Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Multi-valued superpositions

Seria
Rozprawy Matematyczne tom/nr w serii: 345 wydano: 1995
Zawartość
Warianty tytułu
Abstrakty
EN

CONTENTS

Introduction.......................................................................................................... 5
1. Multifunctions and selections............................................................................... 7
 1. Multifunctions and selections.................................................................. 7
 2. Continuous multifunctions and selections........................................... 9
 3. Measurable multifunctions and selections............................................ 16
2. Multifunctions of two variables............................................................................... 19
 4. Carathéodory multifunctions and selections......................................... 19
 5. The Scorza Dragoni property..................................................................... 25
 6. Implicit function theorems......................................................................... 32
3. The superposition operator................................................................................... 33
 7. The superposition operator in the space S........................................... 34
 8. The superposition operator in ideal spaces......................................... 39
 9. The superposition operator in the space C........................................... 47
4. Closures and convexifications.............................................................................. 49
 10. Strong closures........................................................................................ 49
 11. Convexifications....................................................................................... 52
 12. Weak closures.......................................................................................... 56
5. Fixed points and integral inclusions..................................................................... 59
 13. Fixed point theorems for multi-valued operators................................ 60
 14. Hammerstein integral inclusions........................................................ 63
 15. A reduction method................................................................................... 68
6. Applications............................................................................................................... 72
 16. Applications to elliptic systems.............................................................. 72
 17. Applications to nonlinear oscillations................................................. 75
 18. Applications to relay problems.............................................................. 78
References.................................................................................................................... 81
Index of symbols........................................................................................................... 93
Index of terms................................................................................................................ 95
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 345
Liczba stron
97
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCXLV
Daty
wydano
1995
otrzymano
1994-08-16
poprawiono
1994-12-05
Twórcy
  • Mathematisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • Instytut Matematyki, Uniwersytet Szczeciński, ul. Wielkopolska 15, PL-70-451 Szczecin, Poland
  • Dipartimento di Matematica, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy
  • Matematicheskiĭ Fakul'tet, Belorusskiĭ Gosudarstvennyĭ Universitet, Pl. Nezavisimosti, BR-220050 Minsk, Belarus
Bibliografia
  • [Ad] R. Adams, Sobolev Spaces, Academic Press, New York, 1976; Zbl 314.46030.
  • [Am] H. Amann, Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen, Math. Z. 111 (1969), 175-190; Zbl 183.157.
  • [AmBd] A. Ambrosetti and M. Badiale, The dual variational principle and elliptic problems with discontinuous nonlinearities, J. Math. Anal. Appl. 140 (1989), 363-373; Zbl 687.35033.
  • [AnCl] H. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398; Zbl 279.54007.
  • [Ap-Za] J. Appell, E. De Pascale, H. T. Nguyêñ and P. P. Zabreĭko, Nonlinear integral inclusions of Hammerstein type, Topol. Methods Nonlinear Anal. 5 (1995), 109-122.
  • [ApDeZa]J. Appell, E. De Pascale and P. P. Zabreĭko, Multivalued superposition operators, Rend. Sem. Mat. Univ. Padova 86 (1991), 213-231; Zbl 748.47049.
  • [ApNgZa1] J. Appell, H. T. Nguyêñ and P. P. Zabreĭko, Multivalued superposition operators in ideal spaces of vector functions I, Indag. Math. 2 (4) (1991), 385-395; Zbl 748.47050.
  • [ApNgZa2] J. Appell, H. T. Nguyêñ and P. P. Zabreĭko, Multivalued superposition operators in ideal spaces of vector functions II, Indag. Math. 2 (4) (1991), 397-409; Zbl 748.47051.
  • [ApNgZa3] J. Appell, H. T. Nguyêñ and P. P. Zabreĭko, Multivalued superposition operators in ideal spaces of vector functions III, Indag. Math. 3 (2) (1992), 1-9; Zbl 770.47029.
  • [ApZa1] J. Appell and P. P. Zabreĭko, Boundedness properties of the superposition operator, Bull. Polish Acad. Sci. 37 (1989), 363-377; Zbl 756.47051.
  • [ApZa2] J. Appell and P. P. Zabreĭko, Continuity properties of the superposition operator, J. Austral. Math. Soc. 47 (1989), 186-210; Zbl 683.47045.
  • [ApZa3] J. Appell and P. P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990; Zbl 701.47041.
  • [ArPr] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza-Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547; Zbl 649.28011.
  • [Au] J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, Adv. Math. Suppl. Stud. 7A (1981), 159-229; Zbl 484.47034.
  • [AuCl] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984; Zbl 538.34007.
  • [AuCk] J.-P. Aubin and F. H. Clarke, Shadow prices and duality for a class of optimal control problems, SIAM J. Control Optim. 17 (1979), 567-586; Zbl 439.49018.
  • [AuEk] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984; Zbl 641.47066.
  • [AuFr] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990; Zbl 713.49021.
  • [An] R. J. Aumann, Integrals of set-valued maps, J. Math. Anal. Appl. 12 (1965), 1-12.
  • [Av] D. Averna, Lusin type theorems for multifunctions, Scorza-Dragoni property and Carathéodory selections, Boll. Un. Mat. Ital. 8 A (1994), 193-202.
  • [AvFa] D. Averna and A. Fiacca, Sulla proprietà di Scorza-Dragoni, Atti Sem. Mat. Fis. Univ. Modena 33 (1984), 313-318; Zbl 599.28017.
