ! such that
So&Bw,(x)&S,(y) =>%z(4,...,E,y,x).

Since 4 contains elements z,y such that =;3rg-[7] and ~,;3,;[y] and
since '=;F,[4,...,F], we infer that =;%Xz[4,...,E,y,z]. Since
= M;[A4,..., Y] we infer that if feU, then Y (z,f). We thus obtain
2eA&|=;3:6:[2]1&Y (z,f), which proves (cf. definitions (4.4.2)) that
feY o, and hence by 4.2 |= 4 6.

Remark. If Z consists of but one formula @, then instead of M,
we can use the formula Mg: (x, f)[3r6-(A, B, C, x) D Y (x,f)].

Let @ be a formula of T, with the single free variable V;. We shall
define two formulas N, and M, with the same predicate variables
A,...,E,R,S,U,W, Y, M, N. The intuitive contents of the formula
N, is that the model .# determined by A,..., E, R,..., Y contains the
pair (M, N) and that the element representing N in M satisfies @ in 4.
The intuitive contents of N, is similar: it says that if .# contains the
pair (M, N), then the element representing N in . satisfies @ in 4.

Put .

N’ (Ex){30(x) &(y) [M(y) = R (x, y)]1&(y, 2, t})[N(y, z, t) D
DM(y)&M(z)&M(t)]}.
R:30(X) &3, (%) &... &35(X6) &30 () &

&3 ()& 3, j~(6)s

TEV] EVEVIB, (V; VD, V], v§ B, (V}; v}, v3. v}
£: (8){S(x,, 8, 0) D (EH[U(f) &W(xy, x4, £, 8) &Y (2, )]},
P (by, bs,y ta) (R (X, t,) &R (X, t5) &R (Xq, t5) D {N(ty, tq, t5) =
(Eu, £)[S(x4, u, n) & U (f) & W (x,, X, £, t,) &EW(X,, X5, f, t,) &
W(x,, X4, £, 1) & W(x,, x,, §, u) &Y (8, f)]})v
Q: (EH[UE)&W(x;, x,,1,0)&Y (7, 1)],
No: N&(EXy, Xqyvvy X5, ¥ 2,5, D) [R&ER (X, n)&L&P&A],

Np: N’ &(Xgy ...y X5, ¥y Z, 6, ) [R&R (X5, n) &L &P D Q.
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5.3. Let # be a model, Ay, ..., Eo, R*, ..., Y* the system determined
by # and (M, N) a pair (consisting of a set and of a ternary relation in
B(M)) such that M C I*. The following conditions are then equivalent:

(5.3.1) (M, N) is contained tn M and the element n which represents N
in M satisfies =, DP[n];

(5.3.2) |=1.92¢[A0,...,E0,R*,..., Y*, M’ .N]o

Proof. Since M C I*, it easily follows from the definition that
I=7. N’ is equivalent to M = R, and N C Rj. Obviously A, contains
elements x,,...,;, ¥, 2, t satisfying ®. These elements are simply the
integers 0,...,5, "®", "EVIEVZEV3B,(V1; V1, V3, V3)™, "Ba (V15 Vi, V3, V3)™.
Taking these integers as interpretations of x,,...,X;,y,...,t we see
that =;. £ is equivalent to the statement that if sS;n (in the model .#),
then s satisfies the formula EVIEVIEVIB,(Vi; VI, V3, V3) in .#. Similarly,
I=r. P is equivalent to the statement that for arbitrary ¢,,t,,% in R, the
relation N (f,,{,, {,) holds if and only if there is an element u of R, such
that 1=, Bg[u; t,,1,, 4] and uS,n. Thus =, N'E&ERKE&EL &P &R (x5, n)
states that the pair (M, N) is contained in .# and that n represents N
in . Finally, (=;.Q[n] is equivalent to |=;. @[n] by 4.2. It follows that
(5.3.2) is equivalent to (5.3.1).

54. Let #,A,,...,E,R*,..., Y*, M, N be as in 5.3 and assume
that (M, N) i8 contained in # and that n represents N in .#. Then condi-
tiong

=4 P[n], |=I-§z¢[Aoy--"E0’R*’-“’ Y*, M, N]
are equivalent.

Proof is similar to that of 5.3.

In the remaining lemmas of this section we assume that I is a set,
A,..,E,R,...,Y, M, N relations in #(I) such that |=;F,[4,..., E]
and |=;8[4,...,E,R,..., Y]. # denotes the model determined by
(4,...,E,R,...,Y); a8 usual, # = (R,, Ry, ...; 8¢, 81,...). Uy, Wy 1, ¥
denotes the S-system for .# which is determined by (4,..., E, R, ..., Y)
according to (4.4.2).

5.5. =N[4, B, R, M, N] is equivalent to (M = Ry)&(N C M3).

Proof: obvious.

5.6. If =/KR[A4,B,C,24,...,%5,Y,2,t] and R(z;,n), then neR;
and = N &L&P[A,B,R, S, U, W, Y, M, N,Zpy...,%4,2,t,mn] 18
equivalent to the following condition: the pair (M, N) 18 contained in A
and n represents N in M.
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Proof. From =;¢ it follows that if sS,n, then there is an fin U
such that W,,(f,s) and st"Ev‘{Evg £V B, (v4; v0, 2, v9) Hence s satis-

fies in .# the formula EVIEVIEVIB,(Vi; VI, V3, V3), i.e. there are t,, t,,
tye Ry such that I=, B,[8;¢,,1,5,t]. From |=; P it follows that if ¢,,2,, t;e R,
then N (t,, t,, t3) i8 equivalent to the existence of an element u such that
uS,n and =, Bs[u;t,,t,,t,]. Together with 5.6 this proves that the
pair (M, N) i8 contained in .# and that »n represents N in .#.

Conversely, if (M, N) is contained in 4 and n represents N in .4,
then by 5.5 we obtain | =; N’. If s8,n, then s satisfies in # the formula
EVIEVIEV;B,(V}; Vi, Vs, Vi), whence we obtain |=; £. Finally, N (i,,1,, ts)
is equivalent to the existence of an element % in R, such that «S,n and
= 4 By[u; 1, 15, 3], which yields |=;P.

