Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups

Seria
Rozprawy Matematyczne tom/nr w serii: 384 wydano: 1999
Zawartość
Warianty tytułu
Abstrakty
EN
Abstract
For a topological group G, the group G* of continuous homomorphisms (characters) into 𝕋:={z∈ℂ: |z| = 1} endowed with the compact-open topology is called the character group of G and G is named ( Pontryagin) reflexive if the canonical homomorphism $α_G:G → G**$, x ↦ (χ ↦ χ(x)), is a topological isomorphism. A comprehensive exposition of duality theory is given here.
In particular, settings closely related to the theory of vector spaces (like local quasi-convexity and the corresponding hull) are studied and their relevance is pointed out. This is followed by an investigation of Pontryagin reflexivity of locally convex vector spaces, which generalizes the well known fact that every Banach space is a reflexive group. However, the spaces $L^p([0,1])$ (for p > 1) contain proper closed subgroups which are not reflexive and have (topologically) the same character group as the whole space. On the other hand, every character group can be embedded into a group of the form C(X,𝕋). It is proved that for every hemicompact k-space X (in particular, for every character group of an abelian metrizable group), this group is reflexive.
In the second part a self-contained introduction to the theory of nuclear groups (which has been introduced by W.~Banaszczyk in [9]) is given. It is shown that the completion of a nuclear group is again nuclear and that the α corresponding to a complete nuclear group is surjective. In particular, every Čech-complete nuclear group is (strongly) reflexive. At the end, a simplified proof of the Bochner Theorem for nuclear groups is given.
EN
CONTENTS
Introduction...........................................................................................7
Notation...............................................................................................10
1. Auxiliary results in topology..............................................................11
2. Auxiliary results for topological groups............................................17
3. Elementary properties of homomorphism groups............................21
4. Homomorphism groups of abelian metrizable groups......................23
5. Some results in duality theory.........................................................25
6. Locally quasi-convex groups...........................................................30
7. Properties of the quasi-convex hull.................................................36
8. Reflexivity of locally convex vector spaces......................................40
9. Locally convex vector groups..........................................................46
10. Two representations of locally quasi-convex groups.....................48
11. The character groups of $L^p_ℤ([0,1])$ and $L^p([0,1])$............53
12. Free abelian topological groups...................................................58
13. C(K,𝕋) for compact K....................................................................63
14. The group C(X,𝕋)..........................................................................69
15. Duality theory for free abelian topological groups.........................71
16. A short survey of the theory of nuclear groups.............................73
17. Ellipsoids.......................................................................................73
18. Properties of the Kolmogorov diameter.........................................75
19. Gaussian-like measures................................................................86
20. Nuclear groups..............................................................................93
21. An embedding theorem for nuclear groups.................................104
22. The Bochner Theorem for nuclear groups..................................105
References........................................................................................111
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 384
Liczba stron
113
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCLXXXIV
Daty
wydano
1999
otrzymano
1998-12-16
poprawiono
1999-09-02
Twórcy
Bibliografia
  • [1] I. Amemiya and Y. Kōmura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273-277.
  • [2] Arens R., Duality in linear spaces, Duke Math. J. 14 (1947), 787-794.
  • [3] Arkhangel'skiĭ A.V., Open and near open mappings. Connections between spaces, Trans. Moscow Math. Soc. 15 (1966), 204-250.
  • [4] Arkhangel'skiĭ A.V., Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855.
  • [5] M. Banaszczyk and W. Banaszczyk, Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186 (1994), 125-133.
  • [6] Banaszczyk W., On the existence of exotic Banach-Lie groups, Math. Ann. 264 (1983), 485-493.
  • [7] Banaszczyk W., Countable products of LCA groups: their closed subgroups, quotients and duality properties, Colloq. Math. 59 (1990), 53-57.
  • [8] Banaszczyk W., Additive Subgroups of Topological Vector Spaces, Springer, Berlin, 1991.
  • [9] Banaszczyk W., New bounds in some transference theorems in the geometry of numbers, Math. Ann. 296 (1993), 625-635.
  • [10] Banaszczyk W., Rearrangement of series in nonnuclear spaces, Studia Math. 107 (1993), 213-222.
  • [11] Banaszczyk W., Inequalities for convex bodies and polar reciprocal lattices in ℝⁿ, Discrete Comput. Geom. 13 (1995), 217-231.
  • [12] Banaszczyk W., The Minlos lemma for positive-definite functions on additive subgroups of ℝⁿ, Studia Math. 126 (1997), 13-25.
  • [13] W. Banaszczyk, M.J. Chasco and E. Martín-Peinador, Open subgroups and Pontryagin duality, Math. Z. 215 (1994), 195-204.