  • [Be] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
  • [Bh] G. Behr, On a theorem of Deutsch and Kenderov, J. Approx. Theory 45 (1985), 90-98; Zbl 608.41021.
  • [BgLo] J. Bergh and J. Löfström, Interpolation Spaces, an Introduction, Springer, Berlin, 1976; Zbl 344.46071.
  • [BlLs] H. Berliocchi and J. M. Lasry, Intégrandes normales et mesures paramétrées en calcul de variations, Bull. Soc. Math. France 101 (1973), 129-184; Zbl 282.49041.
  • [BsSp] D. C. Biles and J. S. Spraker, A study of almost-everywhere singleton-valued Filippovs, Proc. Amer. Math. Soc. 114 (1992), 469-473; Zbl 755.34002.
  • [BoBuKo] N. A. Bobylev, Yu. M. Burman and S. K. Korovkin, Approximation Procedures in Nonlinear Oscillation Theory, de Gruyter, Berlin, 1994.
  • [BbKl] H. F. Bohnenblust and S. Karlin, On a theorem of Ville, in: Contribution to the Theory of Games, Ann. of Math. Stud., 1950, 155-160.
  • [Bn] G. Bonnano, Two theorems on the Scorza-Dragoni property for multifunctions, Atti Accad. Naz. Lincei Rend. Mat. 87 (1990), 51-56; Zbl 768.28002
  • [Bo-Ob1] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskiĭ, Multivalued maps, Itogi Nauki i Tekhniki 19 (1982), 127-230 (in Russian) [English transl.: J. Soviet Math. 24 (1984), 719-791]; Zbl 514.54009.
  • [Bo-Ob2] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskiĭ, Introduction to the Theory of Multivalued Maps, Izd. Voronezh. Gos. Univ., Voronezh, 1986 (in Russian); Zbl 683.54001.
  • [Bt] A. Bottaro Aruffo, Rappresentazione di multi-applicazioni tramite insiemi compatti di selezioni integrabili, Rend. Accad. Naz. Sci. XL 14 (1990), 361-397; Zbl 723.49013.
  • [Br] P. Brunovský, Scorza-Dragoni's theorem for unbounded set-valued functions, Mat. Stručno-Metod. Časopis 20 (1970), 205-213; Zbl 215.216.
  • [Bu1] A. I. Bulgakov, The question of the existence of a generalized solution of a functional-integral inclusion, Differentsial'nye Uravneniya 15 (1979), 514-520 (in Russian) [English transl.: Differential Equations 15 (1979), 359-363]; Zbl 429.45026.
  • [Bu2] A. I. Bulgakov, Kneser's theorem for a class of integral inclusions, Differentsial'nye Uravneniya 16 (1980), 894-900 (in Russian) [English transl.: Differential Equations 16 (1980), 573-578]; Zbl 446.34066.
  • [BuLy1] A. I. Bulgakov and L. N. Lyapin, Some properties of the set of solutions of Volterra-Hammerstein integral inclusions, Differentsial'nye Uravneniya 14 (1978), 1465-1472 (in Russian) [English transl.: Differential Equations 14 (1978), 1043-1048]; Zbl 433.45018.
  • [BuLy2] A. I. Bulgakov and L. N. Lyapin, An integral inclusion with a functional operator, Differentsial'nye Uravneniya 15 (1979), 878-884 (in Russian) [English transl.: Differential Equations 15 (1979), 621-626]; Zbl 429.45027.
  • [Ca] B. Calvert, Perturbation by Nemytskij operators of m-T-accretive operators in $L^q$, q ∈ (1,∞), Rev. Roumaine Math. Pures Appl. 22 (1977), 883-906; Zbl 386.47034.
  • [Cs1] C. Castaing, Sur les équations différentielles multivoques, C. R. Acad. Sci. Paris 263 (1966), 63-66; Zbl 143.311.
  • [Cs2] C. Castaing, Sur les multi-applications mesurables, Rev. Franc. Inf. Rech. Oper. 1 (1967), 91-126; Zbl 153.85.
  • [Cs3] C. Castaing, Une nouvelle extension du théorème de Dragoni-Scorza, C. R. Acad. Sci. Paris 271 (1970), 396-398; Zbl 199.493.
  • [Cs4] C. Castaing, Un théorème d'existence de sections séparément mesurables et séparément absolument continues, Travaux Sém. Analyse Convexe 3 (1973), III1-III8; Zbl 335.46028.
  • [Cs5] C. Castaing, Sur l'existence des sections séparément mesurables et séparément continues d'une multi-application, Travaux Sém. Analyse Convexe 5 (1975), XIV1-XIV15; Zbl 353.46031.
  • [Cs6] C. Castaing, A propos de l'existence des sections séparément mesurables et séparément continues d'une multi-application séparément mesurable et séparément continue, Travaux Sém. Analyse Convexe 6 (1976), VI1-VI6; Zbl 356.46045.
  • [Cs7] C. Castaing, Personal communication, 1994.
  • [CsMa] C. Castaing and M. M. Marques, Evolution problems associated with convex and nonconvex moving sets, preprint.
  • [CsVl] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977; Zbl 346.46038.
  • [Cl1] A. Cellina, A theorem on the approximation of compact multi-valued mappings, Atti Accad. Naz. Lincei 47 (1969), 429-433; Zbl 194.447.
  • [Cl2] A. Cellina, Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl. 82 (1969), 17-24; Zbl 187.77.