57. = No[A4,.".,E,R,..., M, N] is equivalent to the following
condition: (M, N) 18 contained in .# and the element n which represents
N in A satisfies i—,4 P[n].

Proof. Obviously there are z,,...,%;,%,2,? which satisfy
| = R[4, B,C,z,,...,2;,9, 2, t]. Hence, by 5.6, if |=; N4, then (M, N)
is contained in .#; if n represents N in ., then |=,Q[U, W, Y,2,,z;,y,n],
whence by 4.2 =, ®[n]. Conversely, from =, @[n] it follows that
= Q[U,W,Y,=z,z,y,n]. Using 5.6 we obtain |=;N,.

5.8. If .# contains the pair (M, N) and n represents N in #, then
=; No[4,..., B, R,..., Y, M, N] is equivalent to \=, P[n].

Proof. If |=;N,, then the n which represents N in .# satisfies
= Q{U,W, Y, x, 2, y,n] (where the meaning of z,,2;,y is as in
5.7) and hence |=, @®[n]. Conversely, assume that ne B; and =, @[n];
obviously we have =, N'. If z,, ..., %, ¥, 2, satisfy K, and if n'cR;
and =, L&P[4,...,E,R,..., Y, M, N, x,,..., %5, 2,t,n'], then n' re-
presents N in #, whence »’ = n and consequently |=, @[n’'], which
yields =, Q[U, W, Y, z,, #5, ¥, n']. This proves that |=;N,.

6. A characterization of conditions expressed by invariant,
dual invariant and absolute formulas

Let Z be a recursively enumerable set of closed formulas of T, such
that every @ in Z is valid in every model of the form St(X) (i.e. in every
standard model). Let " be the family of models .## such that = ,© for
every @ in Z.

6.1. If a formula ® with one free variable V; is invariant with respect
to A, then there is a first order formula F(M, N, Q,, ..., Q:) such that
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for an arbitrary pair(®) (M, N) the following conditions are equivalent:
(6.1.1) l=stan PLV],

(6.1.2) there 3 a set I and relations Q,, ..., Qre#(I) such that I 2 M,
I—M is infinite and |=; F[M,N,Q,, ..., Q]. .
Proof. Take as & the formula

%,(A,...,E)&B(A,...,E,R,8, U, W, Y)&
M (A, ...,E,R,..., Y)&N,(A,...,E,R,..., Y, M, N).

Thus ¥ = 10 and the Q,,...,Q; are A,...,E,R,..., Y.

Assume (6.1.1). Consider the model .# = Si{(M) and the system
Agy..., Eqy R*, ..., Y* determined by .#. Let I* be, as usual, the union
of fields of these relations. By 4.4 |=;. B[4,,..., E,, R*, ..., Y*] and
by 4.3 I R,—M and the difference I*—M is infinite. Obviously
=16 Fo[4qy ...y Ey]. By 5.1 and the assumption that every @ in Z is
valid in every standard model we obtain |=;. Mz (A4, ..., B, R*,..., Y*].
Since N is the element of .# which represents N in ., we infer by 5.3
that |=7. N,[4,, ..., By, R*, ..., Y*, M, N]. This proves the implication
(6.1.1) - (6.1.2). Note that invariance of @ has not been used in this proof.

Assume (6.1.2), i.e. assume that there are a set I O M such that
I—M is infinite and relations A4,...,E,R,...,Y in #(I) such that

=;%,[4,..., B], =:B[4,...,E,R,....,Y], =;M;[4,..,E,R,..., Y]

and
= Ne(4,...,E,R,..., Y, M, N].

Let .# be a model determined by 4,...,E, R,...,Y. By 5.2 .# belongs
to X and according to 5.7 the pair (M, N) is contained in 4 and we
have |= 4 @[n] for the element » which represents N in .#. Since @ is
invariant, we obtain (6.1.1).

6.2. If a formula @ with exactly one free variable V3 is dual invariant
with respect to X, then there 18 a first order formula ®(M, N, S,,..., ;)
such that for every pair(®) (M, N) the following conditions are equivalent:

(6.2.1) l=ston PN ],
(6.2.2) For arbitrary K D M and arbitrary S,,...,8; in B(K) of K—M
is infinite, then = g®[M, N, S,,..., §].
Proof. Take as B the formula
Fo(A,...,E)&B(A,...,E,R,...,Y)&M4(A, ..., E,R,..., V)&
N'(A,....,E,R,...,Y,M)DNH(A, ...,E,R,...,Y, M, N).

(8) A “pair” (M, N) always consists of a set and a ternary relation N whose
field is contained in M. :
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Thus ! = 10 and the S,,...,8;, are A,...,E,R,..., Y. Assume (6.2.1)
and let K be a set such that K D M and K— M is infinite. Choose
arbitrary 4,...,E,R,..., Y in #%(K). In order to prove that
= ®[M,N,A,...,E,R,..., Y] we assume that

6.2.3) =xFo4,...,E], ~xB[4,...,E,R,..., Y],

\=x M[4,..., E,R,..., Y], |=xN'[A4,...,E,R,..., Y, M]
and deduce that
(6.2.4) =g Ny[4,...,E, R,..., ¥, M, N].

Let us therefore assume that z,, ..., 25, ¥, 2, t, n are elements of K such
that

(6.2.5) =g R[A,B,C, %oy ..., T5, Y, 2,1], R(zs,7n),
=& P[A,B,R, S, U, W, Y, M, N, zqg,..., g, 2, t, n].

We have to prove that =g Q[U, W, Y, z,, 2;,7n]. The assumptions
(6.2.5) yield by 5.6 that (M, N) is contained in .# and that » represents
N in .#. By the dual invariance of @ we infer that |= 4 @[n]. This, how-
ever, is equivalent to =xQ[U, W, Y,2,, z;, n]. (6.2.4) is thus proved.

