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Introduction

Because of its relations to second order equations, the equation
of Riccati plays a special role in the theory of equations. In the present
paper we shall define a differential equation of the n-th order which will
be called the Riccati equation (or shortly: the R equation). This name is
justified for the following two reasons: 1) in the case where the order of
the equation is n = 1, we obtain the classical equation of Riccati; 2) these
equations and the linear differential equations are related in the same
way as the equation of Riccati of the first order and the linear equation
of the second order.

The decomposition of the left-hand side of a linear differential
equation (an l.d. equation) into the product of symbolic factors leads
to the Riccati equation. The method of decomposition of an 1. d. expres-
sion into symbolic factors has been introduced in the theory of equations
by G. Floquet (!). It has also found application in the papers of Griin-
feld [4], and later on, independently of that, in the papers of G. Mammana
[7] and [9] and M. Nicolesco [8]. In the latter papers the decomposition
of the left-hand side of an 1. d. equation is determined by linearly inde-
pendent particular solutions of that equation. In the present paper this
decomposition is determined by the particular solution of the generalized
non-linear Riccati equation. Far-reaching differences and consequences
follow from this approach.

Thus, for instance, one might expect that the method of decomposi-
tion of the left-hand side of an equation, in algebra as well as in the theory
of differential equations, should lead to the lowering of the order of that
equation. But in the classical approach, in order to perform an effective
decomposition of the left-hand side of an 1. d. equation, one has to know
its full solution beforehand. It follows that the method of decomposition
fails a8 & method of effective solution of differential equations. It is for
this reason that this method has not played an insignificant part in the
theory of equations.

_The problem is different if the decomposition of the left-hand side
of an equation does not depend upon the solution of that equation. This
aim is achieved by introducing Riccati equations, since we find that

(*) Quoted after [1], § 24.



4 Generalized equations of Riccati

each particular solution of an equation of Riccati determines completely
the decomposition of the corresponding linear equation.

Although a Riccati equation is non-linear, and hence, in general,
more difficult to solve than a linear equation, nevertheless the reduction
of the problem of decomposition of a linear equation to the problem
of finding a solution of a non-linear equation, proves to be useful.

This results from the following facts:

1) In order to perform the decomposition of the left-hand side of
& linear equation, one does not need to know the general solution of the
equation of Riceati; it is enough to know any one of its particular solutions.

2) For a certain category of linear equations the Ricecati equations
“degenerate” to algebraic equations.

3) It proves possible to specify the class of linear differential equa-
tions decomposable in the elementary way, i. e. equations which can be
decomposed into factors without solving a differential equation.

4) The theory of linear equations based upon the Riccati equations
has certain theoretical advantages. The formulas for the general solutions
of 1. d. equations in which the solutions of Riccati equations appear (of
which we know only that they exist) simplify in some cases the proofs
of the theorems in the theory of equations.

In the discussion of the applications of the Riceati equations to -the
theory of linear equations, it is also necessary to mention the opposite
relations, which enable us to use the theory of linear equations for non-
linear Riccati equations. It will be seen that the solution of linear equation
is equivzlent — in a certain sense — to the solution of a non-linear equa-
tion of Riccati. This fact is well known in the case of the classical Riccati
equation (of the first order). It gives the reduction of a more difficult
problem to an easier one.

From this point of view one can also consider some partial differen-
tial equations. Without attempting a full treatment of the subject, we
shall give some examples of application of the method of symbolic
decomposition of a differential expression. There are partial differential
equations which can be reduced in this way to partial differential equa-
tions of a lower order, in turn, can be reduced to ordinary ones.

The contents of the paper are the following: In paragraph 1 it is
shown that the decomposition of the left-hand side of an 1. d. equation
of (n+ 1)-st order (1.1) into the symbolic product of operator factors
(1.2) is determined by every one of the particular solutions of the R
equation of n-th order (theorem 1). We give the operator form (1.6)
of this equation, and also the recursive method of obtaining these equa-
tions in an explicit form (1.8).

Paragraph 2 contains two theorems concerning the existence of the
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solutions of R equations. Because of the relations of non-linear R equa-
tions and linear equations, it has been possible to show that the solutions
of R equations exist in the whole interval in which its coefficients satisfy
certain assumptions (theorems 2 and 3). From the same assumptions
it follows that, having the general solution of an 1. d. equation of the
(n+1)-st order, one can determine m+4 1 particular solutions of the
corresponding R equation.

Parhgraph 3, conversely, presents the relations between the solutions
of R equations and the solutions of the connected linear equations
(theorems 4 and 6). According to those theorems, each k “significantly
different” solutions of an R equation (definition 2) allows us to lower
the order of the corresponding linear equation by the number k. It is also
shown that the general solution of the linear equation can be built up
from particular solutions of some system of R equations, which can be
assigned to the given linear equation (theorem 5). Based upon these
theorems, two methods of solving linear equations are presented (methods
A and B).

In paragraph 4, the theory of R equations is applied to some problems
which are already solved, in order to show the advantages and the methodo-
logical simplifications. In addition, it is proved that the only equations
of the fourth order whose solution can be reduced to solving the cha-
racteristic (algebraic) equation are the generalized Euler equation and the
equation with constant coefficients (theorem 7).

In paragraph 5, the definition of so-called elementarily decompo-
sable (class E, definition 3) linear equations is given. In order to perform
decomposition (1.2) for such an equation (and the following lowering
of its order) one does not need to solve a differential equation. This class
comprises linear equations, and equations with coefficients of, the Euler
type, i. e. equations which are completely solvable, but this class is much
more general. The criterion of elementary decomposibility (5.1) and an
example of an equation from class ¥ (an,mple 1) are given. Theorem 8
shows that a linear equation which does not belong to class E can be made
elementarily decomposable by changing only one of its coefficients. Finally
it is shown by examples how the notion of elementary decomposability
can be used in the theory of linear equations.

The last paragraph (paragraph 6) provides an example of the appli-
cation of the method of decomposition of a linear differential expression
into the product of operator factors for some special partial differential
equations.



1. Definition of the Riccati equation of the n-th order

We shall introduce certain symbols and assumptions. Suppose we
are given a function e;(z) defined in the interval ¢ <z <b and differ-
entiable as many times as is necessary for our considerations. We shall
consider the linear operator:

d
l; = — i(@).
i =g ta (@)
If the function f(x) is defined in the same interval and differentiable,
then the symbolic product l;f(z) will denote the function
daf
Lf(¢) = — +a;f.
fl@) = <> +af
The expression l'f, where m is a positive integer (or zero) and f(z) is
defined in the interval (a,b) and belongs to the class C™, is defined
recursively in the following way:

af . " -

Bi@) = J@), W@ =2 ba, ) = LIEf@).

The symbol I;'f(x) defines a function from the class C°® provided that

the functions a;(z) and f(x) belong to the classes "' and C" respectively.
Let us consider the following linear differential equation of the

(n+ 1)-st order:

(1-1) Ln+l [y] = y(n+l)+a’n+l,ny(n)+an+l,n—ly(u—l)+‘"+an+l.0y = bn-i-l'

We ghall assume that the coefficients a,,,; (¢ =0,1,...,7) are funec-
tions of # defined in the same interval ¢ < z < b and that the coefficient
a,,,; belongs to the class ¢ (i=0,1,...,n). The function b, 41 will
be assumed to be continuous in the interval under consideration. In the
sequel these assumptions will be called shortly assumptions (a).

We want to represent the left-hand side of equation (1.1) in the
form of the symbolic product of two factors, thus reducing equation (1.1)
to the following form:

d .
(1'2) (d_m_ + a’n) (y(")-i- Ay n—1 y(n_l) =+ an,n—zy(n—2) + -t anoy) = bﬂ+l .
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Let us assume that the function a, belongs to the class C". In this case
the product which appears in (1.2) should be equal to the left-hand side
of equation (1.1), which easily leads to the following system of equations,
in which the unknowns are the coefficients of decomposition a,;(r) and
8, (®) (t=0,1,...,n—1):

a, +an,n—l = Gpi1,ny

7
Ay on-1 + Qp @y 1 + Apn,n-2 = Ap 1,01y

4

(1.3) arz.fa_2+anan,n—2+a'n,n—3 = Qpiy n-2)
14
Ay +apa,, + Gpo = Gp 1,09
’
Ay -+ Qp Oy = Qpi1,0-

Using the notation introduced at the beginning of this paragraph,
we may write equations (1.3) in the form

Apn1 = Qpi1n — Oy,

Apn_z3 = Oy 1 n_1— lna'n,n—l ’

Opn3 =@ Ca—ln@y

(1.4) n,n—3 n+1l,n—-2 n%n,n 29
Apg — Ynill lnanl’
ln@ny = @nyy o0y

The solution of system (1.3) may be reduced to the solution of one
equation of the n-th order, where the unknown is the function a,. This
equation can be obtained after eliminating all unknowns a,; (+ = 0,1,
...,n—1) from (1.3). To perform this elimination let us introduce the
following notation:

Q1,0 Gy if j=mn,

A=
" G it j#mn.

As a result of +—1 successive eliminations of functions a,; (j =n—1,
n—2,...,m—1i+1) we get the relation

i—1
ke
Qp n_i = Z (_ln) An-{-l,n—i+k+l-
. K=o

We omit here the inductive proof. If we put ¢ = n we obtain

n—-1

Ao = 2 ( —ln)kAn+l,k+l ’

k=0
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and using the last equation of system (1.4) we find:
(1.5) 2~ Ay i = 0.
k=0
If we come back to the previous notation, we obtain, as a result of the
elimination considered, the equation:

(1-6) Rn [a'n] = l:(an+l,n— a’n) - l:-l a’u+l,n—l + l:_za'nﬂ,n—z_
—oet( —1)“‘2 lftan+l,2 +( —l)n_l ln@n g, ( —1)na'n+x,o = 0.

By assumptions (a) concerning the differentiability of the coefficients
of equation (1.1) and by the specification of the expression I a, Ll
(¢t =0,1,...,n), the left-hand side of (1.6) is a well-defined differential
expression; it is easily seen that this expression is non-linear and of the
n-th order with respect to the unknown a,, defined in the interval (a, b).

Equation (1.6) will be called the R equation of the n-th order related
to the 1. d. equation of the (n- 1)-st order, or, shortly, the R equation.

Now we shall present a rule which allows us to write the successive
equations (1.6) without using operator symbols.

Equation (1.6) for the index »+ 1 may be written in the form:

n
(LT) Bopl@ni] = ot | D~ *03 du iz o] + (=1 4,10 = 0.
k=0

Hence the rule: In order to write the differential expression R,.,[a,,,]
one should: 1) increase by one all the lower indices in the expression R,;
2) “multiply” the expression obtained in 1) by the operator [, ,; 3) add
the term (—1)"*'a, ., ,.