  • [Cl3] A. Cellina, A selection theorem, Rend. Sem. Mat. Univ. Padova 55 (1976), 143-149; Zbl 362.54010.
  • [CeCo] A. Cellina and R. M. Colombo, On the representation of measurable set valued maps through selections, Rocky Mountain J. Math. 22 (2) (1992), 493-503.
  • [ClFrRz] A. Cellina, A. Fryszkowski and T. Rzeżuchowski, Upper semicontinuity of Nemytskij operators, Ann. Mat. Pura Appl. 160 (1991), 321-330; Zbl 753.47046.
  • [CeSu] L. Cesari and M. B. Suryanarayana, Nemitsky's operators and lower closure theorems, J. Optim. Theory Appl. 19 (1976), 165-183; Zbl 305.49016.
  • [Ch1] K. Chang, Variational methods for non-differentiable functionals and their application to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129; Zbl 487.49027.
  • [Ch2] K. Chang, Free boundary problems and set-valued mappings, J. Differential Equations, 49 (1983), 1-28; Zbl 533.35088.
  • [Cr] J. P. R. Christensen, Topology and Borel Structure, North-Holland, Amsterdam, 1974; Zbl 273.28001.
  • [Ck] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983; Zbl 582.49001.
  • [Cf] C. V. Coffman, Variational theory of set-valued Hammerstein operators in Banach function spaces - the eigenvalue problem, Ann. Scuola Norm. Sup. Pisa 4 (1978), 633-655; Zbl 391.45008.
  • [Co] G. Colombo, Weak flow-invariance for non-convex differential inclusions, Differential Integral Equations 5 (1) (1992), 173-180; Zbl 757.34017.
  • [DeMy1] F. S. De Blasi and J. Myjak, Continuous selections for weakly Hausdorff lower semicontinuous multifunctions, Proc. Amer. Math. Soc. 93 (1985), 369-372; Zbl 565.54013.
  • [DeMy2] F. S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31; Zbl 595.47037.
  • [DeMy3] F. S. De Blasi and J. Myjak, On the random Dugundji extension theorem, J. Math. Anal. Appl. 128 (1987), 305-311; Zbl 655.28003.
  • [DeMy4]F. S. De Blasi and J. Myjak, Sur le prolongement des multifonctions séparément mesurables et séparément continues, Boll. Un. Mat. Ital. A 4 (1990), 235-242; Zbl 712.28005.
  • [Db] G. Debreu, Integration of correspondences, Proc. 5th Berkeley Sympos. Statist. Probab. 11 (1) (1966), 351-372; Zbl 211.528.
  • [Dm] K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin, 1992; Zbl 760.34002.
  • [De] F. Deutsch, A survey of metric selections, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 49-71; Zbl 518.41030.
  • [Di] P. Dierolf, Korrespondenzen und ihre topologischen Eigenschaften, Überblicke Math. 6 (1973), 51-112; Zbl 273.54010.
  • [Dc] G. Dinca, A variational method for multivalued operator equations and some applications to mechanics, Math. Nachr. 134 (1987), 273-287; Zbl 677.47039.
  • [Do] A. M. Dolbilov, The Nemytskiĭ operator in the space of almost periodic Stepanov functions, Vestnik Udmurt. Univ. (1992), 53-56 (in Russian).
  • [DoSh] A. M. Dolbilov and I. Ya. Shneĭberg, Continuous selections of multivalued maps, Nonlinear Osc. Control Theory Izhevsk 11 (1989), 55-64 (in Russian).
  • [Dy] S. Dolecki, Extremal measurable selections, Bull. Acad. Polon. Sci. Math. 25 (1977), 355-360; Zbl 363.28004.
  • [EkTm] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976; Zbl 322.90046.
  • [EkVl] I. Ekeland and M. Valadier, Representation of set-valued mappings, J. Math. Anal. Appl. 35 (1971), 621-629; Zbl 246.54018.
  • [Fi1] A. F. Filippov, On some questions of the theory of optimal regulation, Vestnik Moskov. Univ. Mat. 2 (1959), 25-32 (in Russian) [English transl.: SIAM J. Control 1 (1962), 76-84]; Zbl 90.69.
  • [Fi2] A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb. 51 (1) (1960), 99-128 (in Russian); Zbl 138.322.
  • [Fi3] A. F. Filippov, Classical solutions of differential equations with multivalued right-hand side, Vestnik Moskov. Univ. Mat. 3 (1967), 16-26 (in Russian); Zbl 238.34010.
  • [Fi4] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, Moscow, 1985 (in Russian) [English transl.: Kluwer, Dordrecht, 1988]; Zbl 571.34001.
  • [Fv1] V. V. Filippov, On Luzin's theorem and right-hand sides of differential inclusions, Mat. Zametki 37 (1985), 93-98 (in Russian) [English transl.: Math. Notes 37 (1985), 53-56]; Zbl 588.34011.
  • [Fv2] V. V. Filippov, On Luzin's and Scorza-Dragoni's theorem, Vestnik Moskov. Univ. 42 (1987), 66-68 (in Russian) [English transl.: Moscow Univ. Math. Bull. 42 (1987), 61-63]; Zbl 617.28005.
  • [Fv3] V. V. Filippov, Spaces of Solutions of Ordinary Differential Equations, Izdat. Moskov. Gos. Univ., Moscow, 1993 (in Russian).
  • [Fm] D. H. Fremlin, Measurable functions and almost continuous functions, Manuscripta Math. 33 (1981), 387-405; Zbl 459.28010.