Now assume (6.2.2) and consider the model .# = St(M). Take the
system A, ..., By, R*, ..., Y* determined by .# and let I* be the union
of fields of these relations. By 4.3 I* 2 M and I'— M is infinite. From
(6.2.2) we infer that =;.8[M, N, A,,...,E, R*,..., Y*']. Now we
obviously have |= ;1.&,[44, ..., F,]; lemmas 4.4, 5.1 and 5.5 show that
= B[4y -y Eoy B*, ..., Y], |=1eMz[44,..., Ey, R*,..., Y*] and

e RN'[Agy ..., By, B*, ..., Y*]. According to the definition of N, we
obtain [=7. Ny[4¢, ..., By, R*,..., ¥Y*, M, N]. Since the pair (M, N) is
contained in St(M) = .# and N is represented in .#, we obtain (6.2.1)
by 5.8.

6.3. If a formula ® with exactly one free variable Vi is absolute with
respect to A, then there is a first order formula € (M, N) such that for an
arbitrary pair (M, N) the conditions

|=St(M)¢[N] |=M@(M; W)
are equivalent.

Proof. Let &, ® be formulas whose existence is stated in 6.1, 6.2.
We shall show that the formula (1.5.1) holds. Indeed, let U be a set,
let J, K be subsets of U, and let MCJ, MCK, R, @,,...,Q e Z(J),
8,8, ...y 8 Z(K), Ne#(M). Let us assume that =y oo[J—M, R],
=y oo[E—M,8)] and l=pFl/, M,N,Q,,...,Q]). It follows that
=,F[M,N,Qs,..., Q] and that J—~M is infinite, whence by 6.1
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l=syay P[N]. By 6.2 we obtain =x®[M,N,S,,...,8], since K—M
is infinite, whence =y ®,,[K, M, N, Sy, ..., 8;]. Thus the assumptions
of 1.5 are satisfied and we infer that there is a first order formula €(M, N)
such that (6.1.2) > |=, C[M, N] —>(6.2.2). Since (6.1.2) and (6.2.2)
are both equivalent to (6.1.1), we infer that (6.1.1) is equivalent to
=uC[M, N].

?. The space of models

Put R, ={2,2-3,2’-5,...} for j =0,1,2,... Our aim in this
section is the proof of the following theorem:(°)

7.1, There exists a set S of models of T, such that
(7.1.1) Ewvery model # in S has the form

(ﬁoy -Rn eeey 8oy By -2);
(7.1.2) If # is in S, then 2k+1 8,2 for every k;
(7.1.3) If # is in O, then 25 represents in H a ternary relation;

(7.1.4) A topology can be introduced in S in such a way that © becomes
a compact Hausdorff space;

(7.1.5) For every fOfmula D with the_a free variables V};ll, ...,W;;l the set
{M: |=4DP[2"(2k,+1),...,2'0(2k,+1)]} 48 open and closed in O.
(7.1.6) If #' = (Ry, Ry,...,8,8;,...) i8 a model of T, with denumer-
able R; (j = 0,1,2,...) and conlaining an element r, in R, such
that r,S,7, for every r, in Ry as well as an element rs in R; which
represents in M' a ternary relation, then there is in © a model M
isomorphic with #' and such that r, corresponds to 2 and r5 to 2°.

The proof of this theorem will be divided into several parts. First
of all we shall construct an auxiliary gystem 7°; which can be said to result
from T, by adjunction of symbols for arbitrary Skolem functions for
formulas of T,.

The class of well-formed formulas of 7, is the union {J,K,, where
K, is defined by induction as follows. Let K, be the set of well-formed
formulas of 7,. Let the void set be the set of functors of K, and the
set of all variables its set of terms. Now assume that n > 0 and that
both K, and the sets of its functors and terms are already defined.

We let a symbol f,,; correspond to every formula @ in K,—
— Uj<n K; and to every V. The type of this symbol is (p,, ..., p:; k),
where p,,...,p; are the upper indices of the variables which are
free in @ and different from VY. Tho set consisting of all functors of K,

(°) This theorem is a reformulation of a joint result of A. Ehrenfeucht and the
author; see [2]. A closely related result is contained in Beth [12], pp. 523-525.
Beth’s result is insofar weaker as he leaves undetermined the interpretation of —=.
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as well as of all symbols f, , ; is the set of functors of K, ,. The terms
of K, ,, are defined by induction: all terms of K, are terms of K,,, and
their rank in K, is 0. If { is a functor of K, , of the type (p,, ..., p:; k)
and if 7,, ..., r; are terms of K, , whose ranks in K, , are < r and whose
types are p,, ..., P;, then fry,...7; is a term of type k and of rank <,
Finally we define the class K, ., itself: formulas in K, are formulas of
K, ., and their rank in K, , is 0. If 7, 7, are terms of K, ,, whose types
are j+1 and j, then 7,7, is a formula of K,,, and its rank in K, , is 0.
If &,, D, are formulas of K, , whose ranks in K, , are < r, then |®, P,
and EV/®, are formulas of K,,, whose ranks are <7+ 1. No other ex-
pression is a formula of K,,,. '

Skolem resolvents. Let @ be a formula of T5. We define a Skolem
resolvent of & as follows. If & is an atomic formula, then &5 iz &. If
® is |D, D,, then O is BT PF*, If & is EVS D,, then P is the formula
8b (VE [1a5% p.o(V!y - .-, Vok)@TY) where V31, ..., Vik are all the free va-
riables of @, which are different from V7.

- 7.2 @ has the same free variables as ® and does mot have bound
variables.

Semsi-frames. A semi-frame for T, is a sequence
(RO’ Rl’ teey 807 Sl’ ”')

where the R; are sets and 8;C R; X R;,,. A semi-frame for TY is a se-
quence

(Boy Byy ..oy 8oy 84,y -~-1Tis .es)

where f runs over functors of T and R; is a set, §;C R; x R;,, for
j=0,1,2,... and where T is a function from E, X...XE, to E,
for every functor f of type (p;,-.., Px; P)-

The notions of satisfzction of a formula and of the value of a term
in a semi-frame are assumed 28 known.

Let Rj be the set of terms of 72 whose types are equal to j (j =
=0,1,2,...). For a functor { of type (p,,..., x; p) we denote by T
the function from R; X...XRp, to R, defined thus: T7(z,,...,7) =
= {71y -e0y -

The space S* of semi-frames. Let ©* be the set of all semi-frames
(Ro, BYy ...y 8oy 84y ..., If, ...). We introduce a topology in S* by
taking as an open basis scts [P] defined as follows: .#¢[P] if and only
if @ is sctisfied in .# by the essignment f, which correlctes with each
variable V7 the element V) of R}: we assume here that & is an open
formula.