The equations below are examples of R equations which correspond
to linear equations of the orders n =1, 2, 3:

a; = —ai+ Gy a,+ gy — Ggg
(1.8) @)’ +3a,8,— a3,0; = —a3+ A59a3+ (203, — a3,) Gy + @3 — 83, + a9,
ay” + dagay + 6aja;+ 343> — a0, — 304,050, — (305, — a45) 0y
= —a3+ Ay 83+ (30— ay,) a5+ (32;;— 204+ 64;) a5+

117

17 ’
+a43-— Qg+ Gy — Gy

ooooooooooooooooooooooooooooooooooo

If » = 1, i. e. if a linear equation is of the second order, the corres-
ponding R equation is a Riccati equation. In this sense the R equations
are generalizations of the Riccati equation.

By the term R equations (not related to linear equations) we shall
understand the equations formed from (1.6) by replacing the coefficients
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with unknown a, and its derivatives by symbols which are not related
to the coefficients of the differential equation L, . ,[y] =0. If n =1,2,3
and we put a, = y, then the R equations take the form:

¥ = =y +fi@)y+ folz),
y'+3yy' —fo(@)y = =¥+ f2(@) Y +fi(@)y+fo(@),
(1.9) Yy +4yy" + 6y%y + 3y2— fa(@)y" — 3fs(®)yy — fa(x)y’
= =¥+ fa(@) ¥+ fol@) ¥+ fi(2)y + o (),

ooooooooooooooooooooooooooooooo

It is easy to verify using formulas (1.8) that in the particular case
n=1,2,3,... the converse is also true: the R equations have corres-
ponding linear differential equations. The following linear equations
correspond to (1.9):

y"+f1y'+(f;_fo)?/ = 0,
(1.10) '+ iy +CHL—f)Y + (fo—fit )y =0,
?/Iv"f'fa?/m+(3f;—fz)?/”“|‘ (3f;'—2f;+f1)?l’+(f;“_ ;""f;_fo)y =0,

These formulas may be obtained by comparing the coefficients in the
corresponding equations (1.8) and (1.9). One has to assume, however,
that the function f;(z) belongs to the class C* (i =0,1,...,n). Thus,
in this case we also have an assumption of the same character as the
assumption about equation (1.1), i. e. that the regularity of the coefficient
in an R equation depends upon its place in the equation.

Thus, linear equations with coefficients satisfying assumptions (a)
have corresponding non-linear equations and conversely. In the sequel
we shall show how we can make use of this mutual relation.

R equations (1.6) can also be written in the form of a determinant,
by means of another method of eliminating the functions a{? from
system (1.3). In fact, let us differentiate » times the first equation of this
system, » —1 times the second equation, and so on; finally, let us differ-
entiate once the equation which is last but one (the very last should not
be differentiated at all). In this way we get a system of k = (n+ 1)(n+2)/2
equations with k—1 unknowns to be eliminated, namely the functions
ag,lw)z—l (4, =0,1,...,n), a’-szi,z'r)z—z (i =0,1,...,m—-1), ..., asf,nl_l) (n_1
=0,1,2), agﬁ; (2o = 0,1).

These unknowns appear linearly in the system of equations obtained
in the way described. It follows that the result of elimination is a deter-
minant of the k-th order. By giving a suitable rule one may define all
the terms of this determinant; it should only be remembered that while
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differentiating equations (1.3) we use the Leibniz formula for the deriv-
ative of product, whence binomial coefficients will appear in the deter-
minant according to a rule which is easy to guess. Here we shall merely
present examples of equations of the second and third order:

for n =1
lo 1 a,—ay!
1 0 a—ay|=0;
1 a, — gy
for n =2
0 0 1 0 0 a,—ay,
01 0 0 0 a;—ay,
1 0 0 0 0 a—ay
01 a 0 1  —ay =0
1 a, a; 1 0 — a,
0O 0 0 1 a, — @y

The following theorem results from the above considerations:

THEOREM 1. An arbitrary particular solution a, of the differential R
equation which corresponds to a given linear equation determines the decom-
position of the left-hand side of that equation into symbolic factors.

This decomposition is defined in the domain of existence of the
solution a,,. '

In faet, in order that the decomposition under consideration be
determined, one has to determine besides a, also the functions a,;
(¢=0,1,...,n—1). If we have a,, then the functions a,; can be de-

termined from system (1.3) by means of differentiation and rational
operations. The theorem is proved.



2. Theorems on the existence of solutions of R equations. Relations
between the solutions of linear differential equations and the solu-
tions of the corresponding R equations

In the sequel, while proving the theorems on existence, we shall
use the following theorems and lemmas:

LEMMA 1 (Cancellation lemma). Suppose we are given a matric with
n-+2 rows and n columns:

[all Ay cee By ]
a’n+2,l a, |-2,2 v a’n } 2_1:J

If we denote by D(r,s) the determinant of the above matriz with the
rows numbered r and s crossed out, then the following relation is true:

(2.1) D, m)D(p, q)—D(m, ¢) D(, p)+D(l, ¢)D(m, p) = 0,

provided | < m < p < q. _
We omit here the induetive proof.

LEMMA 2 (Cancellation lemma). Suppose we are given a matriz with
n+ 1 rows and n columns. If we denote by D(r) the determinant of this matrix
with the r-th row crossed out, and by D(r, s) the determinant of this matriz
with the rows numbered r and s and the last column crossed out, then the
following relation holds:

(2.2) D) D(m, p)—D(m)D(p, )+ D(p)D(l, m) = 0.

The proof is based upon Lemma 1. To obtain it one has to expand
the determinants D(r) of n-th order with respect to the last column.
After a suitable arrangement we get (2.2) using (2.1).

THEOREM OF MAMMANA (see [7], p.200). There exist an infinite
number of systems of n—1 solutions of #he linear differential equation
L,{y] = 0 such that n—2 of them are real and linearly independent and
one 18 of the form u(z)+ iv(x), and the Vronsky determinant of such a group
does not vanish at any point of the interval (a,b). The functions u and v
are solutions of the linear equation under consideration and, together with
the remaining n— 2 solutions, form a linearly independent system.
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The interval which appears in the theorem is the interval in which
the coefficients of the linear equation are defined. To have the solutions ¥
in the whole interval (a,b) one has to assume the continuity of the
coefficients of the equation under consideration.

Coming back to the problem of existence of solutions of our R equa-
tion, it is easy to verify that the general theorem of existence of solution
in a sufficiently small neighbourhood of each interior point of the inter-
val (a,b) can be applied to the R equation which corresponds to the
linear equation with coefficients satisfying assumptions (a).

In fact, equation (1.6) satisfies the assumptions of the Peano theo-
rem:

1) It can be solved with respect to the derivative a!” since the
coefficient with this derivative equals —1:

n k i i
a'gl«) = Rnl(asu)-l,i) a’ﬁz)) = R~n2 (z, a‘;l)
(t=0,1,...,n—1; 3=0,1,...,n; k <j).

2) The right-hand side of the last equation, as a function of variables
#, unknown a, and its derivatives a{, is a continuous function: the
function R,, is an algebraic sum of the term Ije¢, and lfba,”,',f
(¢=0,1,...,n), whence it is a polynomial of the unknown a,, its
derivatives, the coefficients of equation (1.1) and their derivatives a_fb’j’,,',-;
the last by assumptions (a) are functions from the classes ¢’~* (k < j).

Now we shall present two theorems which are more advanced.

LEMMA 3. If the R equation which corresponds lo a linear differential
equatton has a solution in some interval, then the coefficients of decomposi-
tion into symbolic factors of the differential expression L, ,[y], denoted
by the symbols a,; (i = 0,1,...,n—1), belong to the class C**'.

Proof (by induction). By the regularity of solutions of the differen-
tial equation (see for instance [3], p. 110) the function a,, as a solution
of an R equation of n-th order, is a function from the class C" in the inter-
val of its existence. Hence, by the first of relations (1.3) we have a,,
= @p,12— @y, and the function a, ,_, is from the class C". Suppose now
that the function a,, ; belongs to the class Cc*+'-7, By (1.3) we get:

?
an,u-(;‘ +1y = a,., -7 Apn_j— anan,n—]‘ .

It follows that a, ,_¢;,, belongs to the same class as the fqnction a;l.,t_ i
which, by the inductive assumption is from the class C"~’; this proves
the lemma.

LEMMA 4. Each solution of an R equation of n-th order corresponding to
a linear equation of n+ 1-st order defined in the interval (a, B) is of the form

W (Ysy Yoy ooy Yn)
(2.3.1 aﬂ _ — —— LS
) W (Y1 Yayees Yn)

+ an-{-l,u
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or

(2.3.2) @, = Wiy YarerYn) - W Y11 Y290 Yni Yns)

W Ysr s ¥n) W1y Yy oeer Yui Yni1)

where the symbols W denote the Vronsky determinants, and the system of
functions y; (1 = 1,2,...,n+1) is a linearly independent system of par-
ticular solutions of the linear equation L, ,[y] = 0, which corresponds to
the R equation considered.

Fomula (2.3.2) may be rewritten in an equivalent shorter form

d cery Yn
(2.4) 0 = 2| W)

dz W(yu"';yfn;yn-i-l) ‘

Proof. Consider the interval (a, 8) in which the solution a, of equa-
tion (1.6) exists by assumption. By (1.3) the coefficients a,; exist in the
interval (a, ), and by assumption (a) they are functions of classes C*!!
(¢=0,1,...,2—1) (lemma 3). Hence in the interval considered the
function a, determines the 1. d. equation of n-th order of the form

Lyl =944 a0 " V4. Fayy = 0.

Let us consider an arbitrary system of linearly independent solutions
of this equation:
(2.5) Yis Yoy eeey Yn:

From the form (1.2) of equation (1.1) it follows directly that system
(2.5) is a system of solutions of the homogeneous equation corresponding
to (1.1), and W(y,;...,¥,) # 0 in the interval (a, f).

Let us denote by y,,, the integral of the homogeneous equation
which corresponds to (1.1), and which forms, together with functions
(2.5), a linearly independent system. Using the first relation (1.3):
@,+ @, , 1= Gy, 5, and expressing the functions a,,,, and a,, , by
the solution y; (¢ =0,1,...,72,n+1), we get the formulas (2.3.1) and
(2.3.2) using the Liouville theorem.

The determinant W (y,, ..., ¥,) does not vanish in the interval (a, ),
which proves our theorem.

LEMMA 5. FEach function a, of the form (2.3), where

(2'6) ?/1’ y27 ""y'n; yﬂ-{-l’

18 an arbitrary system of linearly independent solutions of homogeneous
equations of the (n+-1)-st order which satisfies assumption (a), 18 a solution
of the corresponding R equation of wn-th order.

The function (2.3) is not determined at those points of the interval
(a, b) at which W(y,,...,%,) = 0.
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1t follows from the above theorem that a given system of solutions
of a linear equation determines » -4 1 different solutions of the (;orres-
ponding non-linear R equation. In fact, one particular solution, namely
Yn,1, 18 distinguished in (2.3.2); if we distinguish other solutions y;
(t=1,2,...,n), we obtain n+1 different solutions a,,.