  • [Fr] A. Fryszkowski, Carathéodory type selectors of set-valued maps of two variables, Bull. Acad. Polon. Sci. Math. 25 (1977), 41-46; Zbl 358.54002.
  • [GaRg] D. R. Gaĭdarov and R. K. Ragimkhanov, A Hammerstein integral inclusion, Sibirsk. Mat. Zh. 21 (1980), 19-24 (in Russian) [English transl.: Siberian Math. J. 21 (1980), 159-164]; Zbl 448.45006.
  • [GiTr] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977; Zbl 361.35003.
  • [GlSk1] K. Glashoff and J. Sprekels, An application of Glicksberg's theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal. 12 (1981), 477-486; Zbl 472.45004.
  • [GlSk2] K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations, J. Integral Equations 4 (1982), 95-112; Zbl 507.45010.
  • [Gf] S. Graf, Selected results on measurable selections, Rend. Circ. Mat. Palermo 2 (1982), 87-122; Zbl 509.28007.
  • [Ha] P. R. Halmos, Measure Theory, Springer, Berlin, 1974; Zbl 283.28001.
  • [He] P. Hess, On nonlinear equations of Hammerstein type in Banach spaces, Proc. Amer. Math. Soc. 30 (1971), 308-313; Zbl 229.47041.
  • [Hm1] C. J. Himmelberg, Precompact contraction of metric uniformities, and the continuity of F(t,x), Rend. Sem. Mat. Univ. Padova 50 (1973), 185-188; Zbl 285.28018.
  • [Hm2] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72; Zbl 296.28003.
  • [HmJaVl] C. J. Himmelberg, M. Q. Jacobs and F. S. van Vleck, Measurable multifunctions, selections, and Filippov's implicit function lemma, J. Math. Anal. Appl. 25 (2) (1969), 276-284; Zbl 179.83.
  • [HmVl1] C. J. Himmelberg and F. S. van Vleck, Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova 48 (1972), 159-169; Zbl 289.49009.
  • [HmVl2] C. J. Himmelberg and F. S. van Vleck, An extension of Brunovský's Scorza-Dragoni type theorem for unbounded set-valued functions, Math. Slovaca 26 (1976), 47-52; Zbl 328.28004.
  • [Ho] S.-H. Hou, Implicit function theorem in topological spaces, Appl. Anal. 13 (1982), 209-217; Zbl 475.54008.
  • [Hu] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223; Zbl 155.194.
  • [Io1] A. D. Ioffe, One-to-one Carathéodory representation theorems for multifunctions with uncountable values, Fund. Math. 109 (1980), 19-29; Zbl 437.28002.
  • [Io2] A. D. Ioffe, Single-valued representation of set-valued mappings, Trans. Amer. Math. Soc. 252 (1979), 133-145; Zbl 417.28006.
  • [Io3] A. D. Ioffe, Single-valued representation of set-valued mappings II, SIAM J. Control Optim. 21 (1983), 641-51; Zbl 539.49009.
  • [Io4] A. D. Ioffe, On the theory of subdifferentials, in: Fermat Days 85, Mathematics for Optimization, North-Holland, 1986, 183-200.
  • [IoTi] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, Nauka, Moscow, 1974 (in Russian) [English transl.: North-Holland, Amsterdam, 1979]; Zbl 292.90042.
  • [Ja1] M. Q. Jacobs, Remarks on some recent extensions of Filippov's implicit function lemma, SIAM J. Control 5 (1967), 622-627; Zbl 189.160.
  • [Ja2] M. Q. Jacobs, Measurable multivalued mappings and Lusin's theorem, Trans. Amer. Math. Soc. 134 (1968), 471-481; Zbl 169.68.
  • [Jn] J. Janus, A remark on Carathéodory type-selections, Matematiche 41 (1986), 3-13; Zbl 678.28005.
  • [JrKz1] J. Jarník and J. Kurzweil, On conditions on right hand sides of differential relations, Časopis Pěst. Mat. 102 (1977), 334-349; Zbl 369.34002.
  • [JrKz2] J. Jarník and J. Kurzweil, Extension of a Scorza-Dragoni theorem to differential relations and func- tional-differential relations, Comment. Math. (Prace Mat.), Tomus Specialis in Honorem L. Orlicz (1978), 147-158; Zbl 383.34010.
  • [Kc] T. Kaczyński, Unbounded multivalued Nemytskij operators in Sobolev spaces and their applications to discontinuous nonlinearity, Rocky Mountain J. Math. 22 (1992), 635-643.
  • [Ka] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), 457-459.
  • [Ki1] N. Kikuchi, Control problems of contingent equations, Publ. Res. Inst. Math. Sci. 3 (1) (1967), 85-99; Zbl 189.472.
  • [Ki2] N. Kikuchi, On contingent equations satisfying the Carathéodory-type conditions, Publ. Res. Inst. Math. Sci. 3 (3) (1968), 361-371; Zbl 197.131.
  • [KiPrYa1] T. Kim, K. Prikry and N. C. Yannelis, Carathéodory-type selections and random fixed point theorems, J. Math. Anal. Appl. 122 (1987), 393-407, Zbl 629.28007.
  • [KiPrYa2] T. Kim, K. Prikry and N. C. Yannelis, On a Carathéodory type-selection theorem, J. Math. Anal. Appl. 135 (1988), 664-670; Zbl 676.28006.
  • [KlTh] E. Klein and A. C. Thompson, Theory of Correspondences, Wiley, New York, 1984; Zbl 556.28012.