(19) Sb(VP/a) symbolizes the substitution of a for V2.
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73. If #eS* and t is a term of T, then the value of v in A under
the assignment f, 8 7.

Proof is by easy induction on the rank of =.

7.4. ©* is a separable Hausdorff space and the neighbourhoods [D]
are open and closed.

The only fact which needs verification is the existence of disjoint
neighbourhoods of two different semi-frames .#' and #". If #' = A",
then there are j, 7,, 7, such that either 7, 8;7, and v, non-S;'r, or v, non-
8;7, and 7,8;'7,. Taking as @ the formula 7,7,, We obtain .#’¢[®] and
M'eS* —[D] = [~ D] or conversely.

7.5. S* i3 compact.

Proof. Let @, be a sequence of open formulas of 7% such that
(Nn<a [Pn] # 0 for ¢ =0,1,2,... Let & be the filter of those closed
and open subsets of ©* which contain at least one of the sets (MV,cq [Pn)
and let #* be an extension of # to a prime filter. Define relations S§;
by the equivalence

(7.5.1) 1,87, = [137,]e F*

and let .#' be the semi-frame (R}, R}, ..., S, 8}, ..., Tf,...). We prove
by induction that for every open formula ¥ of T3

(1.5.2) M'Ee[P] = [Ple F*.

By (7.5.1) this is true for atomic formulas. Indeed, if ¥ is the for-
mula z,7,, then the left-hand side of (7.5.2) is equivalent to the following
statement: the value of r, in .#' for the assignment f, bears the relation
8; to the value of 7, for the same assignment. By 7.3 the values in ques-
tion are 7, and 7, and so the left-hand side of (7.5.2) is equivalent to the
left-hand side of (7.5.1), i.e. to the right-hand side of (7.5.2).

If (7.5.2) is true for the formulas ¥, and ¥,, it is true for the formula
|¥, ¥, because

M'e[ |V P,] = M'e(S”—[V,])u(S" — [Ps])
= [¥,] non-¢#* or [¥,] non-: #*
= (S —[PI)u (S —[¥a])e F* = [|71¥,]e#".
Auziliary sets &,, &, of formulas. Let p, ¢ be integers and let @ be

an open formula of T3’ whose free variables different from V7 are Vg!,
...y Vgk. Consider the formula

@D 8b(VE ffo,5,0 (Vi!s ---, VEE)) @

and let &5, , be the set of all formulas obtained from it by substi-

tuting terms of types p, p,,..., pr for the variables V7, Vi!,..., Vgk.
Lot &, be the union of all sets &5y 4.
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Let &, be the set of formulas @%¢ where & is one of the following
formulas

(Vs, VINEVSH) A (V5t; Vg, V1),
(Vor!, VPOV [Ve ' VE = VIHI Vel = 4, (V+, VY,
(EVG...VE) ~ [45(VE, VD)V ...V 4, (VE, V)V o v Ap(VE_y, VR)]

’ (p, k=10,1,2,...),
(Vo) Vo Vg, -
(Vo) [VaVo D (EVs, V1, V2) By (Vg5 Vi, V3, V).

Finally let & = ¢,0U&,.
A closed space P. Let P be the space of all the semi-frames
M = (R;,RY,..., 84y 8y, ...) such that the semi-frame of 7T

ext(.#) = (R, RY, ooy Boy By ooy TF’ vee)
belongs to (g2 [?]. The topology in P is introduced via the one-one

correspondence .# <= ext(#). P is obviously homeomorphic to a closed
subset of G*.

7.6. If # belongs to P then conditions =4 Plry, ..., 7:] and
= ozt (#) P [T1, ..., 7] are equivalent for arbitrary formulas ® with k free
variables and for arbitrary k terms vy, ..., 7, of appropriate types.

Proof. It is sufficient to show that if 7.6 holds for a formula @ with
the free variables V71, ..., Vik, V2, it does so for the formula ¥: EV] ®.

Let us first assume that Y5 ig satisfied in ext(.#) by the assignment
Voi > 7,4 =1,2,...,k. From the definition of ¥5* it follows that
@k i satisfied in ext(.#) by the following assignment: Vi — 7,
Vi = feskpg(t1y ..., 7;). Hence we obtain =, ¥[7,,..., 7] using the
induective assumption.

Now let us assume that =, ¥[7,,..., 1], i.e., that there is a term
7 in Rj such that =4 ®[7, 7,,..., 7;]. Using the inductive assumption
we obtain =0 O5E[7, 71, .00y ], L@ ext(M)e[DPH(7, 7y, ..., )],
Now we notice that

' e‘”t(-’l{)E[(DSk(f, Tyyney Tp) D (DSk(foSkp.q(tl’ iy Th)y Tay eeny Tk)]
since the formula in the square brackets belongs to &. Hence we obtain
ext(M)e [@Sk (f@Sk. p,tl(tl) cvay ‘t'k), Tiy evoey Tk)], i.e., l=¢1:t(4’) sk [Tl, ves ,‘L’k].

9. i #eP and Peé, then |=4P[VY,..., Vik] where Vi,
t=1,2,...,k are all the free variables of P.
This is a direct corollary to 7.6.

7.8. If #cD, if D is a formula and 1,,...,71, are terms such that
=a P[T,,..., 7], then there is a mneighbourhood U of .# in P such that
=y BTy, ..., 7] for every & in UnP.
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Proof. It is sufficient to take as U the neighbourhood in P which
corresponds (via the mapping # <=ext(.#)) to the neighbourhood
[P% (71, ..y Tw)]

The equivalence relation aeq,. Let # be a semi-frame in P and let
aeq be a relation defined as follows:

T,86q.4 Ty = (EP) 74, 72€R;& emt(./l)s[A%k(rl, 72)].

7.9. If MDD then aeqy i3 an equivalence relation.

Proof. The formula (4,(7,,7,))* has the form er, = ez, where
e =e(7y, 1, i8 the functor fs,,,, and P: Vit'r, 5= Vi*'z,. Since
[fz, = fr;] = ©* for every functor |, we infer that the relation aeq,
is reflexive.