  • [14] W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, Ann. New York Acad. Sci. 788 (1996), 34-39.
  • [15] W. Banaszczyk and E. Martín-Peinador, Weakly pseudocompact subsets of nuclear groups, J. Pure Appl. Algebra 138 (1999), 99-106.
  • [16] Bourbaki N., Espaces vectoriels topologiques, chap. 2, Hermann, Paris, 1953.
  • [17] Bourbaki N., General Topology I, Hermann, Paris, 1966.
  • [18] Bourbaki N., General Topology II, Hermann, Paris, 1966.
  • [19] Brown L.G., Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600.
  • [20] Bruguera M.M., Some properties of locally quasi-convex groups, Topology Appl. 77 (1997), 87-94.
  • [21] Chasco M.J., Pontryagin duality for metrizable groups, Arch. Math. (Basel) 70 (1998), 22-28.
  • [22] Dieudonné J., Espaces uniformes complets, Ann. Sci. Éc. Norm. Sup. 56 (1939), 277-291.
  • [23] Dieudonné J., La dualité dans les espaces vectoriels topologiques, Ann. Sci. Éc. Norm. Sup. 59 (1942), 107-139.
  • [24] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1957.
  • [25] Ebeling W., Lattices and Codes, Vieweg, Braunschweig, 1994.
  • [26] Engelking R., General Topology, Heldermann, Berlin, 1989.
  • [27] T.H. Fay, E.T. Ordman and Thomas B.V.S., The free topological group over the rationals, Topology Appl. 10 (1979), 33-47.
  • [28] Forster O., Analysis 3, Vieweg, Braunschweig, ³1984.
  • [29] Frölicher A., Zur Dualitätstheorie kompakt erzeugter und lokalkonvexer Vektorräume, Comment. Math. Helv. 47 (1972), 289-310.
  • [30] Glicksberg I., Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276.
  • [31] Graev M.I., Free topological groups, Amer. Math. Soc. Transl. Ser. 1 (8), 305-364.
  • [32] Grothendieck A., Sur une notion de produit tensoriel topologique d'espaces vectoriels topologiques, et une classe remarquable d'espaces vectoriels liée à cette notion, C. R. Acad. Sci. Paris 233 (1951), 1556-1558.
  • [33] Heuser H., Funktionalanalysis, Teubner, Stuttgart, ²1986.
  • [34] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis Vol. I, Springer, Berlin, ²1979.
  • [35] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.
  • [36] F. Hirzebruch and W. Scharlau, Einführung in die Funktionalanalysis, BI Wissenschaftsverlag, Mannheim, 1971.
  • [37] M.J. Kadets and M.G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-457 (in Russian).
  • [38] Kadets V.M., A problem of S. Banach (problem 106 from ``The Scottish Book"), Funktsional. Anal. i Prilozhen. 20 (1986), 74-75 (in Russian); English transl.: Functional Anal. Appl. 20 (1986), 317-319.
  • [39] van Kampen E.R., Locally bicompact abelian groups and their character groups, Ann. of Math. 36 (1935), 448-463.
  • [40] Kaplan S., Extension of Pontrjagin duality I: infinite products, Duke Math. J. 15 (1948), 649-658.
  • [41] Kenderov P., Topological vector groups, Math. USSR-Sb. 10 (1970), 531-546.
  • [42] Khan M.A., Chain conditions on subgroups of LCA groups, Pacific J. Math. 86 (1980), 517-534.
  • [43] J. Kisyński, On the generation of tight measures, Studia Math. 30 (1968), 141-151.
  • [44] Koethe G., Topologische lineare Räume, Springer, Berlin, ²1966.
  • [45] Kōmura Y., Some examples on linear topological spaces, Math. Ann. 153 (1964), 150-162.
  • [46] Kulkarni R.D., On one-parameter subgroups in the dual of a topological group, J. Indian Math. Soc. 53 (1988), 67-73.
  • [47] S.-H. Kye, Pontryagin duality in real linear topological spaces, Chinese J. Math. 12 (1984), 129-136.
  • [48] Lang S., Algebra, Addison-Wesley, Reading, Massachusetts, ³1993.
  • [49] Leptin H., Zur Dualitätstheorie projektiver Limites abelscher Gruppen, Abh. Math. Sem. Univ. Hamburg 19 (1955), 264-268.
  • [50] Lurje P., Über topologische Vektorgruppen, Dissertation, München, 1972.
  • [51] Lurje P., Tonneliertheit in lokalkonvexen Vektorgruppen, Manuscripta Math. 14 (1974), 107-121.