  • [Kr] M. A. Krasnosel'skiĭ, On quasi-linear operator equations, Dokl. Akad. Nauk SSSR 214 (4) (1974), 761-764 (in Russian) [English transl. Soviet Math. Dokl. 15 (1) (1974), 237-241]; Zbl 294.47040.
  • [KrLiSo] M. A. Krasnosel'skiĭ, E. A. Lifshits and A. V. Sobolev, Positive Linear Systems - The Method of Positive Operators, Nauka, Moscow, 1985 (in Russian) [English transl.: Heldermann, Berlin 1989]; Zbl 674.47036.
  • [KrPk] M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis, Nauka, Moscow, 1983 (in Russian) [English transl.: Springer, Berlin, 1988]; Zbl 665.47038.
  • [KrRu] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Fizmatgiz, Moscow, 1958 (in Russian) [English transl.: Noordhoff, Groningen, 1961]; Zbl 95.91.
  • [Kr-So] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Nauka, Moscow, 1966 (in Russian) [English transl.: Noordhoff, Leiden, 1976]; Zbl 312.47041.
  • [KnPeSe] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian) [English transl.: Transl. Math. Monographs, Amer. Math. Soc., Providence, R.I., 1982]; Zbl 499.46044.
  • [Ku1] A. Kucia, On the existence of Carathéodory selectors, Bull. Polish Acad. Sci. Math. 32 (1984), 233-241; Zbl 562.28004.
  • [Ku2] A. Kucia, Extending Carathéodory functions, Bull. Polish Acad. Sci. Math. 36 (1988), 593-601.
  • [Ku3] A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197-203; Zbl 744.28011.
  • [KuNo1] A. Kucia and A. Nowak, On Carathéodory type selectors in a Hilbert space, Ann. Mat. Sil. 14 (1986), 47-52; Zbl 593.54018.
  • [KuNo2] A. Kucia and A. Nowak, On Filippov type theorems and measurabilty of inverses of random operators, Bull. Polish Acad. Sci. Math. 38 (1990), 151-158.
  • [KuNo3] A. Kucia and A. Nowak, A note on Carathéodory type functions, Acta Univ. Carolin. Math. Phys. 34, 2 (1993), 71-74.
  • [Kw] K. Kuratowski, Topology, Monograf. Mat., PWN, Warszawa, 1952.
  • [KwRy] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Math. 13 (1965), 397-403; Zbl 152.214.
  • [LdUr] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1964 (in Russian) [English transl.: Academic Press, New York, 1968].
  • [LaOp] A. Lasota and Z. Opial, An approximation theorem for multi-valued mappings, Podstawy Sterowania 1 (1971), 71-75; Zbl 245.54011.
  • [LsRo] J. M. Lasry et R. Robert, Analyse non-linéaire multivoque, Cahiers Math. Décision 761, Univ. Paris IX, 1976.
  • [LeSp] A. Lechicki and A. Spakowski, A note on intersection of lower semicontinuous multi-functions, Proc. Amer. Math. Soc. 95 (1985), 119-122; Zbl 572.54015.
  • [Lv1] V. L. Levin, Convex Analysis on Spaces of Measurable Functions and Applications in Mathematics and Economics, Nauka, Moscow, 1985 (in Russian); Zbl 617.46035.
  • [Lv2] V. L. Levin, Measurable selections of multivalued mappings with bianalytic graph and with σ-compact values, Trudy Moskov. Mat. Obshch. 54 (1992), 3-28 (in Russian) [English transl.: Trans. Moscow Math. Soc. 54 (1992), 1-22]; Zbl 790.28006.
  • [Li] Yu. E. Linke, Complementing Michael's theorem on continuous selections and their applications, Mat. Sb. 183 (11) (1992), 19-35 (in Russian) [English transl.: Russian Acad. Sci. Sb. Math. 77 (2) (1994), 279-292].
  • [Lo1] S. Łojasiewicz, Some theorems of Scorza Dragoni type for multifunctions with applications to the problem of existence of solutions for multivalued differential equations, in: Mathematical Control Theory, Banach Center Publ. 14, 1985, 625-643; Zbl 576.49024.
  • [Lo2] S. Łojasiewicz, Parametrizations of convex sets, J. Approx. Theory, to appear.
  • [LuZn] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1971; Zbl 231.46014.
  • [Ly1] L. N. Lyapin, An integral operator in a space of multi-valued functions, Trudy Tambov. Inst. Khim. Mashinostroeniya 4 (1970), 34-37 (in Russian).
  • [Ly2] L. N. Lyapin, The generalized solution of an equation with a discontinuous operator, Differentsial'nye Uravneniya 7 (1971), 1108-1113 (in Russian) [English transl.: Differential Equations 7 (1971), 839-843]; Zbl 223.47021.
  • [Ly3] L. N. Lyapin, On the theory of the Aumann-Hukuhara integral, Trudy Tambov. Inst. Khim. Mashinostroeniya 6 (1971), 3-8 (in Russian).
  • [Ly4] L. N. Lyapin, Set-valued maps in the theory of integral equations with discontinuous operators, Differentsial'nye Uravneniya 9 (1973), 1511-1519 (in Russian) [English transl.: Differential Equations 9 (1973), 1163-1169]; Zbl 273.45006.
  • [Ly5] L. N. Lyapin, Continuous solutions of integral inclusions, Differentsial'nye Uravneniya 10 (1974), 2048-2055 (in Russian) [English transl.: Differential Equations 10 (1974), 1582-1588]; Zbl 321.45011.