Proof. Let (2.6) denote an arbitrary system of linearly independent
solutions of (1.1). Let us form the function a, according to formula
(2.3). This funection is determined in the interval (a, b), except at those
points where W (y,, ..., ¥,) = 0. Since the differential expression L,[y]
is uniquely determined by functions y; (¢ = 1,...,n), we have a certain
decomposition of L, ,[y] determined by a,. If we write the equation
L,[y] = 0 in the form of a determinant and use the symbols of lemmas 1
and 2, we get
- W(n—i,n+1)

-1 T —1) | = ceeg M),
W1 = (—1) Wn,ni1) (i=1,2,...,n)

The determinants W (¢, j) in the last formula and the determinant
W (k) which appears later are formed from the matrix with » 42 rows
and n+4 1 columns:
Y Ys e f’/n-f»l
Yo W e Yni

oooooooo

iy, (nil) (n+1)
yl y2 A y'n 11

in the manner described in Lemmas 1 and 2.

Tor the proof, it suffices to show that the functions of decomposi-
tion a, and a,; (j = 0,1, ..., n—1) satisfy system (1.3).

1) The first equation of system (1.3} is satisfied by the definition
of function a,.

2) Let us consider an equation from the second group (1.3):

’
an,ﬂ.—i+ ana'n,'n—i‘}‘ Upon—(i+1) Ap 1 n-i = O’

where ¢ is an arbitrary number from among 1,2,...,n—1. We shall
show that this equation is satisfied by the functions a, and a, ,_; defined
above.

Indeed, replacing a,,,,_; by the ratio of determinants according
to the formula
W(n—1)
W(n+1)

an+l,n—1‘=(— )i+1 =01112;°”1n).

and putting a, and a, ,_; into the equation of the second group, we re-
present it in the form:

Wn+1)Wn—i,n)—Wn)Wn—i,n+1)+Wn,n+1)W(n—1) =0,
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where n—1¢ < n < n-+1. The last relation is identically satisfied for
every it =1,2,...,n—1 by lemma 2. Thus, the second group of equa-
tions (1.3) is satisfied by functions a, and a, ,_;.

3) The last equation (1.3): apo+ @,an—a,,,0 = 0, after similar
reductions, leads to the relation

Wr+1)WO,n)—Wn)WO,n+1)+WO0O)W(n,n+1) =0,

which is identically satisfied by lemma 2.
Lemma 5 is proved.
From the above considerations follows

THEOREM 2. If the coefficients of linear equation (1.1) salisfy assump-
tion (a), then the corresponding non-linear R differential equation has real
golutions determined in the whole interval (a,b), except perhaps at some
points. Those solutions are given by formulas (2.3).

On the other hand, the Mammana theorem implies:

THEOREM 3. Under the conditions of the preceding theorem, the R equa-
tion which corresponds to a given linear equation has a solution in the domain
of complex functions of real variable determined in the whole interval (a, b).

In fact, it follows from the Mammana theorem that one can find
a system of » linearly independent solutions such that the Vronsky
determinant formed from those solutions does not vanish in the inter-
val (a, b).

It follows that under our asssumptions the decomposition of the
differential expression L, ,[y] in the interval (a,b) is always possible,
but, in general, this decomposition holds in the complex domain, even
if the coefficients are real (thus we have here a full analogy with algebraic
equations).

Because of the relations of non-lipear R equations with linear equa-
tions, we have obtained the theorem of existence of solutions in the whole
domain (a,b) whence a theorem analogous to that for linear equations.
The assumptions of theorem 3 require some explanations. These assump-
tions are expressed in an indirect way: they concern the coefficients of
linear equation (1.1) which corresponds to the R equation discussed in
theorem 3. Nevertheless, it is easy to notice that we require from the
equation more than the continuity of functions R, (z,a!’). We shall
explain that by discussing equations (1.9). In order to relate equations
(1.9) to linear equations—and, next, to apply theorem 3—one has,
as has already been shown above, to assume that the functions f;(z),
which are the coefficients of an R equation, belong to the class C°
(¢ =0,1,...). Then the linear equations corresponding to the R equation
satisfy assumption (a) and theorem 3 can be applied. Thus we require
that the R equations in theorem 3 should have the continuous funection
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fo(@), function f,(z) differentiable once, function f,(x) differentiable twice,
and so on. Thus we have here the assumptions of the same nature as the
assumptions for linear equations (1.1) formulated at the beginning,

Formula (2.4) is derived in papers devoted to the problem of the
decomposition of linear differential expression L, ,[y] by other methods.
Since the theory of R equations is not introduced in those papers, the
decomposition discussed there is possible only after finding the general
solution of a homogeneous linear equation (we have already mentioned
it in the introduction). Thus, the method of decomposition has not helped
in solving linear equations. Probably because of that, this method has
played an insignificant part in the ‘theory of equations, although it has
been known for a long time.

On the other hand, the introduction of R equations which correspond
to linear equations has made it possible to decompose the expression
L,,,[y] without knowing the solution of the linear equation, and con-
sequently, it often helps to lower the order of the equation. We shall
show this in the next paragraph. -



3. Relations between the solutions of R equations and the solu_tions
of linear equations. Two methods of solving linear equations

In the last paragraph we have proved that the solution of a non-
linear R equation which corresponds to a linear equation can be — in
the sense defined above — reduced to the solution of a linear equation.
In the present paragraph we shall show that the converse is also true:
the solution of an R equation, or finding any of its particular integrals

enables us to solve or lower the order of the corresponding linear equa-
tion.

We shall use the following definition:
Suppose we are given a system of functions

(3.1) a,(x), a3(x), ..., & ()

defined in the interval (a, b) and belonging to the class C* 2. The sym-
bol T will denote the determinant of system (3.1):

1 a, lLa, Pa, ... I
1 a, La, Ba, ... i %
(3.2) T(ay, ..., &) = B o '

1 Q. lk a; l: a, ... 12_20;);

where I; is the differential operator defined above.
Thus, for a system of two, three and four functions, we have

1 a,
T(al’ a2) = y
1 a,
"2
1 a, a,+a
r2
T(a,yaz,a3) =1 a, ay+a; |,
' 2
1 a; a3t+a;
’ 2 7" ’ 3
1 a a+a; a; +3a0,+a
) 2 2] ) 3
1 a;, a,+a;, a,+3a,a,+a,
T(a,y as, ag, a,) = , 9 ' , 3
1 a3 a3ta; a3 +3a;a3+ a3
’ 2 1 ’ 3
1 a, a;r!‘ ay a, +3a.a,+ a;

N
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Definition 2. Functions (3.1) will be called significantly different
in (a, b) if the determinant 7(a,, a,, ..., a;) does not vanish in this in-
terval.

From the form of the determinant T for two functions it follows that
they are significantly different in (a, b) if they do not take equal values
in this interval. If all functions (3.1) are constant in (a, d), then the
determinant 7 (a,,...,a;) becomes the Vandermonde determinant, and
instead of “significantly different functions” we have “pairwise different
numbers”.

THEOREM 4. If the coefficients of the l.d. equation L, ,{y] =0,
satisfy assumption (a), then each solution of the corresponding R equation
reduces the integration of this linear equation to the -integration of a linear
equation of wm-th order, i.e. of an order less by 1.

Proof. Consider equation (1.1) and the corresponding equation (1.6).
Let a, be a solution of the latter equation defined in the whole interval
(a, b). This solution exists by Theorem 3.

It follows from (1.3) that there exist coefficients a,; (: =n—1,
n—2,...,0), and we have decomposition (1.2). Equation (1.2) may be
replaced by the system of equations

Lyl =y 4+ apn Y™ V4 G2 y™ 244 @Y + Gy = by,

(3.3) db,,
d +anbn = bn+l!
where b, (z) is an auxiliary function from the class C! defined in (a,b).
Since
(3.4) by = CIH-IeiAn_*'eﬁA"fbn-HeAndm’
where

Ay (@) = [ an(2)d,
we have by (3.3):

(3.5) ?/(n) +a’n,nfl?l(n_l)""an,n—zf‘l(n-'zj‘F- vt @Y+ Anoy
= Cp,r6 “n e“‘ﬂfb,,,“e“ndm (Cp., = const).

It is easy to verify that equation (3.5) is a first (?) integral of
equation (1.1).

When eliminating the constant C,,, one has to use relations (1.3).
The first integral, to which equation (1.1) reduces, is a linear equation of
n-th order. This completes the proof of the theorem.

(?) We use the terminology of [2].
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By Lemma 3 we see that if the left-hand side of equation (1.1) is
decomposable into symbolic terms, i.e. satisfies assumptions (a), then
the left-hand side of the first integral (3.5) is also decomposable.

Thus we conclude that under assumptions (a) we can perform the
second decomposition of a linear equation of n-th order, and the result
of this decomposition is & linear equation of (» — 1)-st order, which is the
first integral of (3.5) and the second integral of (1.1). Indeed, as a result
of the new decomposition we get

(3.6) A A e S TV Al T
where b,_, is a solution of the linear equation

db, _
(3.7) d’; : 'I‘a'n~lbn -1 = ba.

This new decomposition (and the resulting further lowering of the
order of the differential equation) is based upon any of the solutions a,_,
of the new R equation of (»—1)-st order, which corresponds to the equa-
tion L,[y] = 0, i. e. the equation

(3.8) R, [a, ,]=0.
From equation (3.7) we obtain

by | = C,,e“""-l+e““"-lfbne“'ﬂ—ldw
or, after considering (3.4):

b,., = Cne_A"'—l‘i"on-r]e_‘{"_lfeAn—l—Anda?+
(3.9)

—}-8"4""1fGA"‘I_A“faneA"dwz.

Applying in the same way the basic theorem on existence of de-
composition, we get a system of »n differential equations, which are the
intermediate integrals of equation (1.1):

(3.10) Y™ P da, pa k¥ F oY = by
(k=0,1,...,n—1),
where

J
+Chokss G—An—kfeAn—k—An—k+lfg“n—k+l“"n—k+2dwa+

—|—...+CMle““"-kfe“ﬂ—k““ﬂ—kﬁf...fe"“—l"""dw"+

+e‘An—kfeAn—k‘An—k+1f__'ngn—l—An fb,‘He""da;"“
k=0,1,...,n—1),
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and 4; = fa,-dm (¢ =mn,n—1,...,1). The functions a; are the particular
solutions of » differential equations of the R type which correspond to
equations (3.10):

Ri[e;]=0 (¢t=mn,n—1,...,1).

Thus we have obtained
THEOREM 5. The function

(3.12) Yy = by = Cre~ "0+ Cre= 10 [ o0~ Nidp
—f—Cae""lOfe"‘““‘lfe"'l“"2dm2+...+
_*_C"Jrle—/lmfeAm—/llfe.«ll—Azf.”fezln_l—flndmn_}_

4 G_AIOfeAm_AlfeAl_Azf"' fe""-l“"ﬂfb,,ﬂe""da:”'“
where A,, = fawd:v and a,, is defined by the relation a,+ a,, = a, or
n .

