Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups

Seria
Rozprawy Matematyczne tom/nr w serii: 384 wydano: 1999
Zawartość
Warianty tytułu
Abstrakty
EN
CONTENTS
Introduction...........................................................................................7
Notation...............................................................................................10
1. Auxiliary results in topology..............................................................11
2. Auxiliary results for topological groups............................................17
3. Elementary properties of homomorphism groups............................21
4. Homomorphism groups of abelian metrizable groups......................23
5. Some results in duality theory.........................................................25
6. Locally quasi-convex groups...........................................................30
7. Properties of the quasi-convex hull.................................................36
8. Reflexivity of locally convex vector spaces......................................40
9. Locally convex vector groups..........................................................46
10. Two representations of locally quasi-convex groups.....................48
11. The character groups of $L^p_ℤ([0,1])$ and $L^p([0,1])$............53
12. Free abelian topological groups...................................................58
13. C(K,𝕋) for compact K....................................................................63
14. The group C(X,𝕋)..........................................................................69
15. Duality theory for free abelian topological groups.........................71
16. A short survey of the theory of nuclear groups.............................73
17. Ellipsoids.......................................................................................73
18. Properties of the Kolmogorov diameter.........................................75
19. Gaussian-like measures................................................................86
20. Nuclear groups..............................................................................93
21. An embedding theorem for nuclear groups.................................104
22. The Bochner Theorem for nuclear groups..................................105
References........................................................................................111
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 384
Liczba stron
113
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCLXXXIV
Daty
wydano
1999
otrzymano
1998-12-16
poprawiono
1999-09-02
Twórcy
  • Mathematisches Institut der Universität, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Bibliografia
  • [1] I. Amemiya and Y. Kōmura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273-277.
  • [2] Arens R., Duality in linear spaces, Duke Math. J. 14 (1947), 787-794.
  • [3] Arkhangel'skiĭ A.V., Open and near open mappings. Connections between spaces, Trans. Moscow Math. Soc. 15 (1966), 204-250.
  • [4] Arkhangel'skiĭ A.V., Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855.
  • [5] M. Banaszczyk and W. Banaszczyk, Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186 (1994), 125-133.
  • [6] Banaszczyk W., On the existence of exotic Banach-Lie groups, Math. Ann. 264 (1983), 485-493.
  • [7] Banaszczyk W., Countable products of LCA groups: their closed subgroups, quotients and duality properties, Colloq. Math. 59 (1990), 53-57.
  • [8] Banaszczyk W., Additive Subgroups of Topological Vector Spaces, Springer, Berlin, 1991.
  • [9] Banaszczyk W., New bounds in some transference theorems in the geometry of numbers, Math. Ann. 296 (1993), 625-635.
  • [10] Banaszczyk W., Rearrangement of series in nonnuclear spaces, Studia Math. 107 (1993), 213-222.
  • [11] Banaszczyk W., Inequalities for convex bodies and polar reciprocal lattices in ℝⁿ, Discrete Comput. Geom. 13 (1995), 217-231.
  • [12] Banaszczyk W., The Minlos lemma for positive-definite functions on additive subgroups of ℝⁿ, Studia Math. 126 (1997), 13-25.
  • [13] W. Banaszczyk, M.J. Chasco and E. Martín-Peinador, Open subgroups and Pontryagin duality, Math. Z. 215 (1994), 195-204.
  • [14] W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, Ann. New York Acad. Sci. 788 (1996), 34-39.
  • [15] W. Banaszczyk and E. Martín-Peinador, Weakly pseudocompact subsets of nuclear groups, J. Pure Appl. Algebra 138 (1999), 99-106.
  • [16] Bourbaki N., Espaces vectoriels topologiques, chap. 2, Hermann, Paris, 1953.
  • [17] Bourbaki N., General Topology I, Hermann, Paris, 1966.
  • [18] Bourbaki N., General Topology II, Hermann, Paris, 1966.
  • [19] Brown L.G., Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600.
  • [20] Bruguera M.M., Some properties of locally quasi-convex groups, Topology Appl. 77 (1997), 87-94.
  • [21] Chasco M.J., Pontryagin duality for metrizable groups, Arch. Math. (Basel) 70 (1998), 22-28.