  • [Ly6] L. N. Lyapin, On inclusions of Hammerstein type, Differentsial'nye Uravneniya 12 (1976), 908-915 (in Russian) [English transl.: Differential Equations 12 (1976), 638-643]; Zbl 331.45010.
  • [Ly7] L. N. Lyapin, Complete continuity of a multivalued Hammerstein operator, Nonlin. Osc. Elast. Theory Izhevsk 3 (1981), 78-87 (in Russian); Zbl 595.47050.
  • [Ma] T. W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Dissertationes Math. 92 (1972); Zbl 227.54011.
  • [Mg] G. Mägerl, Metrizability of compact sets and continuous selections, Proc. Amer. Math. Soc. 72 (3) (1978), 607-612; Zbl 365.54007.
  • [Mr] J. Marcinkiewicz, Sur l'interpolation d'opérateurs, C. R. Acad. Sci. Paris 208 (1939), 1272-1273.
  • [McWf] E. J. McShane and R. B. Warfield, On Filippov's implicit function lemma, Proc. Amer. Math. Soc. 18 (1967), 41-47; Zbl 145.344.
  • [MeNi] N. Merentes and K. Nikodem, On Nemitskii operators and set-valued functions of bounded p-variation, preprint.
  • [Mc1] E. A. Michael, Continuous selections I, Ann. of Math. 63 (2) (1956), 361-381; Zbl 71.159.
  • [Mc2] E. A. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238; Zbl 70.395.
  • [Mo1] B. S. Mordukhovich, On the existence problem for optimal controls, Differentsial'nye Uravneniya 7 (1971), 2161-2167 (in Russian); Zbl 245.49002.
  • [Mo2] B. S. Mordukhovich, Some properties of multivalued mappings and differential inclusions with an application to problems of the existence of solutions for optimal controls, VINITI # 5268-80, Minsk, 1980 (in Russian).
  • [Mo3] B. S. Mordukhovich, Methods of Approximation and Control Problems, Nauka, Moscow, 1988 (in Russian); Zbl 643.49001.
  • [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983; Zbl 557.46020.
  • [My] J. Myjak, A remark on Scorza-Dragoni theorem for differential inclusions, Časopis Pěst. Mat. 114 (1989), 294-298; Zbl 701.34026.
  • [Na] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 63 (2) (1956), 361-381.
  • [NsRi] O. Nasella Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and an application to multi-valued boundary value problems, Appl. Anal. 38 (4) (1990), 259-270; Zbl 687.47044.
  • [Ng1] H. T. Nguyêñ, The superposition operator in Orlicz spaces of vector valued functions, Dokl. Akad. Nauk BSSR 31 (1987), 197-200 (in Russian); Zbl 622.47064.
  • [Ng2] H. T. Nguyêñ, The theory of semimodules of infra-semiunits in ideal spaces of vector-valued functions, and its applications to integral operators, Dokl. Akad. Nauk SSSR 317 (1991), 1303-1307 (in Russian) [English transl.: Soviet Math. Dokl. 43 (1991), 615-619]; Zbl 752.46020.
  • [Ng3] H. T. Nguyêñ, Metric semimodules of infra-semiunits in ideal spaces of vector functions and applications to imbeddings of Sobolev-Orlicz spaces, Mat. Zametki, to appear (in Russian).
  • [Ng4] H. T. Nguyêñ, Semi-moduli di infra-semiunità in spazi ideali di funzioni vettoriali, preprint.
  • [No] A. Nowak, Random differential inclusions, measurable selection approach, Ann. Polon. Math. 49 (1989), 291-296; Zbl 674.60062.
  • [Ob1] V. V. Obukhovskiĭ, On periodic solutions of differential equations with multi-valued right-hand side, Trudy Mat. Fak. Voronezh. Gos. Univ. 10 (1973), 74-82 (in Russian).
  • [Ob2] V. V. Obukhovskiĭ, Personal communication, 1989.
  • [Or] A. Ornelas, Parametrization of Carathéodory multifunctions, Rend. Sem. Mat. Univ. Padova 83 (1990), 33-34; Zbl 708.28004.
  • [Os] S. Ostoja-Łojasiewicz, Some theorems of Scorza-Dragoni type for multifunctions with applications to the problem of existence of solutions for different multivalued equations, preprint.
  • [Pn] P. D. Panagiotopoulos, A boundary integral inclusion approach to unilateral boundary value problems in elastostatics, Mech. Res. Comm. 10 (1983), 91-96; Zbl 508.73097.
  • [Pa1] N. S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437-464; Zbl 634.28005.
  • [Pa2] N. S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. St. Paul. 36 (1987), 21-39; Zbl 641.47052.
  • [Pa3] N. S. Papageorgiou, On a random Volterra integral inclusions in Banach spaces, Stochastic Anal. Appl. 5 (1987), 423-442; Zbl 666.60057.
  • [Pa4] N. S. Papageorgiou, Volterra integral inclusions in Banach spaces, J. Integral Equations Appl. 1 (1) (1988), 65-81; Zbl 659.45010.
  • [Pa5] N. S. Papageorgiou, On multivalued semilinear evolution equations, Boll. Un. Mat. Ital. B 3 (1989), 1-16; Zbl 688.47017.
  • [Pa6] N. S. Papageorgiou, On multivalued semilinear evolution equations, Tamkang J. Math. 20 (1989), 71-82; Zbl 704.47044.