If <, aequt,, then ext(#)e[e(ry, Ta)T, = e(7y, T3)7,]. Since the
formula e(7,, 1,)7; = ¢(7y, 71) T2 D €(71, Ty) 7y F ¢(7y, T4) 75 belongs to &,,
we infer that if the relation ext(.#)c[e¢(r,, 7,)7y 5= €(7s, 71)Ta] Were true,
we would have exi(.#)e[e(ry, Ts)T, = ¢(7y, T2)72] and hence we would
also have v, non aeqq7,. This proves that the above relation is false
and hence that 7, aeqst,. Thus aeq, is symmetric.

If 7, aeq 7, and 7, aeq 47, then
ext(A)e[e(ry, 73) 71 = €(Tq, Ta) Tal,
(7.9.1)
ext(MH)e[e(ry, 13) T2 = (73, 73) 73]

Assume that ext(#)e[e(r,, t9)7,]. If we had ext(M) non-e[e(z,, 73) 751,
then we would also have ext(.#)e[e(T,, 73)7, 5= ¢(7y, T3)72], and since
the formula e(7,, 73)7, 5= e(7y, 73) 72 D €(Ty, T3) T, & ¢(7,, T2)7, I8 in &,
we would obtain a contradiction with (7.9.1). Hence ext(.#)e[e(7y, T5)7al.
By a similar reasoning we obtain exi(.#)e[e(r,, 73)7;] and thus

ext(M)e[e(Ty, T3) Ty I (T, T3) T3]
We prove similarly that
ext(M)e[e(ry, T3) Ty D €(Ty, T3) T, )
and the transitivity of aeq, is thus proved.
7.10. If #cDP and 1, aeqqt, then
(7.10.1) =g P[...T;...] =l=n P[...75...]

for an arbitrary formula @ of Tg .

Proof. In view of 7.6 it will be sufficient to prove (7.10.1) for open
formulas replacing # by ext{.#). It is obvious that if the formula thus
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modified is true for @, and @,, it remains true for |®, @,. Hence it remains
" to prove that for any o

(7.10.2) ext(#)e[or, = 071,4],
(7.10.3) ext(M)e[1,0 = T40].

(7.10.2) results at once from the definition of aeq,. If (7.10.3) were
false, wo would have ext(.#)e[~ ®°¢(7,, 1,)] where & is the formula
(VO [V Vs =V3+'Ve] and n+1 is the type of 7, and of v,. Because
of 7,aequ7, we have ext(#)e[d, (7, 7s)]. It follows that ext(.#)
non-¢ [(Vo**, Vi*) |65 = (4, ,,(VsH', Vi1")%t}], which contradicts the
assumption ext(.#)e[¥] for all ¥ in &,.

The space S (11). We now define a mapping of P onto a class of semi-
frames (R,, B,, ..., 8o, 8y, ...)-

Let

Vf, = Tj,09 Tj,19 -+

be a fixed sequence (without repetitions) containing all elements of R;
(i.e., all terms of T3 of type j), j=0,1,... Let # = (R;, RY},...,
85, 8%,...) be an element of S*. We define a mapping g.s: 7, x > ¢; » of
R} onto R} (j =0,1,...) by induction as follows: Put ¢, (V}) =2’ and

Pu (T 1) = Min, [peB; &P # gu(z;,) for 8 =0,1,...,%]

if 7; 41 non-aeqet; , for s =0,1,..., %k and

Pa(Ti k1) = Pa (T 6)

if 8 is the least integer < k such that 7; ., aeqa7; ,.
g« maps R} onto R;. Otherwise there would be an s such that

every term t; ), would bear the relation aeg, to one of the terms 7;;
with ¢ < 8. This would entail that the formula

@ (EV], ..., EVEL)(VI[A;(VE, VDV ..oV 4;(V), VL]

is true in .#. Hence we would obtain #c[®#%], which contradicts the
agsumption that #e¢[¥] for every ¥ in &,.

The mapping ¢, is in general not one-to-one.

Let u(.#) be the semi-frame (R, R,,...,8,,8;,...), where
2™ (2p+4-1)8,,2™*'(2¢+1) is true if and only if there are terms
Tm, ks Tmy1,1 BUCh  that @ (Tm i) = 2™(2p+1), Pa(Tmyr1) = 2"*1(2¢41)
and Tm, kS:nTm.H_ g

From 7.10 it follows that §,, can also be defined in the following way:
2™(2p+1)8,2™ " (2¢+1) if and only if 7, xSmTm,1: for arbitrary terms
such that ¢ (tm i) =2"(2p+1) and @a(tm.) = 277 (2¢+1).

(') The construction of & outlined below is due to A. Ehrenfeucht.
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Y
Let © be the set of all semi-frames u(.#) where .# runs over the

space P. Define neighbourhoods in ‘S as sets described in (7.1.5).

We are going to prove that all conditions of theorem 7.1 are satisfied
with this choice of O.

First we are going to prove that & consists of models, i.e., that
every semi-frame u(.#) in © satisfies conditions 1-5 of p. 11.

Conditions 1-3 are obvious.

—

Condition 4. Assume that y,y’cR;,, and that for every z in E;
the equivalence #8;y = #8;y’ is true. Determine m, n such that ¢ (741 m)
=%, (p,/{(‘t;_l_l’n) = y'. It follows that Tj'kS;Tj_,_].m = tj.kS}'th.,., for
each k, whence 7;,,,, #6q4 7;,,, and consequently y = y’.

Condition 5. Let ,x' be arbitrary elements of R;. Since the
formula (V), V3)(EV)T)A;(Vi+!; Vi, V)) belongs to &, it is true in .4,
and hence there is a term t;,, , such that for every o in Rj

t ]
085 Tj1,m = Tj p GEQa OV Ty ,06G 4 0.

Assuming that ¢,(7;,) =2 and ¢,(1;,) = &', we infer that the ele-
ment ¥ = g« (7,1 ) satisfies the equivalence iS;y = (v = 1) or (2’ = 1)
for every t in R;.

Before checking conditions (7.1.1)-(7.1.5) we prove one more lemma:

711, If @ is a formula of Ty with the free variables V3. ,...,Vk and
MH is in P, then

(7‘11'1) = (b[ril,’nl? ceey rik,nk] = 1=y(ﬂ)¢[¢l(t’il,nl)7 sy qjﬂ(r‘ik,nk)] .

