EN
CONTENTS
Preface...................................................................................................................................... 5
I. Introduction............................................................................................................................ 7
II. Simple chains
2.1. Simplexes............................................................................................................ 12
2.2. Chains........................................................................................................................... 13
2.3. Boundary operator. Cycles and boundaries.......................................................... 15
2.4. Join operator................................................................................................................ 15
2.5. ε-simplexes and ε-chains........................................................................................... 16
III. Sequential chains
3.1. Sequences and subsequences...................................................................... 17
3.2. Sequential chains....................................................................................................... 18
3.3. Infinite chains. General homology groups............................................................. 18
3.4. Infinite chains in subspaces..................................................................................... 19
3.5. True cycles. Vietoris homology groups................................................................... 21
3.6. Subsequences of infinite chains............................................................................. 22
3.7. A condition for homology of infinite cycles.............................................................. 24
IV. Functions, mappings, and null translations
4.1. Homomorphisms of simple chains induced by functions...................................... 25
4.2. Homomorphisms of sequential chains induced by functions........................... 25
4.3. Homomorphisms of ε-chains induced by functions............................................ 26
4.4. Homomorphisms of infinite chains induced by maps........................................ 27
4.5. Topological invariance of the central and Vietoris homology groups............... 28
4.6. Non-equivalence of the general and Vietoris homology groups....................... 30
4.7. The homotopy theorem.............................................................................................. 31
4.8. Null translations.......................................................................................................... 34
V. The Phragmen-Brouwer theorem
5.1. Introduction.......................................................................................................... 37
5.2. The Phragmen Brouwer theorem for non-compact spaces............................... 39
VI. The Alexandroff dimension theorem
6.1. Introduction.......................................................................................................... 40
6.2. Compactly dimensioned spaces............................................................................. 41
6.3. The generalized Alexandroff theorem..................................................................... 43
Bibliography.............................................................................................................................. 46