  • [22] Dieudonné J., Espaces uniformes complets, Ann. Sci. Éc. Norm. Sup. 56 (1939), 277-291.
  • [23] Dieudonné J., La dualité dans les espaces vectoriels topologiques, Ann. Sci. Éc. Norm. Sup. 59 (1942), 107-139.
  • [24] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1957.
  • [25] Ebeling W., Lattices and Codes, Vieweg, Braunschweig, 1994.
  • [26] Engelking R., General Topology, Heldermann, Berlin, 1989.
  • [27] T.H. Fay, E.T. Ordman and Thomas B.V.S., The free topological group over the rationals, Topology Appl. 10 (1979), 33-47.
  • [28] Forster O., Analysis 3, Vieweg, Braunschweig, ³1984.
  • [29] Frölicher A., Zur Dualitätstheorie kompakt erzeugter und lokalkonvexer Vektorräume, Comment. Math. Helv. 47 (1972), 289-310.
  • [30] Glicksberg I., Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276.
  • [31] Graev M.I., Free topological groups, Amer. Math. Soc. Transl. Ser. 1 (8), 305-364.
  • [32] Grothendieck A., Sur une notion de produit tensoriel topologique d'espaces vectoriels topologiques, et une classe remarquable d'espaces vectoriels liée à cette notion, C. R. Acad. Sci. Paris 233 (1951), 1556-1558.
  • [33] Heuser H., Funktionalanalysis, Teubner, Stuttgart, ²1986.
  • [34] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis Vol. I, Springer, Berlin, ²1979.
  • [35] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. II, Springer, Berlin, 1970.
  • [36] F. Hirzebruch and W. Scharlau, Einführung in die Funktionalanalysis, BI Wissenschaftsverlag, Mannheim, 1971.
  • [37] M.J. Kadets and M.G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), 453-457 (in Russian).
  • [38] Kadets V.M., A problem of S. Banach (problem 106 from ``The Scottish Book"), Funktsional. Anal. i Prilozhen. 20 (1986), 74-75 (in Russian); English transl.: Functional Anal. Appl. 20 (1986), 317-319.
  • [39] van Kampen E.R., Locally bicompact abelian groups and their character groups, Ann. of Math. 36 (1935), 448-463.
  • [40] Kaplan S., Extension of Pontrjagin duality I: infinite products, Duke Math. J. 15 (1948), 649-658.
  • [41] Kenderov P., Topological vector groups, Math. USSR-Sb. 10 (1970), 531-546.
  • [42] Khan M.A., Chain conditions on subgroups of LCA groups, Pacific J. Math. 86 (1980), 517-534.
  • [43] J. Kisyński, On the generation of tight measures, Studia Math. 30 (1968), 141-151.
  • [44] Koethe G., Topologische lineare Räume, Springer, Berlin, ²1966.
  • [45] Kōmura Y., Some examples on linear topological spaces, Math. Ann. 153 (1964), 150-162.
  • [46] Kulkarni R.D., On one-parameter subgroups in the dual of a topological group, J. Indian Math. Soc. 53 (1988), 67-73.
  • [47] S.-H. Kye, Pontryagin duality in real linear topological spaces, Chinese J. Math. 12 (1984), 129-136.
  • [48] Lang S., Algebra, Addison-Wesley, Reading, Massachusetts, ³1993.
  • [49] Leptin H., Zur Dualitätstheorie projektiver Limites abelscher Gruppen, Abh. Math. Sem. Univ. Hamburg 19 (1955), 264-268.
  • [50] Lurje P., Über topologische Vektorgruppen, Dissertation, München, 1972.
  • [51] Lurje P., Tonneliertheit in lokalkonvexen Vektorgruppen, Manuscripta Math. 14 (1974), 107-121.
  • [52] J. Mack, S.A. Morris and E.T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303-308.
  • [53] Markov M.M., On free topological groups, Izv. Akad. Nauk SSSR 9 (1945), 3-64 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 1 (8), 195-272.
  • [54] Mazurkiewicz S., Sur un ensemble $G_δ$ punctiforme, qui n'est pas homéomorphe avec aucun ensemble linéaire, Fund. Math. 1 (1920), 61-81.