The lemma is obvious for the atomic¢ formulas because of the defini-
tion of the relations §;. It is also obvious that if the lemma is true for two
formulas @, and ®P,, then it is true for the formula |®, D,. Finally let us
assume that the lemma holds for the formula ¥ with the free variables
Vi, Vi,..., Vi and let @:EV}¥.

The condition |=4 ¥([7;n, T ny - -y Tip,n,) iMplies the condition
=ty V00 (Tin)s P (Tiyyn)s - -y 94 (Tiy n, )], Whence we infer that the
left-hand side of (7.11.1) implies the right-hand side. If the right-hand
side of (7.11.1) is true, then there is an element & of R, such that
| =uety P2, 9a(Tifn)y - o) Pa(Tiy,m,)]. Since every element of R; is re-
presentable as ¢@4(7;,), Wwe obtain, by the inductive assumption,
=w V[ Tij,mys +++y» Tigum )y Which proves that the left-hand side of
(7.11.1) is true.

S satisfies conditions (7.1.1)-(7.1.5).

(7.1.1) is obvious.

(7.1.2). If u(H)eS, then #eP and hence #Ze[(V))V,Vi]; conse-
quently z,,.8;V, for ¥ =0,1,2,..., whence 28,2 for every z in R,.
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(7.1.3). If pu(M)eS e.md HeDP, then Ae[P], where @ is the formula
(VOHIVIVED(EVIVIV)B,(Vs; Vo, VY, V)], If 28,25, then there is
a k such that & = ¢ 4(7, ) and therefore there are p,, p,, p; such that
=4 BalT4,y To,5;5 To,py To,p,]- Using lemma 7.11 and denoting ¢« (7 p,;)
by »;, ¢t =1,2,3, we obtain |=,.Bs[z; 2, #., 2], whence we infer
that 2% represents a ternary relation in u(#).

(7.1.4). It can immediately be verified that Hausdorff’s axioms hold
in ©. Since a continuous mapping of a compact space is itself compact,
it is sufficient to show that the mapping u is continuous.

In order to show this we first observe that a necessary and sufficient
condition for the equation ¢4 (z; %) = 27(284+1) is the existence of s+ 1
integers a,, a,, ..., @, satisfying the following statements: a, < a, < ...
< 85 <K 15k 860k Tja,5 Tija, NON GeQ4 Tjq, fOr 0 <p < g <3; for every
b < a, there is a p <s such that 7;,aeq. 7jq,. It easily follows that
there is a formula Q;, , of Ty such that for every . in P the equa-
tion @u(7 x) = 2'(2s+1) is equivalent to #e[f;,,]. To obtain this
formula it is clearly sufficient to build the disjunction of all formulas

A?'(T')',ki T?',a,)&; ~ [o<m\£n<cAj(1’.‘am’ T?',an)]&’o{{\g% Os\z{sa Ai(ri,h Ti',ap),
where (a,,...,a;) runs over all sequences of integers 0,1,..., %k such
that a, < @, < ... < a,.

Now let @ be a formula of T, with the free variables V3!, ..., Vgk
and assume that the model .#, = u(.+) satisfies the following con-
dition |=, ®[2"(2n,+1), ..., 2"%%(2n,+1)]. Let 7, n, be a term such
that @u(tp, m,) = 275(2n,+1), s =1,2,..., k. It follows easily that
ME[L), myn,] TOr 8 =1,2,..., k and hence

He (Vo< [$2p ,ma,n,] "‘ [Q(Tpl, myy rrey 7'pk,mk)] .

If #’ is any semi-frame which belongs to P and is such that ewxt(.#’)
belongs to the intersection at the right-hand side of this formula, then
P (Tpym,) = 2"4(2n,+1) for 8 =1,2,..., % and (in view of 7.3 and
7.11) =4 P[2M(2n,+1), ..., 2"°%(2n,+ 1)]. This proves that if U is the
neighbourhood (in O)

{M: =4 P[27 (20,4 1), ..., 27 (2m,+1)]},

then x—*(U) contains an open set, i.e., that the mapping x is continuous.

(7.1.5) i8 obvious.

(7.1.6). Let #' = (R, Ry,...,85,8;,...) be a model of T, with
denumerable sets R; and let 7, be an element of R; such that r,Syr, for
every r, in R, and r; an element of R; which represents in 4’ a ternary
relation.

We first construct a semi-frame #'' of T3 which differs from .#’
.only in containing functions T;’ which interpret the functors of I7;.
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Let ¢ be a choice function for subsets of (J;R;. We define T;" for
functors of K, by induction on r. For » = 0 there are no such functors
and our construction is void. Let us assume that T is already defined
for functors of K,, s <r and let f = s, , be a functor of K,. Thus
@ is a formula of K,_, which is not a formula of K, ,. By the inductive
assumption the notion of satisfaction for @ is already defined because
functors which occur in & are all functors of K, ,. Let Vgl,...,Vik
be all the free variables of @ which are different from Vg, let a;e B, for
j=1,2,...,k and denote by F, . the set of & in R, which to-
gether with a,, ..., a; satisfy @ in .#' (extended by the interpretations of
functors of K,). Define Ti'(ay,...,a;) =¢eF,, o if F, .o #0
and T} (ay, ..., a;) = e R, otherwise. The semi-frame .#'" is thus defined.

If ¥ is a formula in &,, then the closure of ¥ is true in .#'’. Indeed
let ¥ have the form

(/) Sb(Vg/f¢,p.q(Vg,l7 sy Vz,’:))Q

where @ is an open formula of K,. If = 4. ®[a,a,,...,a;], then a is
in F,, o and hence so is T;'(a,,...,a;), where f is an abbreviation
of s p,q- It follows that = 4. ®[Ti(ay, ..., &), ay, ..., a;], which proves
that the consequent of the formula ¥ is satisfied in .#" if Vi is
interpreted as a,, 8 = 1,2, ..., k.

If ¥ is a formula of &,, then |= 4. ¥Y[...] where ... denotes the
assignment of r, to V, and of r; to V;. For the first three formulas of &,
(see p. 26) this is obvious since these formulas are true in .#’ and do
not contain functors. For the last two formulas our assertion follows
from the assumptions concerning r, and r;.