@9 = Qpiyn— D, G; 18 the general solution of a non-homogeneous linear differ-
i1

ential equation. The functions a; (i = 1,2, ...,n) are the particular solu-
ttons of a system of R differential equations which correspond to the given
linear equation and to the system of its intermediate integrals obtained by the
method of decomposition of the linear differential expression imto symbolic
factors.

In fact, the last equation in system (3.10) is the intermediate integral
of equation (1.1) of (n+ 1)-st order. Since this is the linear equation of
the first order, its solution is known and has the form

Yy =b, = Cle“‘1°+e““lﬂfble“wdw

or the form of function (3.12), which was to be proved.

Thus, the system a,, a,_,, ..., @, of solutions of equations R,[a,] = 0,
R, ,[a,_,]=0,..., R,[a,] = 0 determines completely the general solu-
tion of 1. d. equation (1.1).

The solutions of the system of differential equations of the R type
discussed in the previous theorem determine the linearly independent
particular solutions of the homogeneous 1. d. equation corresponding
to (1.1), and '

y, = e~
Yg = e-AlofeAlo—Alda;’
(3.13)

-------------------

yn-i-l = e_AlﬂfeAlﬂ_Alngl"A2 e feAn‘l*A-nda;n;
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these solutions determine also a particular integral of 1. d. equation (1.1):
3.14) Y,,, = e“"lﬂfe‘*w““‘lfe"l““zf...fe“‘"—l“‘nfb.,,,,_le“‘n a"

Relations (3.13) and (3.14) easily follow from the above reasonings.

The following method (method A) of solving linear equations may
be based upon the last theorem:

1) For a given linear equation which satisfies assumptions (a) we
write the equation R,[a,] = 0.

2) We find (by guessing, or in any other way) any of the particular
solutions of equation R,[a,] = 0.

3) Using (1.3) we find the first integral of linear equation (1.1).

Next, we apply the same procedure to the first integral just found,
and so on, until we obtain either the intermediate integral of equation
(1.1), whose general solution is known, or until we obtain an equation of
the first order. |

Another method of solving a linear equation (method B) is based
upon the following theorem:

THEOREM 6. Suppose we are given l.d. equation (1.1) of (n-+1)-st
order and k significantly different solutions of the R equation of n-th order
corresponding to linear equation (1.1). Then we can find an 1. d. equation
of (n—k+ 1)-st order which is an intermediate integral of equation (1.1).

Proof. Since we know k significantly different solutions of the
differential equation of type R which corresponds to linear equation (1.1),
we can perform k different decompositions of this equation and find the
following % equations of m-th order (first integrals of equation (1.1)):

(3°15) y(n) + a’n;n-l(i) y(n Y + a’n,n—Z(i) y(n—Z) ‘}' s _I' a’no(i) Y

= Cnl-l(i)e_‘{"'(i) +c““n(i) fbn+-le‘4"(”dm (1 = 1,2, e k).

Thus we have a system of k algebraic equations, linear with respect
to functions y™,y™ Y ... 9, y. Hence we can express the first k of
them: y®,y"-Y . y®+1-® by the remaining ones (and by the
coefficients of the system), provided the determinant formed of the
first ¥ columns of the coefficients of the system does not vanish in the
considered interval (a, b). In particular, we can determine the function
y®+1=%_ From the linearity of relations (3.15) it follows that y®*+'~%
can be expressed linearly by "9, 4~*=D ‘4’ 4y We shall also
have arbitrary constants C,,,; (1 =1,2,...,k) in this equation, and
it will be a linear equation of the order n+1—%. This will be the inter-
mediate integral of equation (1.1).

It remains to show that the determinant of the system under consi-
deration does not vanish in the interval (a,b), i.e. that
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1 @pn_1a)y @rn—z2q) -+« Cnns1-kq)

1 a,,_ Qpp_a@y +o0 @ ko |
3.]6) D= n,n—1(2) n,n-—2(2) nn+1-k(2) Jl s 0.

oooooooooooooooooo

1 a’n,n—l(k) an,n—z(k) s a’n,n+l-k(k) |

As we know, the coefficients of equations (3.15), whence the coeffi-
cients of determinant (3.16), can be determined by the solutions of the R
equations and the coefficients of equations (1.1) by the use of formulas
(1.3). These formulas are, in this case, of the form:

(3.17) Ap 1) = Bni1n— Cagi)y
’
Unn-260) = Cniin-1— Cpn_130) — Cn(i)Ban_1()y
Ann-36) = Cny1n-2— a;»,n—z(i)— Aa(i) An,n—2(i))

----------------------------

4
Upni1-k(i) = Cnitin—k+2— Tnn—ki2() — Cn(i)Bn.n —k4-2(i)

(i=1,2,..., k).

The first column of the determinant D consists of 1’s and will not
be transformed. The second column is defined by the first of relations
(3.17), whence it consists of the differences of two functions, the first of
which, namely a,.,, i8 repeated in all the terms of this column. Since
the first column is constant, this first term may be omitted; then the
second column will consist of the system of solutions a,; (¢ =1,2,...,k)
multiplied by —1.

The third and the next columns are the algebraic sums of three
terms which appear on the right-hand side of relations (3.17), starting
from the second term. For the same reasons as before we may omit the
first term in all columns. Thus the third column will be of the form:

’
O n—1() — Pn(i)Tn,n-1()

and in view of the first of functional relations (3.17) it can be transformed
a8 follows:

’ ’ 4 2
—An 1) — an(t’)an,n—l(i) = _a’n+l,n+ A (i) — An(iy an+l,n+ i) -

In this column, as in the preceding one, we may omit the repeated term
—a, +1ny a0d the repeated term a,;a,,,,, since the second column
is formed by functions a,; and the second factor a,,,, of the product
Gnii)@ni1n @ppears in every row. Thus we come to the conclusion that
the third column can be replaced by the sum ayq)+ a.

Let us notice that this column may be obtained from the preceding
one by the following rule:

Gyt Ong) = —lag(—6ng) (G =1,2,...,k).
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This is a general rule: each column is obtained from the preceding
one according to the same rule, i. e. it is the product of the operator —1,
and the preceding column. In fact, let us consider any column:

(3.18) K)’ = —a";w,n—j(i-)_an(i) Apn-ji) ° (J =2,3,..., k—1)
and the next column
(3.19) K;., = _a:z,n—l—i(i)_a’n(i)a'-n,n.—l—f(l)'
By the recursive formulas (3.17) we may heighten the indices in the
formula (3.19). Then we get
K)' +1 = —a';l.+l,n—]' + a‘;zl,n—f(i) + a';z(i)a’n,'n—y'(i) + a’n(i) a’;t,n-;i(i) -
— @iy Gy 1,15 F Bngiy Bnm—i(i) T By Bomyn i) -

Considering the form of the first column of the determinant D we
are entitled to omit in this column the terms —a, ., ,_; since they appear
in each row; considering the form of the second column we may omit
terms —a,; a,,,, ;. After rearrangement we get

K]!+l = Qi) (a’;l,,n-j'(i) + (i) B —j (i) )+
a .,
(3‘20) + % (a'n,n—)'(l') + a’n('i)a’n,n—j(i))’

K;+1 = —l,,(,-)Kj,
which was to be shown.

Let us notice that this general rule of forming the determinant D
may also be applied to the second column since

a
—a'ﬂ.(l'-) = - In,(i)'l = — E + A iy 1.

Let us also mention that the terms of the determinant do not depend
upon the coefficients of the linear equations but only upon the system
of solutions of R equation. In fact, by rule (3.20), the columns depend only
upon the operator l,;, whence upon the functions a,;. Thus we have
found

(321) D = det ”17 a’n-,n—l(i)) a’u,n—z(i)’ LRRS a’1l.,n+1—k(i)”
17k
= det|1, —Qn(i)y ln(i)an(i)p _lfz(i) Bp(iyy + oy (—1) lln(i)za'n(i)”
or
D = (_‘l)pT(an(l)v Qugzyy <« a’n(k))v

where p = k(k—1)/2. Thus the determinant of system (3.15) is the
determinant 7' of the system of solutions of the R equation multiplied by 1
or —1. Thus if the system a, is a system of solutions or the R equation
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which corresponds to a given linear equation (1.1), and, at the same time,
a system of significantly different functions, then system (3.15) may
be solved, and equation (1.1) may be replaced by the equivalent equation
of the order n+1— k. The theorem is proved.

Let us notice a certain analogy between the Vronsky determinant
in the theory of linear equations, and the determinant 7' in the theory
of R equations.

Theorem 6 allows us to reduce the problem of solution of 2 linear
differential equation to the solution of a linear equation of lower order,
provided we know some of the solutions of the corresponding R equation,
and these solutions are significantly different in the interval under con-
sideration.

If we know n significantly different solutions of the R type differ-
ential equation of n-th order, then we can solve completely the corres-
ponding system of linear differential equation of (n-+1)-st order. In
fact, a system of = significantly different solutions allows to reduce the
linear equation of (n+ 1)-8t order to the equation of the first order, which
can be already solved. Thus the solving of a differential equation of type R,
or, more precisely, the knowledge of a system of significantly different
solutions of this equation, where the number of solutions is equal to the
order of the equation, means the solution of the corresponding linear
equation.

If, however, we know n + 1 significantly different solutions of the R
equation which correspomds to a given linear equation of (n-+ 1)-st order,
then problem of the solution of that equation becomes simply an alge-
braic problem, i. e. it requires the solving of a linear system of algebraic
equations (3.15) for k = n-1.

The second method (method B) of solving linear equations will make
use of some significantly different solutions of the R equation which
corresponds to the given linear equation.



4. Applications of the method of decomposition into operator
factors

We shall now apply the preceding results to some problems from the
domain of linear equations. We shall do this not in order to present new
results, but in order to present new and simplified proofs of theorems and
formulas based upon the method of decomposition and upon the theory
of R equations.

It will follow from our considerations that completely solvable linear
equations (equations with constant coefficients and Euler-type equa-
tions), are elementarily decomposable equations, i.e. the R equations
corresponding to them “degenerate” to algebraic equations. We shall
also present an example of a converse proposition for linear equations
of the fourth order, namely that the generalized Euler equation is the only
one whose solution can be reduced to the solution of a characteristic alge-
braic equation.

4.1, Application of method B to l. d. equations with constant
coefficients. If the coefficients a,_, ; (i =0,1,...,n) of (1.1) are constant
(by 4, is 288umed to be a function of the class C!), then it is a natural idea
to look for the decomposition of the differential expression L, ,[y]
into symbolic components in the domain of constant functions. We have
then a, = const. If we consider in addition that I,'’C = a)'C for C = const,
then the R equation (1.6) which corresponds to (1.1) will take the form

/ n+1 " n-1
(41) a, _alwl,ua’n'l'a’n+-l,n~la’u, —.ot
n 24-1 —
‘l‘(—l) a’n+l,1an+(_1) a’n{-l,o = 0.