  • [55] Morris S.A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge, 1977.
  • [56] Nachbin L., Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471-474.
  • [57] Nickolas P., Reflexivity of topological groups, Proc. Amer. Math. Soc. 65 (1977), 137-141.
  • [58] Noble N., k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561.
  • [59] A. Okuyama and T. Terada, Function spaces, in: Topics in General Topology, K. Morita and J. Nagata (eds.), North-Holland, Amsterdam, 1989, 411-458.
  • [60] Pasynkov B.A., Almost metrizable topological groups, Soviet Math. Dokl. 6 (1965), 404-408.
  • [61] Pasynkov B.A., On topological groups, Soviet Math. Dokl. 10 (1969), 1115-1118.
  • [62] Pedersen G.K., Analysis Now, Springer, New York, 1988.
  • [63] Pestov V., Free abelian topological groups and the Pontryagin-van Kampen duality, Bull. Austral. Math. Soc. 52 (1995), 297-311.
  • [64] Pietsch A., Nuclear Locally Convex Spaces, Springer, Berlin, 1972.
  • [65] Pietsch A., Operator Ideals, North-Holland, Amsterdam, 1980.
  • [66] L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. 35 (1934), 361-388.
  • [67] L. Pontrjagin, Selected Works. Vol. 2: Topological Groups, Gordon and Breach, New York, ³1986.
  • [68] Raĭkov D.A., Free locally convex spaces for uniform spaces, Mat. Sb. 63 (105) (1964), 582-590 (in Russian).
  • [69] W. Roelke and S. Dierolf, Uniform Structures on Topological Groups and their Quotients, McGraw-Hill, New York, 1981.
  • [70] Rolewicz S., Metric Linear Spaces, PWN-Polish Scientific Publishers, Warszawa, 1972.
  • [71] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, ³1987.
  • [72] Rudin W., Fourier Analysis on Groups, Wiley, New York, 1990.
  • [73] Rudin W., Functional Analysis, McGraw-Hill, New York, ²1991.
  • [74] Schaefer H. H., Topological Vector Spaces, Macmillan, New York, 1966.
  • [75] Shirota T., On locally convex vector spaces of continuous functions, Proc. Japan Acad. 30 (1954), 294-298.
  • [76] Sierpiński W., Sur un ensemble punctiforme connexe, Fund. Math. 1 (1920), 7-10.
  • [77] Smith M.F., The Pontrjagin duality theorem in linear spaces, Ann. of Math. (2) 56 (1952), 248-253.
  • [78] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966.
  • [79] Thomas B.V.S., Free topological groups, Topology Appl. 4 (1974), 51-72.
  • [80] Tkachenko M.G., On completeness of free abelian topological groups, Soviet Math. Dokl. 27 (1983), 341-345.
  • [81] Turnwald G., Duality theory of abelian topological groups, in: Infinite Dimensional Harmonic Analysis, Transactions of a German-Japanese Symposium 1995, H. Heyer and T. Hirai (eds.), Gräbner, Hamburg, 1996, 224-232.
  • [82] Turnwald G., On the continuity of the evaluation mapping associated with a group and its character group, Proc. Amer. Math. Soc. 126 (1998), 3413-3415.
  • [83] Uspenskiĭ,V.V. On the topology of a free locally convex space, Soviet Math. Dokl. 27 (1983), 781-785.
  • [84] N.N. Vakhania, V.I. Tarieladze and S.A. Chobanyan, Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987.
  • [85] Vilenkin N.Ya., The theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR 15 (1951), 439-462 (in Russian).
  • [86] Warner S., The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.
  • [87] Whitley R., The Krein-Smulian theorem, Proc. Amer. Math. Soc. 97 (1986), 376-377.
  • [88] Yosida K., Functional Analysis, Springer, Berlin, ⁵1978.
Języki publikacji
EN
Uwagi
1991 Mathematics Subject Classification: 11H06, 22Axx, 22B99, 43A40, 43A35, 46Axx, 52C07, 52A40, 54Dxx, 54E15, 60B15.
Identyfikator YADDA
bwmeta1.element.zamlynska-914de6d1-ee3b-43dc-b22d-42117d432567
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.