We now define a semi-frame

M = (R:, T, cey ng Il.‘: Ty TF;---)'
Let
CATICRTRER
be a sequence without repetitions consisting of all elements of Rj,
j=20,1,2,... We can assume that ?,, =7, and ¢;, = r,. Let v be

a term and v(z) its value in .#” under the interpretation Vi — ¢ .,
j’ k = 0, 1, 2, aee We deﬁlle

o8fr =oceR; &R}, , &v(0)8;v(7).

The semi-frame .#* is hereby defined. We shall show that it enjoys
the following property: If & is a formula of 7% with the free variables
Vel ..., Vgk and rieRy for j =1,2,...,%, then

=s P11y ey i) = 1= 4o DP[V(TY), ...y V(T)].
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According to the definition of the relations S; this equivalence is
true for atomic formulas. It is obvious that if the equivalence holds for
the formulas @,, ®,, it does 8o for the formula |®,P,. Now assume that
the equivalence holds for the formula ¥ with the free variables V7, Vi1,
...y V7k and let @ be the formula EVZ¥. If |=4. P[7y4,..., 7], then
there is a term 7 in R} such that = 4. ¥[7, 7,...,7,], Whence by the
inductive assumption =4~ ¥[v(t), Vv(7y),...,V(7x)] and we obtain
= DLV (1)) ey V()]

Conversely, if the last condition is satisfied, then there is an m such

that |= 4~ W[ty m, v(71)y ..., v(7x)] and hence we obtain the relation
=4 P[V(VR), V(Ty)y ..., V(7i)]. Using the inductive assumption we
obtain = 4. ¥[Vh, 71, ..., 7x] and hence |= 4. @P[7,, ..., 1;].

From the equivalence just proved we infer that #*c(") o.e[P]
and hence that the semi-frame

M = (R:’ :y'"rszr :7)

(obtained from .#* by deleting the functions 77) belongs to P. Hence
M = pu(A*") belongs to ©. We shall show that the models .#’ and #
are isomorphic.

Let # = 2/(2n-+1) be an element of E; and let m be an integer such
that @ue(ts,m) = . We let the element v(r;.,) of R; correspond to
z. This element is independent of the particular value of m since
from @ge(t;m) = Qaes(r;,) it follows that 7; maegae.7;,, Whence
I=ee 4;[T5,m, Tj,s] and consequently |= 4. 4;[7; m, 7;,,]; therefore
=4 A;[V(Tj m), V(75,,)], Which proves that v(r; .) = v(1;,).

The same argument read backwards shows that the mapping of .#
into #' defined above is one-to-one. It is a mapping onto since 7; , can
be made to run over the whole of R} as z runs over E;. Finally

z8;y = 2 (2n+1)8;2"+" (2p +1)
= Qgee (ty‘, m) S;‘P.l“(fj+l,q) = v(‘ri,m) S;‘V(Tf+l.a)!
which proves the isomorphism of the models #’' and .#.

s
8. A generalization of the results of section 6

In this section we generalize the theorems obtained in section 6
by dropping the assumption that " is a class of models characterized
by a recursively enumerable set of formulas.

Let Z, be a set of formulas which are true in every standard model
St(M) with infinite M. We denote by 0;, 0;, ... a sequence containing
all formulas of Z, and put @,:0;&...&06,. X, denotes the family of
models .# in which all formulas ®, are true.
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8.1. If #, is a limit in © of M, and 25 represents in M, the relation
Ny, then N, i8 convergent to a relation N, which is represented in #, by 28,
Proof. N, - N, means that for arbitrary p,q,r in {1,3,5,...}

No(p,q,r) if and only if N,(p,q,r) for sufficiently large s. Let p =
2¢+1, ¢q=2j+1, r =2k+1 and consider the formula

E: (EVy) [B4(Vo; V2, V3, Vi) &V, Vs,

26 represents in .#, a relation N,; hence (cf. definition of representability
on p. 12)

No(2641,2j+1,2k+1) = = 4, E[26+1, 2j+1, 2k 1, 28] = A,e[ 5]

Since #, is the limit of .#, and [Z] is open in &, the last condition is
equivalent to
My e[ E] for sufficiently large s,
1.e.
Ny(2¢+4+1,2j+1, 2k+ 1) for sufficiently large s.

8.1 is thus proved.

Let & be a formula of T, with the unique free variable V. We
call @ an extensionally elementary formula (abbreviated: e.e. formula)
if there is a first order closed formula € (M, N) with the unary predicate
variable M and ternary N such that for an arbitrary pair (M, N) with
infinite M

=sian @[N] ==y C[M, N].

Let k be an integer and €, = {# : #cS & |= 4 O,}.

8.2. If @ is not e.c., then there are models M’y #'' in S, such that
|= 4 D[28], |= g .~D[25], 2% represents in A’ the same relation as in MA''.

Proof. Let us assume that the theorem is false. It follows that:

(8.2.1) for every pair (M, N) with denumerable and infinite M and every
denumerable model # containing this pair and satisfying the con-
ditions = 40y, = 4 (EV) (Vo) (Vo VD), the truth value of 1= ,P[n]
(where n represenis N in #) i8 independent of A.

Indeed a denumerable model satisfying these conditions is isomorphie
to a model of class ©; in which 25 represents a relation isomorphic with N.

We shall now show that if & satisfies (8.2.1), then it is an e.e. for-
mula. Let I7 be a formula which is satisfied in a model .# if and only
if R, is infinite. We can take as I7 for instance the axiom of infinity as
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formulated in [9]. Put @: IT&6O,&(EVH) (V) VAV and consider the for-
mulas

FM,N,A,...,E,R,...,Y): F&Me&B&N,,
BM,N,A,...,E,R, ..., Y): F&Me&B&EN' O N,.

We shall show that

(8.2.2) (MCJ)&o(J-M,Q)&A,...,E,R,..., YeBJ)&Ne B (M) &
G, M,N,A,...,Y) >

> (MCK)& o(K—M,S)&A’,...,E, R, ..., YeB(K)&Ne B(M) D
G, (K, M, N, A", ..., Y.