Thus, in this case the R equation degenerates to an algebraic equa-
tion. This is the classical characteristic equation with the inessential
change of sign of unknown a,. Suppose that the roots of the characte-
ristic equation are all distinct. Then we have, as we know, not one but
n+1 different decompositions of the differential expression L, ,[y]:

4.2) Y+ Ay, n—1(i) y(n—l) +...+ anl(i)y’ + @iy = Cuy 1(i)0_a"('i)z +Bn+l(i) y
where
Bn,+l(t') - g"“‘n(c’)ifb"b‘kl(m)em,,,(,-)-cdw (7' =1,2,...,n+1).
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From this system we may determine the unknown function y, provided
that the determinant of this system is different from zero.

By theorem 6 we know that this condition holds if we have signifi-
cantly different solutions, which is equivalent to T (a,y, ...y @up 1) # 0.
But in our case the determinant T is the Vandermonde determinant of
(n+ 1)-8t order formed of the roots of the characteristic equation. These
roots are distinct by assumption, whence system (4.2) has a solution.

There is no need to solve this system. It suffices to note that the
unknown y is a ratio of two determinants; all the elements of the
numerator except one column formed of right-hand sides of (4.2) are
constants, and the denominator is also a constant. Thus the expansion
of this ratio is of the form

y =C,e W Che ™"+, 4+ C, e "t)* LY, | (C; = const),

where Y,., is a particular solution of a non-homogeneous equation.
From (3.21) we find

2 . -1 —_ ar ' ]
o det1, @niyy Gogiys oy Ay s € a”("’fbnﬁeanmjdmu
Yoo = (1) —— I TR

2 -1 _an |
det|1, @ngiyy Bngiyy -+ 0'7:(:') y a?i(i,ll

The denominator is the Vandermonde determinant V"*' of numbers
@uqyy -y Bpnryy- Expanding the numerator with respect to the last
column we find the coefficients of the terms (—1)"+**'¢~%®* (b, e %dz.
These coefficients are the determinants of the same type formed from the

numbers @)y« ..y Cpi—1)y Cngis1ys ++ oy Caguiyy (¢ = 1, ..., n+1). Hence, after
some reductions, we find
n+l n+l

(4.3) Yor = [ [l (a"(,,,_anu_))]—lc_n,u.-;x [ by da.
i=1 8§=1

8£1
Thus, method B gives in a simple way the general solution of a non-
homogeneous equation; there is no need to predict in advance the func-
tional form of the solution, or to apply the method of variation of con-
stants for the determination of the integral Y, ;.

4.2. Application of method A to linear equations with constant
coefficients. In the preceding case the appearance of multiple roots would
"complicate the derivation of formulas. This difficulty disappears if we
apply method A. The answer is given by formulas (3.13) and (3.14), which
take the form

Vi = e-.awnfo(aw--al).nfe(al_az).r“. fﬂ‘ai_l_a“tdwi,
(4.4) Y, = g‘“ltr"fe(“lo'al)tfe(ﬂl—ﬂz)x

...fe‘“"—l“'""fb,,He"""'da;"“ (t=0,1,...,7n).
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The proper use of formulas (4.4) requires, however, some additional
remarks. By the preceding theorem 2ll linearly independent integrals
are obtained from the solution of a single algebraic equation (the charac-
teristic equation). Formulas (4.4) make use of one of the roots of this equa-
tion, namely a,. Other numbers which appear in (4.4) are, as we know,
the roots of the system of characteristic equations which correspond to
the system of 1. d. equations which we obtain from (1.1) by successive
lowering of its order. It seems to follow that for using the formulas under
consideration one would have to write down and solve the system of all
algebraic equations which can be obtained from equation (1.1) by succes-
sive lowering of its order; hence it would require complicated computa-
tions. We shall show that this is not the case.

LEMMA 6. The roots of the characteristic equation
(4.5) 'rk— a,,.,k_l?‘k’" + a,k’k_zrk'g—l—. . -:F a,‘.l’ri Qo = 0

which corresponds to a certain l. d. equation of k-th order, obtained in the

process of successive lowering of its order, are the roots of the characteristic
equation

3 k+l k I\'—l - —_—
(4.6) P = T Gk ek G T F @0 = 0,

which corresponds to the preceding differential equation of (k- 1)-st order.

Proof. The coefficients of both characteristic equations are connected
by formulas (1.3), if we rewrite these formulas for » = k and omit the
terms with derivatives. These formulas determine the coefficients of
equation (4.6) by means of parameter a, and the coefficients of (4.5).
Thus we can rewrite (4.6) in the form

P — (@t )T - (g al.-,/.-_z)"’k'-l-‘
— (OB gt e g 3) T (BB )T Gy = 0
or, after some rearranging,
(4.7) —ak('rk_ak,k—lrk_l‘i'ak,k—zrk_z—...$ @y T Q) +
+r(r*—ay P ak,k—zrk-2_a’l-,k.uarkis‘i‘- o Gge) = 0.

Equation (4.6) reduced to the form (4.7) is satisfied by every root r;
(t =1,..., k) of equation (4.5), which was to be proved.

It follows that the sequence of numbers in formulas (4.4) is a system
of solutions of characteristic equation (4.1):

Qo = @)y B = Auiypy (0L =1,...,10).

A desirable simplification of the theory presented above consists
in the fact that the general formulas (4.4) determine the solutions of
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linear equation with constant coefficients even in the case where the
characteristic equation has multiple roots. In fact, these formulas deter-
mine the general solution of linear equation (1.1) according to theorem 5,
and the integrals which appear in these formulas remain meaningful
in the case of multiple roots of the characteristic equation.

Elementary integration leads to well-known formulas. To find all
the linearly independent solutions in the case of multiple roots of the
characteristic equation, one should number them in such a way that the
multiple ones should appear at the last places. For instance, if we have
k+3 different roots and two roots, a,, , and a; ,, are multiple, we
should arrange the roots in the following order:

(4.8) @y F G F ... £ G =0 =...=0 F G, =...= 0.

The arrangement (4.8) is essential. If they were arranged in a diffe-
rent way, we should not be able to get all the linearly independent inte-
grals, as can be easily shown.

Let us also observe that the formula for the particular solution of

non-homogeneous equation (4.4) is more general than formula (4.3), which
can be applied only to the case of all roots being distinct.

4.3. Application of method B to Euler equations. Suppose we
are given the Euler equation

(4.9) Yy 4+, e Y4 d, e T+
~ T ~ —(n-1
Ty 11 "y + @ p1,0% ! )y = b,
(@y, 1, =const; ¢ =n,n—1,...,0).

If we try to find the decomposition under the natural assumption

(4.10) a, = dnw_la Apn-1 = dn,nfla"_lv

where the symbols with ~ denote constant numbers (this will be the
usual notation in the subsequent parts of this paragraph), then the
differential equations (1.3) will become algebraic equations, and the R
type equation —will become an algebraic equation of order » with res-
pect to a,. Indeed, it can easily be shown that system (1.3), after dividing
the first equation by z~', the second by x 2, the third by z~? and so on,
will be transformed into the following system of algebraic equations:

Ay, n1 +a, —Gui1n = 0,
dn_w—z‘i_du,nw-l(dn_ 1)'dn+|_n—1 =0,

an,n73+a’n,n—2(an_2)_an+l,n- 2 = 0)

---------------------

dn,0+dnl(dn_n+1)_~n|~l,l =0,

A (@ — 1) — 41,0

(4.11)

t
Il
=
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After -eliminating a4,; (¢t =0,1,...,n—1) from this system, or
introducing (4.10) to (1.6), we get

(4-]2) P'u-|-l(‘in) = [an]:+l_&n-kl,ﬂ[dn]z+‘in+l.n—l [an];:-l_
_"'Itdn-[-l,l[&n]rv.:l:d1l +1,0 & 01

where [ ] denotes the factorial product
(4.13)  [6,); = (&n—n)(dn—n+])(d,,—n+2)...(d’n—(n—'i+ 1)).

Equation (4.12) is the characteristic equation of a given Euler differ-
ential equation (4.9). Let us mention that this equation differs from that
which can be derived in the classical way; the classical equation may be
obtained from equation (4.12) by linear transformation r = —a,+ n.
In our case the characteristic equation (4.12) is also a degenerate form
of a differential equation of the R type which corresponds to the Euler
equation under assumption (4.10).

If the characteristic equation (4.12) has all roots distinet, then these
roots determine the general solution of the differential equation (4.9),
and the solution of the homogeneous equation which corresponds to
(4.9) is of the form

n+1 ~
(4.14) y = Z O " =),
i=1

where d,; (¢ =1, 2,...,n41) are the roots of the characteristic equa-
tion.

This fact follows from the general theorem 6 on the possibility of
using n+ 1 significantly different solutions of the R type equation which
corresponds to the given linear equation. Indeed, if we have distinct
solutions of the characteristic equation, we also have n+1 solutions of
the R differential equation, namely d,,x ' (¢ =1,...,n+1). It can
easily be shown that they all are significantly different. Indeed, from
(3.21) we get

D = det 1, —ﬁn(i)al"l, (—-d,,(.,-)-i—('ifl(,-))w—z, (—26,;+ 3‘33;(17)_&:(.‘))-’5_3’ eonl
(t=1,...,2+1)
or
D —_— det "1’ _&n(]‘)m_l’ di(i)m_z’ _d::l(i)m_a, ey (—l)nd'::(,‘)ﬁ_n" -
This determinant is the ratio of entire function # 7 and the Vandermonde
determinant formed from the roots of the characteristic equation. Thus
D # 0, whence T # 0, if the roots of this equation are distinct; in this

case the system of functions d.,,(,-)a:“ is @ system of significantly different
functions.
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Thus, applying theorem 6 we may compute y from equatioas (3.15).
It is easily seen that

(4.15)

5(n-1)

~ —1 ~ —2 —(n-1 @y (s
w €61, @y 012y Gnnoay® ey Bty @Yy Oy 0|

~ -1 =2 -2 S(n=1) .—(n -1) =n T
det|1, An(yT "y Q)@ "y oo vy aL[.-, Vo )1 Ay iy T [

y = (—1)

In this case we do not need to compute the values of the determi-
nants which appear in (4.15). The powers of the variable z cancel out
in all columns but the last one in the denominator. Expanding the deter-
minant with respect to the last column we obtain formula (4.14), and the
values of constant coefficients are of no interest to us. The particular
solution Y, ., of non-homogeneous equation (4.9) can also be found from

(4.15), if we replace the last column of the terms C, i_,(.,-,m*a"‘“ by
@ “r@ [ z0p, dz. Then we find

741 m1

. -1 . .
Vo= 3[] (@ = @] 20 [, 120,
i=1 8=1

8#£14

By formulas (4.10) and (1.3) we easily find that the first integral
(3.5) is an Euler linear equation of the n-th order.