  • [PoSv] A. I. Povolotskiĭ and T. A. Sventitskaĭa, On the spectra of multivalued Hammerstein operators which are close to linear ones, Funktsional. Anal. i Prilozhen. 20 (1983), 115-124 (in Russian); Zbl 578.45019.
  • [PlYo] K. Przesławski and D. Yost, Continuity properties of selectors and Michael's theorem, Michigan Math. J. 36 (1989), 113-134; Zbl 703.47041.
  • [Rg1] R. K. Ragimkhanov, On the existence of a solution of an integral equation with multivalued right-hand side, Sibirsk. Mat. Zh. 17 (1976), 697-700 (in Russian) [English transl.: Siberian Math. J. 17 (1976), 533-536]; Zbl 353.45019.
  • [Rg2] R. K. Ragimkhanov, On the existence problem for upper and lower solutions of a Hammerstein integral inclusion, Differentsial'nye Uravneniya 19 (1983), 2011-2013 (in Russian); Zbl 529.45005.
  • [RaRe] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, M. Dekker, New York, 1991; Zbl 724.46032.
  • [Ri1] B. Ricceri, Su due caratterizzazioni della proprietà di Scorza-Dragoni, Matematiche 35 (1) (1980), 149-154; Zbl 527.28006.
  • [Ri2] B. Ricceri, Carathéodory's selections for multifunctions with non-separable range, Rend. Sem. Mat. Univ. Padova 67 (1982), 185-190; Zbl 503.28003.
  • [RiVi] B. Ricceri and A. Villani, Separability and Scorza-Dragoni's property, Matematiche 37 (1) (1982), 156-161; Zbl 581.28004.
  • [RoSo1] S. Rolewicz and W. Song, On automatic boundedness of Nemytskiĭ set-valued operators, Studia Math. 113 (1995), 65-72.
  • [RoSo2] S. Rolewicz and W. Song, On lower semicontinuity and metric upper semicontinuity of Nemytskiĭ set-valued operators, Z. Anal. Anwendungen 13 (4) (1994), 739-748.
  • [Ry] L. Rybiński, On Carathéodory type selections, Fund. Math. 125 (1985), 187-193; Zbl 614. 28005.
  • [Rz] T. Rzeżuchowski, Scorza-Dragoni type theorem for upper semicontinuous multi-valued functions, Bull. Acad. Polon. Sci. Math. 28 (1980), 61-66; Zbl 459.28007.
  • [Sn1] M.-F. Sainte-Beuve, Sur la généralisation d'un théorème de section mesurable de von Neumann-Aumann, Travaux Sém. Analyse Convexe 3 (1973), VII1-VII29; Zbl 362.28003.
  • [Sn2] M.-F. Sainte-Beuve, Sur la généralisation d'un théorème de section mesurable de von Neumann-Aumann et application à un théorème de fonctions implicites mesurables et à un théorème de représentation intégrale, C. R. Acad. Sci. Paris 276 (1973), 1297-1300; Zbl 256.28005.
  • [Sn3] M.-F. Sainte-Beuve, On the extension of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129; Zbl 286.28005.
  • [Sc] G. Scorza Dragoni, Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106.
  • [Se1] Ye. R. Semko, Multivalued monotone and pseudo-monotone operators in Orlicz-Sobolev spaces, VINITI # 5402-V89, Yaroslavl', 1989 (in Russian).
  • [Se2] Ye. R. Semko, Multivalued monotone superposition operators in Orlicz spaces, in: Kach. Pribl. Met. Issled. Oper. Uravn., 1991, 27-33 (in Russian).
  • [Sl1] W. Ślęzak, Multifunctions of two variables with semicontinuous sections, Zesz. Nauk. Wyż. Szkoły Ped. w Bydgoszczy Probl. Mat. 5/6 (1986), 83-96; Zbl 612.54019.
  • [Sl2] W. Ślęzak, On Carathéodory selectors for multifunctions with values in s-contractible spaces, Zesz. Nauk. Wyż. Szkoły Ped. w Bydgoszczy Probl. Mat. 7 (1986), 21-34; Zbl 619.28007.
  • [Sl3] W. Ślęzak, On continuous selections for multivalued maps on product spaces, Zesz. Nauk. Wyż. Szkoły Ped. w Bydgoszczy Probl. Mat. 8 (1987), 31-46; Zbl 641.54019.
  • [Sm] A. Smajdor, Additive selections of superadditive set-valued functions, Aequationes Math. 39 (1990), 121-128; Zbl 706.39006.
  • [SmSm] A. Smajdor and W. Smajdor, Jensen equation and Nemytskiĭ operator for set-valued functions, Rad. Mat. 5 (1989), 311-320; Zbl 696.47057.
  • [So] W. Song, Multivalued superposition operators in $L^p(Ω,X)$, preprint.
  • [Sp] A. Spakowski, On superpositionally measurable multifunctions, Acta Univ. Carolin. 30 (1989), 149-151; Zbl 705.28003.
  • [StWe] E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284.
  • [StTo] C. A. Stuart and J. F. Toland, A variational method for boundary value problems with discontinuous nonlinearities, J. London Math. Soc. 21 (1980), 319-328; Zbl 434.35042.
  • [Te] G. Teodoru, Continuous selections for multifunctions satisfying the Carathéodory type conditions - the Goursat problem associated to a multivalued equation, Rev. Anal. Numér. Théor. Approx. 30 (1988), 183-188; Zbl 702.35145.
