CONTENTS Introduction...........................................................................................7 Notation...............................................................................................10 1. Auxiliary results in topology..............................................................11 2. Auxiliary results for topological groups............................................17 3. Elementary properties of homomorphism groups............................21 4. Homomorphism groups of abelian metrizable groups......................23 5. Some results in duality theory.........................................................25 6. Locally quasi-convex groups...........................................................30 7. Properties of the quasi-convex hull.................................................36 8. Reflexivity of locally convex vector spaces......................................40 9. Locally convex vector groups..........................................................46 10. Two representations of locally quasi-convex groups.....................48 11. The character groups of $L^p_ℤ([0,1])$ and $L^p([0,1])$............53 12. Free abelian topological groups...................................................58 13. C(K,𝕋) for compact K....................................................................63 14. The group C(X,𝕋)..........................................................................69 15. Duality theory for free abelian topological groups.........................71 16. A short survey of the theory of nuclear groups.............................73 17. Ellipsoids.......................................................................................73 18. Properties of the Kolmogorov diameter.........................................75 19. Gaussian-like measures................................................................86 20. Nuclear groups..............................................................................93 21. An embedding theorem for nuclear groups.................................104 22. The Bochner Theorem for nuclear groups..................................105 References........................................................................................111
Mathematisches Institut der Universität, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Bibliografia
[1] I. Amemiya and Y. Kōmura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273-277.
[2] Arens R., Duality in linear spaces, Duke Math. J. 14 (1947), 787-794.
[3] Arkhangel'skiĭ A.V., Open and near open mappings. Connections between spaces, Trans. Moscow Math. Soc. 15 (1966), 204-250.
[4] Arkhangel'skiĭ A.V., Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855.
[5] M. Banaszczyk and W. Banaszczyk, Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186 (1994), 125-133.
[6] Banaszczyk W., On the existence of exotic Banach-Lie groups, Math. Ann. 264 (1983), 485-493.
[7] Banaszczyk W., Countable products of LCA groups: their closed subgroups, quotients and duality properties, Colloq. Math. 59 (1990), 53-57.
[8] Banaszczyk W., Additive Subgroups of Topological Vector Spaces, Springer, Berlin, 1991.
[9] Banaszczyk W., New bounds in some transference theorems in the geometry of numbers, Math. Ann. 296 (1993), 625-635.
[10] Banaszczyk W., Rearrangement of series in nonnuclear spaces, Studia Math. 107 (1993), 213-222.
[11] Banaszczyk W., Inequalities for convex bodies and polar reciprocal lattices in ℝⁿ, Discrete Comput. Geom. 13 (1995), 217-231.
[12] Banaszczyk W., The Minlos lemma for positive-definite functions on additive subgroups of ℝⁿ, Studia Math. 126 (1997), 13-25.
[13] W. Banaszczyk, M.J. Chasco and E. Martín-Peinador, Open subgroups and Pontryagin duality, Math. Z. 215 (1994), 195-204.
[14] W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, Ann. New York Acad. Sci. 788 (1996), 34-39.
[15] W. Banaszczyk and E. Martín-Peinador, Weakly pseudocompact subsets of nuclear groups, J. Pure Appl. Algebra 138 (1999), 99-106.
[32] Grothendieck A., Sur une notion de produit tensoriel topologique d'espaces vectoriels topologiques, et une classe remarquable d'espaces vectoriels liée à cette notion, C. R. Acad. Sci. Paris 233 (1951), 1556-1558.
[34] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis Vol. I, Springer, Berlin, ²1979.
[35] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.
[36] F. Hirzebruch and W. Scharlau, Einführung in die Funktionalanalysis, BI Wissenschaftsverlag, Mannheim, 1971.
[37] M.J. Kadets and M.G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-457 (in Russian).
[38] Kadets V.M., A problem of S. Banach (problem 106 from ``The Scottish Book"), Funktsional. Anal. i Prilozhen. 20 (1986), 74-75 (in Russian); English transl.: Functional Anal. Appl. 20 (1986), 317-319.
[39] van Kampen E.R., Locally bicompact abelian groups and their character groups, Ann. of Math. 36 (1935), 448-463.
[40] Kaplan S., Extension of Pontrjagin duality I: infinite products, Duke Math. J. 15 (1948), 649-658.
[52] J. Mack, S.A. Morris and E.T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303-308.
[53] Markov M.M., On free topological groups, Izv. Akad. Nauk SSSR 9 (1945), 3-64 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 1 (8), 195-272.
[54] Mazurkiewicz S., Sur un ensemble $G_δ$ punctiforme, qui n'est pas homéomorphe avec aucun ensemble linéaire, Fund. Math. 1 (1920), 61-81.
[55] Morris S.A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge, 1977.
[56] Nachbin L., Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471-474.
[57] Nickolas P., Reflexivity of topological groups, Proc. Amer. Math. Soc. 65 (1977), 137-141.
[59] A. Okuyama and T. Terada, Function spaces, in: Topics in General Topology, K. Morita and J. Nagata (eds.), North-Holland, Amsterdam, 1989, 411-458.
[80] Tkachenko M.G., On completeness of free abelian topological groups, Soviet Math. Dokl. 27 (1983), 341-345.
[81] Turnwald G., Duality theory of abelian topological groups, in: Infinite Dimensional Harmonic Analysis, Transactions of a German-Japanese Symposium 1995, H. Heyer and T. Hirai (eds.), Gräbner, Hamburg, 1996, 224-232.
[82] Turnwald G., On the continuity of the evaluation mapping associated with a group and its character group, Proc. Amer. Math. Soc. 126 (1998), 3413-3415.
[83] Uspenskiĭ,V.V. On the topology of a free locally convex space, Soviet Math. Dokl. 27 (1983), 781-785.
[84] N.N. Vakhania, V.I. Tarieladze and S.A. Chobanyan, Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987.
[85] Vilenkin N.Ya., The theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR 15 (1951), 439-462 (in Russian).
[86] Warner S., The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.
[87] Whitley R., The Krein-Smulian theorem, Proc. Amer. Math. Soc. 97 (1986), 376-377.
[88] Yosida K., Functional Analysis, Springer, Berlin, ⁵1978.