4.4. Application of method A to Euler equations. As in 4.2 the
application of method A does not require separate consideration of multiple
roots. The corresponding formulas can be obtained from the solutions
(3.13) and (3.14), which requires, however, the following lemma:

LeMMA 7. Suppose we are given a system of characleristic equations
(4.12) P(r)y =0 (k=n+1,n,...,2) which correspond to a given Euler
equation (4.9) and 18 oblained as a resull of successive lowering of order
of this equation. If r,; (¢ = 1,2,..., k) are the roots of the equation Py (r)
=0, t. e

(4.16) Py(r) =0,

then the preceding characteristic equation Py, ,(r) = 0, has k roots 7., ;
(¢ =1,..., k) such that each of them 8 the sum of the corresponding root
of the “next” equation P, (r) =0 and unily:

(4.17) Pp(r+1) = 0.

Thus we have the following relation between the roots of two sue-
cessive characteristic equations:

(4.18) rk+],i=rki+1 (‘i=1,2,...,k}.

Proof. We shall use the common letter » for denoting the indepen-
dent variable in all the equations considered.
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As in (4.13) we write

(4.19) (Pl = (r—n)(r—n+1)r—a+2)...[r—(n—iq-1)].
We shall use the following obvious formulas:

(4.20) [r4+ 13 = [r1 1,

(4.21) P+ DI LY = o+ )L,

To prove our lemma let us consider two successive characteristic
equations:

(#.22)  Pry(r) = [ =@ o [P+ By s [P0 —

~ T s
=t [P F A0 =0
and

(1.23) P(r) = [r]f 1 =@ 21 b @ [P T -
—---:Fdf.-l[r]/lt- 1 £, = 0.

Let r, denote a root of equation (4.23) and substitute » = r,+1 in
equation (4.22). By (4.20) we get

(4.24)  Pey(r,+1) = [nE 0 =G0+
+ @iy i [n]ﬁ:i —eeet @i (r e F Ay 1,0

Next, relations (4.11) written for the index » = k hold for the
coefficients of equations (4.22) and (4.23). Let us replace the coefficients
of equation (4.24) by those of equation (4.23) according to formulas (4.11).
We find

Ppoa(r,41) = [nKH— (@ + @) [nJeo +
k1 (Be— 1)+ o) [7 1601 — G ko (B — 2) + @ s} [7, 2T+
+oo F e (@ — (k= 2)1+dn ) 111 +
g [ — (K — 1))+ @) [7, Dk 1 F o (8 — k) -
After grouping and using (4.21) we easily derive
Ppia(r,+1) = =@ Pi(r,) 4 (r,+ 1) Py(r,).

Since, by assumption, 7, is a root of (4.23), we have P, ,(r,+1) =0
for v =1,2,...,k and k =n,n—1,...,2. Lemma 7 is proved.

Thus, lemma 7 allows us to use formulas (4.13) for the solution of
Euler differential equation in the general case, i. e. no matter whether
the characteristic equation P, ,(d,) = 0 has multiple roots or not.
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In faect, using the previous notation, we infer from our recursive
formulas

(4.25) Gy v =@—1 (k=n,n—1,...,2)

that each root d; may be related to a root of the first characteristic equa-
tion (4.12), namely

(4.26) G = Gy —n+i (G=0,1,...,05 d = dy).

In the case of multiple roots we retain formula (4.26), which means
that multiple roots are used several times.
Since, in our case, a;(z) = d;x~', we have

and  edititl = M %+ — pfa(+) (i)

Hence formulas (3.13) and (3.14) for Euler differential equation
take the form

4.27) y; = a;"_“;‘n(l)fm';n(l)“‘;nm lf fmﬁn(i-n—"fu(i)—ldm"—‘

(t=1,2,...,n41)
and

Y,,, = a" %0 f 2n(1)~%n(2)~1 r f ) ~dn(n 1) =1 f bn+lm;n(n+l)da;"'+]

where the numbers d,; (¢ =1,2,...,n41) are the roots of character-
istic equation (4.12) in the case of all roots being distinct as well as in
the case of there being multiple roots.

Computation of elementary integrals leads to well-known formulas.
If the characteristic equation has all its roots distinct, then it is easy to
note that all exponents in successive integrals are different from —1;
hence logarithms do not appear in integrals (4.27).

In the opposite case, if the characteristic equation has multiple
roots, logarithms appear in the solution.

In order to obtain all linearly independent integrals one has to
arrange the roots as before, i. e. the multiple ones should be placed last.

4.5. The class of differential equations whose solutions reduces
to solutions of algebraic equations. As can easily be verified the gen-
eralized Euler equation

CARE A - S VR R
+ap 1 n i (Cr+ b) Wy N4 +dn+1,o(a'17+ b))~y = b, ,,

has a corresponding R equation which is also an algebraic equation.
Thus, the following question arises: do the examples of linear equa-
tions considered so far exhaust the class of linear equations for which
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the corresponding R equations degenerate to algebraic (characteristic)
equations? .

First, however, we should specify what will be called the characteristic
equation. '

Definition 3. If the substitution a, = d,a,,,, reduces the equa-
tion R,[a,] = 0, which corresponds to a given linear equation, to an
algebraic equation with respect to d,, then such an algebraic equation
will be called the characteristic equation of an 1. d. equation (here d, is
a number).

As we have seen, linear differential equations with constant coeffi-
cients and the Euler equation have the characteristic equations satisfying
the above definition. '

In particular cases, when we have an explicit form of R equation,
it is easy to answer the above problem using formulas (1.8).

THEOREM 7. The generalized Euler equation is the only linear equation
which satisfies the condition a, ., , # 0 and which has the characteristic
equation (n = 1,2, 3).

Proof. We have already proved that if an equation is a generalized
Euler equation, then it has a characteristic equation. Now we shall prove
that if a linear equation has a characteristic equation, then it is a gen-
eralized Euler equation.

We shall prove it for the linear equation of fourth order (n = 3).
Consider the corresponding R equation (1.8), and suppose that our linear
equation has a characteristic equation. Then, after substituting a,
= dya,4; in (1.8) and dividing both sides by a,; this equation should
become an algebraic equation in d, (by assumption a,;, does not vanish
in the interval considered). It is easy to find that the characteristic
equation should be

~4 | 3 —92 ! 3 12 4 r 2
dy+@3(6ayy" a5 — 1)+ a3 (44305 + 3,05 — 6a5a,"+

-2 ~ e _—4 13 2 _—4 r _—4
+ 0490437) +83(ag3 g3 — 4843043 — 303055 + Ay a0, +

re:

r—3 -3 ’" ’ —4
F2a505 — 405" ) — (43 — a1 64— ay)a,; = 0.

Hence the coefficients in 4. should be numbers, and the following
conditions should be satisfied:

6ag a;; —1 = const,

-2 o3 12 4 ' 9
4.8 Ay 045 = const—4aa5," — 30,0, 1 6ag5a4,,
( . ) (77—t 2 4 -3

-3 e _—3 r 4 ’
Q4 Ay CONBL+@yy @3 — 4853845 — 3043843 + G4y Q43055 + 2849045

—4 —4 11t 1 ’
Qg0 Qg3 const + agy (g3 — Gy + ayy).
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The first condition (4.28) is a differential equation of the firs; order

whose solution is
Qqy = Gyq(c+b)7".

The next functional relations allow us to find the coefficients a,,, a,,
and a,, without solving differential equations; having a,; we can find a,,;
having these two functions we can find a,, and in the same way a,,. It
is easy to see that the right-hand sides of these relations become cons-
tants

@y 05° = const, a,a;’ = const, a,a;' = const,

which proves our theorem, since the coefficients of our equation are of
the form

Agy = Ggo(cx+ b)727 @y = Gy (cr+ b)—31
@y = dg(cx+b)~".
The proofs for equations of other orders are analogous.

4.6. Examples of proofs based upon the theory of decomposition.
We shall present two examples, which will illustrate the advantages of
the theory presented for the derivation of formulas of the theory of linear
equations.

Example 1. It is well known that if we have » linearly independent
solutions y; (¢ = 1,...,n) of equation L, ,[y] = 0, then the last parti-
cular solution of this equation, forming together with y,/'s a linearly
independent system, is the function

(4.29)
Yoy =Y f W (Y1, 92) W (W1, Yy ¥s) f W("lu Vz)_W_!_?_J}_,_’fl_g‘, y;,‘ﬂ!_‘)
" 1 n Wi (41, 92) W2 (Y1, Y2 Ys)
fy_(?/n oy Yn— 2)W(?h, ‘y '/n) f yu oy Yn- l)a{ai+l nf»‘ .
) Wz(yl’ » Yn— ‘) Wz(?/n vy Yn)

and the particular solution of non-homogeneous equation (1.1), L, ,[y]
= by, i8 the function

_ W(?/uyz) Wy ooy Yo W (¥, oy Yn)
(4.30) 'Yn+1 B ylf f f WZ(y“ *9 yn—l) X

J8p 41,
% f W%y oy Yn_1)e” " f Wiy .- .,yn)eja"‘“-“dzbn.-rldwn“.
WY1y --es ¥n)

We assume that the Vronsky determinant formed of given solutions
does not vanish at any point of the interval considered (a,b). The theorem
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of Mammana guarantees the existence of such solutions in the domain
of complex functions of real variable.

In the theory considered, the proofs of formulas (4.29) and (4.30)
are very simple.

From the first relation (1.3),

(4'31) a"u+an,n—1 = Qpi1,n
it follows that

_ e W(yu”-’}/‘nvyn+l)
(4.32) e =K, - -
W1y -y Yn)

where A, = j a,dz. In fact, relation (4.31) is equivalent to

(Ifn = const),

e In = exp[— fa.n“,,,dw—l- fa,,,',,__lda:+ const].

If we remark that the functions a, ,, , and a, , , are the coefficients
in equations (1.1), L,,,[y] =0 and L,[y] = 0, respectively, then we
find (4.32) using the Liouville theorem.

If we write (4.32) for indices ¢ =n,n—1,...,1, which appear in
the process of successive lowering of order of (1.1), as described in § 3,
we get

4.33) efi-174i =
( Ki—l Wz(?/u'"ayj)

(Rj =const, j = 2,3,...,n, W(y,) = ¥,).

Let us write the Liouville formula for equation (1.1) in the following
form:

(4.34) W (Ysyeeey Y1) = KeI%t1a® (K — const).

Now we get (4.29) and (4.30) by replacing the exponential functions in
(3.13) and (3.14) by the ratios of determinants according to formulas
(4.32), (4.33) and (4.34).