  • [To1] A. A. Tolstonogov, On the structure of the solution set for differential inclusions in a Banach space, Mat. Sb. 118 (1) (1982), 3-18 (in Russian) [English transl.: Math. USSR-Sb. 46 (1) (1983), 1-15]; Zbl 564.34065.
  • [To2] A. A. Tolstonogov, Scorza Dragoni's theorem for multi-valued mappings with variable domain of definition, Mat. Zametki 48 (5) (1990), 109-120 (in Russian) [English transl.: Math. Notes 48 (5) (1990), 1151-1158]; Zbl 734.28012.
  • [To3] A. A. Tolstonogov, Extremal selections of multivalued mappings and the ``bang-bang'' principle for evolution inclusions, Dokl. Akad. Nauk SSSR 317 (3) (1991), 589-593 (in Russian) [English transl.: Soviet Math. Dokl. 43 (2) (1991), 481-485]; Zbl 784.54024.
  • [Ts] V. Z. Tsalyuk, Superpositional measurability of multivalued functions, Mat. Zametki 43 (1988), 98-102 (in Russian) [English transl.: Math. Notes 43 (1988), 58-60]; Zbl 649.28009.
  • [Va] M. Valadier, Multi-applications mesurables à valeurs convexes compactes, J. Math. Pures Appl. 50 (1971), 265-297; Zbl 186.497.
  • [Vr] I. Vrkoč, Scorza Dragoni property of Filippov mappings, Tôhoku Math. J. 32 (1980), 309-316; Zbl 456.34016.
  • [Wg1] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903; Zbl 407.28006.
  • [Wg2] D. H. Wagner, Survey of measurable selection theorems: an update, in: Lecture Notes Math. 794, Springer, Berlin, 1980, 176-219; Zbl. 427.28009.
  • [Zn] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983; Zbl 519.46001.
  • [Za1] P. P. Zabreĭko, Nonlinear integral operators , Voronezh. Gos. Univ. Trudy Sem. Funkts. Anal. 8 (1966), 1-148.
  • [Za2] P. P. Zabreĭko, Ideal function spaces I, Vestnik Yarosl. Gos. Univ. 8 (1974), 12-54 (in Russian).
  • [Za3] P. P. Zabreĭko, Ideal spaces of vector functions, Dokl. Akad. Nauk BSSR 31 (1987), 298-301 (in Russian); Zbl 624.46017.
  • [ZaNg1] P. P. Zabreĭko and H. T. Nguyêñ, Cones of vector functions in Orlicz spaces of vector functions, Izv. Akad. Nauk BSSR 3 (1990), 30-34 (in Russian); Zbl 708.46038.
  • [ZaNg2] P. P. Zabreĭko and H. T. Nguyêñ, Duality theory for ideal spaces of vector-valued functions, Dokl. Akad. Nauk SSSR 311 (6) (1990), 1296-1299 (in Russian) [English transl.: Soviet Math. Dokl. 41 (2) (1990), 363-366]; Zbl 744.46017.
  • [ZaNg3] P. P. Zabreĭko and H. T. Nguyêñ, New theorems on the solvability of Hammerstein operator and integral equations, Dokl. Akad. Nauk SSSR 312 (1) (1990), 28-31 (in Russian) [English transl.: Soviet Math. Dokl. 41 (3) (1990), 404-408]; Zbl 729.47061.
  • [Zw] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Mat. 6 (1990), 279-293; Zbl 722.47059.
  • [Zy1] W. Zygmunt, On the Scorza-Dragoni's type property of the real function semicon-tinuous to the second variable, Rend. Accad. Naz. Sci. XL 11 (1987), 53-63; Zbl 654.28006.
  • [Zy2] W. Zygmunt, The Scorza-Dragoni's type property and product measurability of a multifunction of two variables, Rend. Accad. Naz. Sci. XL 12 (1988), 109-115; Zbl 677.28004.
  • [Zy3] W. Zygmunt, Product measurability and Scorza Dragoni's property, Rend. Sem. Mat. Univ. Padova 79 (1988), 301-304; Zbl 649.28012.
  • [Zy4] W. Zygmunt, On the approximation of semicontinuous Scorza-Dragonians by the multifunctions of Carathéodory type, Rend. Accad. Naz. Sci. XL 13 (1989), 23-30; Zbl 692.28005.
  • [Zy5] W. Zygmunt, A note concerning the Scorza Dragoni's type property of the compact multi-valued multifunctions, Rend. Accad. Naz. Sci., 31-33; Zbl 697.28005.
  • [Zy6] W. Zygmunt, Remarks on superpositionally measurable multifunctions, Mat. Zametki 48 (1990), 70-72 (in Russian) [English transl.: Math. Notes 48 (1990), 923-924]; Zbl 728.28010.
  • [Zy7] W. Zygmunt, The Scorza-Dragoni property, thesis, M. Curie Univ., Lublin, 1990 (in Polish); Zbl 734.28013.
  • [Zy8] W. Zygmunt, On superpositionally measurable semi-Carathéodory multifunctions, Comment. Math. Univ. Carolin. 33 (1) (1992), 73-77; Zbl 756.28008.
  • [Zy9] W. Zygmunt, Personal communication, 1993.
  • [Zy10] W. Zygmunt, Personal communication, 1994.
  • [Zy11] W. Zygmunt, On superpositional measurability of semi-Carathéodory multifunctions, Comment. Math. Univ. Carolin. 35 (4) (1994), 741-744.
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-8f3fd0ac-5c23-46ce-8625-fb44084a0434
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.