  • [52] J. Mack, S.A. Morris and E.T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303-308.
  • [53] Markov M.M., On free topological groups, Izv. Akad. Nauk SSSR 9 (1945), 3-64 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 1 (8), 195-272.
  • [54] Mazurkiewicz S., Sur un ensemble $G_δ$ punctiforme, qui n'est pas homéomorphe avec aucun ensemble linéaire, Fund. Math. 1 (1920), 61-81.
  • [55] Morris S.A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge, 1977.
  • [56] Nachbin L., Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471-474.
  • [57] Nickolas P., Reflexivity of topological groups, Proc. Amer. Math. Soc. 65 (1977), 137-141.
  • [58] Noble N., k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561.
  • [59] A. Okuyama and T. Terada, Function spaces, in: Topics in General Topology, K. Morita and J. Nagata (eds.), North-Holland, Amsterdam, 1989, 411-458.
  • [60] Pasynkov B.A., Almost metrizable topological groups, Soviet Math. Dokl. 6 (1965), 404-408.
  • [61] Pasynkov B.A., On topological groups, Soviet Math. Dokl. 10 (1969), 1115-1118.
  • [62] Pedersen G.K., Analysis Now, Springer, New York, 1988.
  • [63] Pestov V., Free abelian topological groups and the Pontryagin-van Kampen duality, Bull. Austral. Math. Soc. 52 (1995), 297-311.
  • [64] Pietsch A., Nuclear Locally Convex Spaces, Springer, Berlin, 1972.
  • [65] Pietsch A., Operator Ideals, North-Holland, Amsterdam, 1980.
  • [66] L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. 35 (1934), 361-388.
  • [67] L. Pontrjagin, Selected Works. Vol. 2: Topological Groups, Gordon and Breach, New York, ³1986.
  • [68] Raĭkov D.A., Free locally convex spaces for uniform spaces, Mat. Sb. 63 (105) (1964), 582-590 (in Russian).
  • [69] W. Roelke and S. Dierolf, Uniform Structures on Topological Groups and their Quotients, McGraw-Hill, New York, 1981.
  • [70] Rolewicz S., Metric Linear Spaces, PWN-Polish Scientific Publishers, Warszawa, 1972.
  • [71] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, ³1987.
  • [72] Rudin W., Fourier Analysis on Groups, Wiley, New York, 1990.
  • [73] Rudin W., Functional Analysis, McGraw-Hill, New York, ²1991.
  • [74] Schaefer H. H., Topological Vector Spaces, Macmillan, New York, 1966.
  • [75] Shirota T., On locally convex vector spaces of continuous functions, Proc. Japan Acad. 30 (1954), 294-298.
  • [76] Sierpiński W., Sur un ensemble punctiforme connexe, Fund. Math. 1 (1920), 7-10.
  • [77] Smith M.F., The Pontrjagin duality theorem in linear spaces, Ann. of Math. (2) 56 (1952), 248-253.
  • [78] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966.
  • [79] Thomas B.V.S., Free topological groups, Topology Appl. 4 (1974), 51-72.
  • [80] Tkachenko M.G., On completeness of free abelian topological groups, Soviet Math. Dokl. 27 (1983), 341-345.
  • [81] Turnwald G., Duality theory of abelian topological groups, in: Infinite Dimensional Harmonic Analysis, Transactions of a German-Japanese Symposium 1995, H. Heyer and T. Hirai (eds.), Gräbner, Hamburg, 1996, 224-232.
  • [82] Turnwald G., On the continuity of the evaluation mapping associated with a group and its character group, Proc. Amer. Math. Soc. 126 (1998), 3413-3415.
  • [83] Uspenskiĭ,V.V. On the topology of a free locally convex space, Soviet Math. Dokl. 27 (1983), 781-785.
  • [84] N.N. Vakhania, V.I. Tarieladze and S.A. Chobanyan, Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987.
  • [85] Vilenkin N.Ya., The theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR 15 (1951), 439-462 (in Russian).
  • [86] Warner S., The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.
  • [87] Whitley R., The Krein-Smulian theorem, Proc. Amer. Math. Soc. 97 (1986), 376-377.
  • [88] Yosida K., Functional Analysis, Springer, Berlin, ⁵1978.
Języki publikacji
EN
Uwagi
1991 Mathematics Subject Classification: 11H06, 22Axx, 22B99, 43A40, 43A35, 46Axx, 52C07, 52A40, 54Dxx, 54E15, 60B15.
Identyfikator YADDA
bwmeta1.element.zamlynska-914de6d1-ee3b-43dc-b22d-42117d432567
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.