Example 2. We shall prove the following theorem:

If the system of functions y,,¥Ysy ..., Yr (kK < n+41) forms a linearly
independent system of homogeneous linear equalions which corresponds
to (1.1), then the substitution
(4.35)

=y fW(yl,yz)f Y1 W (Y15 Y2, Ys) f W (Y1 Y2)W (Y1) Y25 Ys) Ya) '
' Y W2(y1, ¥s) WY1y Yas ¥s)

f_W_(_?hy ooy Y)Wy ooy Yi) J‘ W (Yry oony Yp_1)2()
W2 (Y15 --ns Yeo) W(yyy ..oy Yi)

dwk
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reduces the integration of equation (1.1) to the integration of an equation of
(n4+1—k)-th order with respect to mew unknown z. The inverse substitu-
tion is of the form

2 = W(’.'/l: coey Yiy ?I)
WYy ooy Yi) ‘

We assume that the equation L, ,(y) = 0 is decomposable.

We shall prove the second part of the theorem first. There is no
need to assume that the functions y; (¢ = 1,2, ..., k) are solutions of
a linear differential equation. It is enough to assume that they are func-
tions of the class C* (so that all the determinants which appear in formula
-(4.35) exist), and assume that in the interval considered the Vronsky
determinants which appear in the denominators of formulas (4.35) do not
vanish.

Under these assumptions the proof of the second part of our theorem
is based upon the following differential formulas:-

(4.36)

e WYy oeey Y15 ?/‘)___ _ W('yll s YOW Yy o ooy Yaury y)_
dz W(yly---ryhqu-l) Wz('yl""!yl“)

(4.37)

We shall proceed by induction. It is easy to verify the theorem for
k=1:
] w
if oy =y,fidw, then =z =——(y”—y)—.
Ya W (y,)

Suppose that (4.36) is @ consequence of (4.35). Let us denote the
right-hand gide of (4.35) by Py (z). It is easy to see that the transformation
(4.35) for the index k-+1, namely ¥y = P, ,(t), is a superposition of the
following two transformations:

t{z)dzx
(4.38) y=Pule), ==Pit) =2 - (z)de
zlr+l
where
w
(4.39) Ty = (?/_n y Yrs1)

WYy e Y1)

Thus, replacing the transformation y = P, () by system (4.38)
and applying the inductive assumption to the transformation y = P, (z),
we shall find, using (4.39),

2 = W(:’/u ceoy Yiey "l)
W1y .-0y i)

or
W('yu ¥y Wy, ..., Y1) Wy, ..., yk)t(w)dm

WWay oo ¥e) Wy eenr %) Wy ooy Yain)
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If we divide both sides of the last formula by the ratio which ap-
pears before the integral sign, and then differentiete both sides, we find,
using (4.37),

_ W) & WU ¥) Wy -y Uiy 9)

W(yn-f-yyk) dx W(?/u---’?/k-r-l)— W(?/u- vy Yri1)

which proves the theorem on the inverse transformation.

In the proof of the first part we shall also proceed by induction.
As we know, by the assumption concerning the decomposability of equa-
tion (1.1), its solutions can be represented in the form (3.12). By assump-
tion we know the solutions v,, ..., y, of the form (3.13). Since y, = ¢~“1,
the solution is:

(440)  § = Cuyit Oy [~

—4

da"l‘Ca?hf

y
+Qn+1?/1f f 4= Azf f n-1"4ndg” 4
61 Ay— Ay 1, 1-d A3 n+]
-l—y,f fe 1 ‘2f...fe‘"-'l ‘"fb.,me ndg™ e,

If we divide both sides of (4.40) by y, and then differentiate and multiply
by y,, we get

f"' da? f ...+

d Y ~ _ B
(441) 9y - (I) = Cye 14 Cye™ 1 [ M2dat ...+
+0n+16_‘4'f8‘4'_‘42f -.-fBA”—'_A"dm""-}-e““lfe“’l_‘*zf
o-felin_]_“"fbn+16:!"dmn.

Let us introduce a new variable by putting

d (l)= W (3,9
% TR

This is transformation (4.36) for ¥ = 1, and its inverse transformation,
which corresponds to (4.33), is:

u
(4.43) ¥y =1 f—da:
Y1
Using (4.42) we find from (4.41)
(4.44) u = Cze“’l—]—Cae_"‘lfe“‘""‘2dw+ C‘e“*lfe"l"“"’fe”z"’adw2+...-|—
+Cn+13—Alf3Al_A2f .“fg‘{n--l_"’nda;'"‘_l..l_
+e“’lfe“l ‘Azf ...fe“‘"-l"'"fb,,+le"’*da;"‘.

(4.42) U =Y —
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From the form of this function it is seen that the new variable u
is a solution of an 1. d. equation of the n-th order. Hence our theorem
is proved for k = 1.

Let us notice that transformation (4.43) has a different form than
the traditional one, namely y =y, [udxz (see for instance [5], p. 202).

To the solution y, corresponds the solution u,, and, by (4.42),

W (Y1, Y1)
uz = "
Ya
Suppose that our theorem holds for the case where we know &k
linearly independent solutions of equation (1.1). Then transformation

(4.35) leads to a linear equation of the order [(n+ 1)— %], whose solu-
tion can be represented in the form

(4.45) 2 = Cp e %4 O’,,+ze““’¢fe“"““k+ldm+...+
_|_0n+1e—dkngk—4k+1f _“-"g"‘n—l—"‘nd‘vﬂ‘—k.]'_
+6—AkfeAk—Ak+IJ‘ ...ferln_l—:‘nfbn-"len‘in w‘ll-—k-}-l.

Let the function y;., be the (k- 1)-st solution of the equation
L,.,[y] = 0, which forms, together with the previous solutions, a linearly
indépendent system of solutions. By formula (4.36) to the function y;_,
corresponds the function (3.39). This is a solution of an equation of
[(n+1)—k]-th order, whose solution is (4.45).

Transformation (4.35) for the case ¥+ 1 and the new variable ¢ is
replaced, as before, by the system of transformation (4.38). The first
transformation leads by induction to formula (4.45) and lowers the order
of equation (1.1) by k. The second transformation z = P,(t), by the
assumption for ¥ = 1, leads to the formula

b= Ck+2‘5_‘4"+’+0k+36_‘4"+'fe“‘k+n—“k+zdw+...+
+0—Ak+lfeAk+l—Ak+2f "'fedn_’—dnfb;;.yle‘dndx“—k-

By the last formulas, we see that ¢ is a solution of a linear equation of
(n—k)-th order. Thus we have proved the first part of our theorem.



5. Elementarily decomposable
linear differential equations (class E)

5.1. As we have already seen, the decomposition into symbolic
factors of a linear differential equation with constant coefficients and of
the Euler equation does not require the solution of a differential equa-
tion. We shall say that these equations are elementarily decomposable.

In general, a linear differential equation (1.1) will be called elemen-
tarily decomposable if the corresponding R equation RE,[a,] =0 has
a solution of the form

Ay = Ap @y 1] 3y

where d, is a number. The class of all equations which are elementarily
decomposable will be called the class E.

Let us look for the solution of equation (1.6) which corresponds to
(1.1) of the form a, = @,@,,,,. The solution a, will have guch a form
if and only if there exists a number 4, such that the following relation
is satisfied:

(5'1) l:: [an+l,n(1 —&n)]— l;:—la'n+l_n‘l + lrnl—zan+l,n—2+

+ et —l)n_'zlzf-an“,z‘{‘ ( —l)n_llnan+1,1+ (—1)nan+1,o B 0,

(52) ln = _'{‘[inan+l,n-

dz

This identity has been obtained from (1.6) by substituting a, = a,a, tne
In the case of equations with constant coefficients (or in the case of Euler
equations) identity (5.1) reduces to the characteristic equation. However,
in more general cases condition (5.1), which is of the form F(z, d,) = 0,
is not an algebraic equation with respect to d,. Nevertheless, there may
exist an a, such that this identity is satisfied and our differential
equation will be elementarily decomposable.

For practical purpose, we shall present the decomposability condi-
tion (5.1) in an explicit form for » = 1,2, 3:
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2 2 ’ 2 ~ ’ . J—
a3 @y + (@g — G2,) @, — Gz -+ Ay =0,
3 ~3 ’ 3\ A2
U330y + (3895 @30 — @3p) Ay +
Iz ’ ~ ’" ' .
+ (@32 — 303283, + 431 835) G, — A3+ 85— a5 5 0,
4 -4 2 s N
(5.3) Qg3 83+ (6443843 — a43) a3+
4 1t 2 2 ’ 2 ~2
+ (40438431 3043 — Bag3 a5+ a45845)a5 +
112 7" ’2 ’ ’
+(agy —465a5—3a3+ 0504+ 2a5a,5—

-~ 1rs 1 ’ j—
— 04 043) 03— Qg3 + Qg — Gy + 8y = 0.

Such a form of the decomposability condition is convenient and it allows

us to decide in practice whether a given equation belongs to the class E
or not.

We shall present some examples which will illustrate the different
possibilities of using condition (5.1).

Example 1. An example of an equation from class ¥ is the equation
of large deflections of orthotropic plates [6], [1]:

(5.4) 9" +207"y" — (K2t + XDy +

q(x)
D(x)

(k, » = const, D(x) # 0).

In the case of equation (5.4) we have:

+ (k2m_3'— n2k$k_2)y —

a5 = 227,

Ay, = —k2 2 — x%p" ",
azp = k2x~3— x2ka* 2.
Substituting these funections in the second condition (5.3) we get
273(8d; — 20a; + 164, — 4) — k3 (2d,— 1)— (2d,— 1) = 0.

This condition is satisfied if 4, = 1/2, and the equation of othotropic
plates is elementarily decomposable. Having established this fact, we can
find the general solution of this equation.

In fact, applying formulas (2.4) and the above theorem we shall
find an equation (the first integral) which is equivalent to equation (5.4):

(6.5) y+o7ty— (Ko 4" )y = 37 [P()+ 0],
where

q(x)
D(@) zdr.

P(z) =
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The homogeneous equation which corresponds to (5.5) can be reduced
to a Bessel equation, and its general integral, provided that k #* —1
and excluding the trivial case » = 0, is of the form

y =2,(t) =0,J,()+C,N.(1),
where J, and N, denote cylindrical functions of the first and second kind
respectively, and

2k 2ix

{ = m(k+l)l2.
k+1’ k41

Yy =
Thus the general solution of (5.4) is
(5:8) ¥ = 0,0+ Cul,(0)+Cs [N [ J,(0da—,0) [ N, (de] +
+m[N,(z) f J,(t)P(2)do—J, (1) f N,(t)P(:v)dx].

Thus the necessary and sufficient condition (5.1) for the elementary
decomposability of the equation allows us not only to establish the
decomposability of this equation, but also to find the full solution of this
equation.

Example 2. The Bessel equation
(5.7) y'+27y+(1—-n"27")y =0 (2 #£0)

does not belong to the class FE, since the decomposability condition for
this equation is of the form

o (@ —2d,+1—n?)+1 =0

and is not satisfied for any number d,.

Example 3. As we know, there are types of differential equations
which cannot be solved by means of quadratures. Nevertheless, their
particular cases may be solved by elementary methods. We shall show
by an example that the notion of elementary decomposability allows
us to discover these particular cases.

Let us consider the Weber equation

(5.8) y'—ay' —ay = 0.