Indeed, let U be a denumerable set, J,K,M,N,A,..., Y, A4',...
Y,R,8¢%#(U) and assume that M CJ, MCK, =yoo[J—M,Q],
|l=poo[K—M,8], Ne#(M) and |=yFylJ, M, N, 4,..., Y]. We have
to show that =,6,,[K,M,N,4A’,...,Y’], ie. that the following
formula holds: =, ®[M, N, A’,...,Y’]. We can therefore assume that
E:Kgo[A"-“’E’]; !:KCJRQ[A’V--’ Y’]’ 1=K<23[A’7—--7RI]9

(8.2.3)
[=ng'[A', AR E'y M7 N]

and have to derive lzxcﬁ,,,[A’,..., Y, M,N]. To obtain this we
assume that z,,...,2,,¥%,2,t,n’ are elements of K such that

(8.2.4) |=K~Q[AI: B, C' &%y ..., Tg, Y, 2, 1],
‘ =K Q&C‘D[Al’ B,R,S8,U,W,Y', MyN,zg,...,Z5,¥Y,2,¢,n]

and have only to derive |=Q[U’, W', Y', z,, 25, ¥, n'].

Since =y & [J, M, N, A4,...,Y], we infer that |=,F[M, N, 4,...,Y],
and hence by 5.7 that the model .# determined by A,...,Y contains
the pair (M, N)and that =, @[n], where » is any element representing
N in . Since |=40 (in view of |=;Mg(4, ..., Y]), we see that |=,11
and hence that .# is denumerable and infinite. Furthermore, = ,6,
and |=4(EVy)(VS)VyVy. Thus by (8.2.1) we infer that if .#' is any
denumerable model which contains the pair (M, N) and satisfies = 4.6,
then |=,.®[n'] where n’ represents N in .#’. According to (8.2.3) and
(8.2.4) the system (A',..., Y') determines a model .#’ which contains
(M, N) and satisfies @,, and in which »’ represents . Hence |=,. D [n’'].
This, however, is equivalent to =xQ[U’, W', Y’, ,, 2, ¥, »’]. Impli-
cation (8.2.2) is thus proved.
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We can now apply 1.5 and obtain a first order formula E(M, N)
such that for any pair (M, N) each of the following conditions implies
the next one:

there is a J D M and A, ..., Ye B(J) such that J — M is infinite and
=,%(M,N,A,.., Y]

=mC(M, N);

for every K O M and arbitrary A, ..., Y'eB(K) if K—M is infi-
nite, then =g ®[M, N, A’,..., Y'].

We shall now show that for an arbitrary pair (M, N) with infinite M

|=s¢(M)¢[N] = ]=M@[M7 N].

Assume first that |=g,,P[N] and M is infinite. Let .# = St(M)
and let (4,, ..., B, R*, ..., Y*) be the system determined by .#. Denot-
ing by I* the union of fields of these relations, we infer that I* O M,
I* - M is infinite and |=,.&[M,N, A,,..., E,, R*, ..., Y*], whence
we obtain |=,E[M, N]. Conversely, assume |=,,E[M, N]. Choose
K,A,...,Y s0 that A’'=A,, ..., EE=E, R =R* ..., Y =YY"
Hence K—M is infinite and =x®[M,N, A4, ..., E,, R*,..., Y*].
This implies that |=x N[ M, N, A,, ..., By, R*, ..., Y*] since the ante-
cedent of @, i.e. the formula F,&Me&B&N', is satisfied in K by
Agy...,Ey,R*,...,Y*", M, N. In view of 5.4 we obtain |=g,,P[N]
because N is the element of .# which represents N in .#.

Lemma 8.2 is thus proved.

8.3. If @ is absolute with respect to Xy, then @ is extensionally ele-
mentary.

Proof. Assume that @ is not an e.e. formula. Let .#,, .#, be two
sequences of models in & such that for each k

I=.l;,@k7 |=.t/;; Oy, |=4;‘¢[25] ’ l=y; ~ ®[2%],

25 represents in M) the same relation N, as in M, .

Let .#,, .#,' be models which are limits of subsequences .#; , .#; . By
8.1 2 represents in .#;, .#, the same relation N,. Since #; ¢[6,] for
sufficiently large n, we infer that .#,¢[©,]; otherwise we would have .#;¢
[~ 6,] and hence almost all .#; would belong to [~ @;]. Hence |= « O,

for each k and consequently #,¢.%,. Similarly we show that ., ¢ ,.
From l=~”;c¢ [2®] we obtain = I;d5[25] and similarly |=_,,;' ~ P[25].

If @ were absolute with respect to ¥, then denoting by M, the set
{1,3,5,...} we would have

=sume PINo] = |= 4 P[n]
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for any # in Xy which contains the pair (M,, N,) and in which » repre-
gsents N,. In particular we would obtain

'=.4v(;¢[25] = [=,/10"¢[25] = ]=St(Mo)¢[No]-

We obtain thus a contradiction which shows that a formula which is
not an e.e. formula cannot be absolute with respect to ", (12).

(2) Professor D. Scott has pointed out that theorem 8.3 can be deduced from
a theorem due to J. Keisler {4]. It can be shown quite easily that if @ is a formula
absolute for an elementary class K of models of T,, then the class of pairs (M, N)
such that [=gyp)P[N] is closed with respect to isomorphisms and ultraproducts.
The same is true for the complementary class and hence, by theorem 2.11 of [4],
both classes are elementary. Theorem 8.3 is thus proved. This proof uses the genera-
lized continuum hypothesis since so does Keisler's proof of his theorem 2.11. Pro-
fessor Scott also points out that it is possible to obtain a similar proof of theorem 8.3,
which does not use the continuum hypothesis if one applies another characteriza-
tion of EC classes.
, Our elementary proof of theorem 8.3 was based on results which allowed us to
obtain information concerning invariant and dually invariant formulas. We do not
know whether methods borrowed from the theory of models (as understood by Tarski
and his school) can yield the same information. In order to clarify this question it
would be desirable to investigate whether theorems 6.1 and 6.2 can be extended
to the case where & is an EC, class, i.e., a class of models which satisfy an arbi-
trary (not necessarilv a recursively enumerable) set of axioms.
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