It is known that this equation may be solved by means of quadra-
tures in the case a = 1.
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We shall check whether equation (5.8) belongs to the class E. In this
case a,, = —o, @,y = —a and the condition for elementary decompos-
ability is:

xr*d,(G—1)—d,—a+1 =0.

Excluding the trivial case a = 0 we find that equation (5.8) belongs to
the class ¥ if a = 1, since in this case 4@, = 0 determines the decom-
position of (5.8).

Example 4. Condition (5.1) for elementary decomposability of an
. d. equation is a condition of the type of identity between the coeffi-
cients of the equation considered and one numerical parameter d,. If we
fix the value of this parameter, we can obtain the corresponding criteria
for elementary decomposability of a differential equation.

Condition (5.1) will be especially simple if we put @, = 0 or 4, = 1.

In the first case d, = 0, the lowering of the order of equation is
based upon the relation

d
Ln—{-l[y] = -d_.’l? n[y]a
and the decomposability condition (5.1) takes the form

(5.9) afl'iil,n— a'm-_il,)n—l +ooob( “l)n_za‘r’:.;.l,z‘F (*‘l)n_la'u it

+- ( _l)nan i-1,0 =0

P

since 1, = d/dx.

Thus we have obtained, in a new and very simple way, the condi-
tion for the left-hand side of the equation to be a complete derivative.
Moreover, if a, = 0, from (1.3) we obtain ready made formulas for the
coefficients of the first integral L,[y] = const.

5.2. The method of obtaining an elementarily decomposable
equation by the choice of one coefficient. One can look upon the cri-
terion for the elementary decomposability condition (5.1) from another
point of view, namely we can consider that it is a relation between the
coefficients of equation (1.1) and the number a,: G(a,; @, .15 Bny1 15 Bnsr 1
v ai ) =0. If we assume that one of the -coefficients a,.,,;
(t=20,1,...,n) is an unknown function, one can treat condition (5.1)
as an equation for this coefficient. It is a differential equation with para-
meter a@, provided ¢ # 0 (no derivative of the function a,,, , appears
in (5.1)).

Each solution of the equation formed in the above way may be
taken as a required coefficient of the linear equation (1.1). Then we
obtain a new equation LY, [y] =b,,,, which differs from equation
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(1.1) only by one coefficient, and which is already elementarily decom-
posable. The following theorem results from the above considerations:

THEOREM 8. Every elementarily non-decomposable linear differential
equation whose coefficients satisfy certain regularity conditions can be made
elementarily decomposable by means of the change of only one of its
coefficients

If we consider the explicit form of condition (5.1), we see that the
coefficient a,; , may be chosen without solving a differential equation.
Solving a differential equation of the first order (linear if 1 < »n) we can
choose the coefficient a, ., ,, solving an equation of the second order
(linear if 2 < n), we can choose the coefficient a,,,,, and so on. In
general, an equation of the order ¢ (linear if ¢ < ») allows us to choose
the coefficient a, ., ;.

Thus the problem can always be solved if we restrict ourselves to the
change of the coefficient a,,, , or to those of the remaining coefficients
whose change requires the solution of a linear equation of the first order.

However, even the change of only one coefficient may change the
equation essentially, together with the character of its solutions. In spite
of that, the method of choice of one coefficient may be of some help in
the theory of differential equations. We shall show it by some examples.

Example 1. Let us observe that the equations which we are able
to solve have the coefficients chosen in a suitable way. It may happen
that this choice is too specialized, and if that is the case we may, by
means of changing one coefficient, obtain a more general equation, which
can also be solved. Thus for instance, the equation

(5.10) ?I“‘I'azl'y"f'(1—d1)(‘i1a§1+a;1)y =0,

where a,, is an arbitrary function from the class C! and @, is an arbitrary
number —has the coefficient a, chosen according to the criterion of
elementary decomposability (5.1). In spite of its very special character,
this equation is much more general that the Euler equation of the second
order. In fact, it is easy to verify that if we put a,, = (¢x+b)~! equation
(5.10) will become an Euler equation. Equation (5.10) is elementarily
decomposable; one can find its first integral and then the general solu-
tion.

Example 2. Book [2] contains the solution of the equation
(5.11) y'— (8 +b)y + [(@o+b)*—aly = 0.
The solutions of this equation are

az? - ,
(5.12) Y = exP(T + b«’”)y Y2 = Y-
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It is easy to see that if we change the coefficient a,, of equation
(5.11) replacing it by a function chosen according to the condition of
elementary decomposability (5.3), we get

Gy = C(az+Db)2—a(1+V1—7),

where ¢ is an arbitrary parameter. Hence we obtain an equation which
is solvalbe by elementary methods:

(5.13) y"' —(Gz+b)y + [c(dx+b)—a(1£V1—2)]y = 0.

This is a more general equation, and it becomes equation (5.11) if ¢ = 1.
Applying the general formulas (1.3) for equations from class E we find

d, = é:l:%'/l_—_a

-~

@ = A @y — —2dl(dw+5)1
4, = —a(ar*+ 250’)7
By = Gy — @y = 2(d,—1)(Gz+D),

A,y = (& —1)(aa*+ 2ba).
Hence )
y, = exp[— (d,— 1)(az?+ 2b=)].

In the second particular solution we have to consider two cases:
(I a, = i‘r (1I) a, # '&

The first case corresponds to equation (5.11) and, after applying
the general formulas for the solution y, of the second order equation
we find y, = xy,. This solution does not, in fact, differ from solution
(5.12), p. 43.

In the second case we find, for the more general equation (5.13),
the solution

Yy = 9y [ € Pz,

Thus, we have shown that the theory of class E equations allows
us to solve an equation whose solution has been known only in a par-
. ticular case.

5.3. Approximate method of solution of linear differential equa-
tions based upon the choice of one coefficient. According to what
was said above, the choice of coefficient of a linear equation in order
to satisfy the decomposibility condition is not unique. The expression
for the unknown coefficient will always contain the arbitrary parameter g,
and also the integral constants (in the case of change of a,,,;, for
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¢ > 0). This fact is & very useful one, and it may serve as.a basis of
a method of approximate solution of equations, especially when these
equations are connected with problems of physics or technology. In fact,
in such problems the coefficients usually have an explicit physical inter-
pretation, and often they are functions obtained by the approximation
of experimental data. Taking this fact into account, we may determine
the parameters in the coefficient chosen according to (5.1) in such a way
that the equation will be a reasonably good description of the pheno-
menon under consideration.



..6. Final remarks. Application of the method of decomposition
into operator factors in the theory of partial linear differential
equations

Finally, without frying to present the full treatment of the sub-
ject, we shall present an example of application of the method of
decomposition in the theory of partial differential equations. Here we
obtain the same methodological simplification: equations of higher order
can be reduced to equations of lower order, to linear partial differential
equations, and the latter — to ordinary linear differential equations.

Suppose, for instance, that we are given an equation of the second
order of the form

(6.1)

0%u (f')a N aa) ou 4 ou? s

- — a—)|— — —_— — .
dx? dx 0y /| dy oy?
The function u(x,y) is unknown, while a(z,y) and f(z,y) are given;
they will be assumed to be as regular as is needed for further considera-
tions. If a is a real number, then equation (6.1) is a non-homogeneous
equation of vibration. If ¢ = ¢b (where b is real), we have the Poisson
equation.

It is easily seen that equation (6.1) can be represented in the form

6.2 i-|—aa) “ aau)—f
(6.2) o oyl \ oz oyl 77

Equation (6.1) is equivalent to a system of two equations of the
first order:

ou a ou w

oz ay
(6.3)

I L9y

oz dy

In the second equation only one unknown function w(x, y) appears.
Thus its solution reduces to the successive solution of two linear equa-
tions of the first order, in this case non-homogeneous. Thus the problem
of integration of the second order partial differential equation (6.1) has
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been reduced to the solution of two equations of the first order, which
in turn have been reduced to ordinary equations.

This method may, for instance, prove useful for the determination
of the general solution of a differential equation, meaning here solution
which contains a given number of arbitrary functions.

System (6.3) may be solved effectively in some particular cases.
Suppose for instance that & = const. In the sequel we shall use the
following theorem: o

The general solution of the partial differential equation

du du

(6.4) . "Fb—a*y“ =f (a #0),

where a and b are constants, and f(&, n) is a function integrable in the interval
under econsideration, is of the form:

1 [ b b
(6.5) U= ff(é,—&'ﬂ/——w) df+H(ay — bx),
a a a
To

where H i3 an arbitrary function from the class C1.

In fact, the following system of ordinary differential equations
corresponds to equation (6.4):

dx dy dz du

(6.6) o = —5“, = § (flz,y) #0).

Since the solutions of this system are
b 1 7./ b
y=-;a;—l—01 and u=;ff _5,;54—01 dt+Cy,
Zo
system (6.6) has the following first integrals:
b 1(..( b b
Ci=y-re, C=u—7 [ 16, e Zafac.
To
Hence the general solution of (6.4) satisfies the equation:

. 1/ b b
H (ay—bm,u—;ff(f,;&—;aa)d&) —o.
o

Thus the general solution of (6.4) is (6.5), provided H* is differentiable
in the interval under consideration.
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If follows from this theorem that the solution of the second equation
(6.3) (in the case a = const) is

w@,y) = [ f(& aé+y—az)dé+H,(y—az).
Zp

By the same theorem, the solution of the first equation (6.3) (i. e.
the string equation) is

(6.7) wi@,y) = [ dn [ f(& a—2an+y+az)dE+
Zo o
+H,(y—azr)+H,(y + az),

where H, and H, are arbitrary functions from the class C2. This is the
d’Alembert result for the non-homogeneous equation of the string.

If a = i, equation (6.1) becomes.2 Laplace equation, and, because
of symmetry with respect to both independent variables, function (6.6)
may be written in the form

z n
w(e,y) = [ an [ (&, it—2in+y—ic)aé+Hi(a)+H, (),
Zo i
where 2 = 4+ 1y and 2 = z— iy, and H, and H, satisfy fhe assumptions
of the preceding example.
In the case of the biharmonical equation,

0u Lo o0*u + 0 — 5
o T oz T o @Y

one can reduce the problem of its integration, in a manner similar to that
described- above, either to the problem of four homogeneous partial
differential equations of the first order, which ean be succesively solved,
or to two Poisson equations:

0 0% 0%w 02w

Fyn + ay? = w(z,y), Fy + 9y?

This allows us to write easily the general solution of the homogeneous
biharmonical equation. Using formula (6.6) twice we get

= f(2,y).

z t r n

wi@,y) = [dt [ar [dy [ f(&,i&—2in+2ir—2it+y—ic)dé+
Tp Yt T )
+H,(2)+H,(Z)+ vHy(2) 4 2H ,(2),

where z = z+ iy and Z = z— iy, and H; (¢ = 1,2, 3, 4) are arbitrary func-
tions which belong to the class C* in the domain under consideration.
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