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Preface

An underlying structure is designed for Vietoris homology theory in
such a way that the theoiy applies to metric spaces which are not necessarily
compact. The organizational scheme of the work parallels that of an outline
given by Borsuk for the compact case. The extended theory is employed to
reformulate and prove some of the classical theorems of Vietoris homology
theory under hypotheses weaker than the compactness originally required.

Abstract n-dimensional simple chains in a set S over an abelian group D
are defined as linear combinations, with coefficients in D, of abstract
n-dimensional simplexes having vertices in S. A boundary homomorphism &
is defined on the resulting chain groups CF(S) giving rise to groups of
cycles Z) (S) and boundaries BF (S). In case S is the point set of a metric
space X, an e-chain (¢ > 0) is a simple chain each of whose simplexes is an
e-simplex, that is, a simplex whose vertex set has diameter less than e.
The e-chains form a group C;(X) in each dimension and 9(C;(X)} € C;_,(X)
so there are groups Z;(X) of e-cycles and B} (X) of e-boundaries. An equiv-
alence relation of n-homology (n > 0) on Z;(X) is defined by the condition
Y 5 ¥ in X if y—y"e By (X). Abstract n-dimensional sequential chains in a set S
are sequences y = (y;» of elements of CF¥ (S). An addition and a boundary
operator ¢, compatible with those for simple chains, are defined for the
sequential chains so that these form an abelian group C¥(S) in each
dimension and 0 is a homomorphism from C¥(S) to C*.,(S). Groups of
sequential cycles Z¥(S) and boundaries B} (S) are defined in the natural way.
A sequential chain y = (y,) in a metric space X is an infinite chain if
there is a compact set X,, called a carrier of y, and a sequence (g of
positive numbers converging to zero, such that each y, e C%(X,). The infinite
chains form a subgroup C7(X) of C}(X) and 4(Cy (X)) € C-¢(X) so that
there are groups of infinite cycles Z(X) and boundaries By (X), with
By (X) = Z(X). The quotient group ZX(X)/R* (X) is the general homology
group Hp(X), and two cycles y,y € ZP (X) are homologous, y ~y" in X,
if y—y € B®(X). An infinite cycle is essential if it has a carrier in which
it is not homologous to zero. An infinite cycle y = (p> is a true cycle
if the infinite cycle y" = {(y;,,—y;» is homologous to zero. The true cycles
form a subgroup Z!(X) of Z7(X) and it turns out that BF(X) € Z; (X).
The quotient group Z'(X)/B*(X) is the Vietoris homology group H!(X).
Theorems on subsequences of infinite chains are proved including the result
that each subsequence of a true cycle is a true cycle. If v,y €Zyr(X),
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then y ~ y' in X provided there is a compact sel X, < X such that for
each n > 0, y; ~ > v} in X, holds eventually. If S and T are sets each [unction
from S to T induces a homomorphism from C}(S) to C;(T) which in
turn induces a homomorphism from C}(S) to C,’,“(T), and each of these
homomorphisms preserves cycles and boundaries. If X and Y are metric
spaces and f is a function (not necessarily continuous) from X to Y such
that for some &,# > 0, dist (a, b) < & implies dist (f'(a), f(b)) < n, then f
induces a homomorphism from Cj(X) to C}(Y). If /' is a mapping from X
to Y, then [ induces a homomorphism f from C;*(X) to C,°(Y). This last
homomorphism carries Zy (X) to ZX(Y), B, (X) to B (Y), and Z,(X) lo
Zt(Y), and induces homomorphisms from HX(X) to H,(Y) and [rom
H!(X) to H'(Y). Topological invariance of the groups H,"(X) and H,(X)
is proved. Examples are given to show that H>(X) is not in general
isomorphic to H.(X). A generalization of a lemma due to Borsuk is used
to prove the Homotopy Theorem which states that if f and g are mappings
of X to ¥, yeZ>?(X), and [|X, is homotopic to g|X, in Y for some
carrier X, of y, then f(y) ~ g(y) in Y. A sequence of functions [ = {f)
from X to X is called a null translation provided there is a sequence of
positive numbers {#;> converging to zero such that for each wuelX,
dist (a, fi(@) < n;. If xeC(X), then f(x) = {fi(%;)>€ Cy(X), and this
correspondence is a homomorphism of C®(X) which preserves cycles and
boundaries. Basic properties of null translations are established and it is
proved that if f is a null translation of X and ye Z, (X}, then f(y) ~ y in X,

The following extension of the classical Phragmen- Brouwer (heorem
is proved: Il X and Y are closed subsets of a metric space and there
exists yeZ (X NnY) such that y¢B;/ (X NY) but yeB] (X)n B, (Y), then
there exists 0 € Z,/, | (X u Y) such that d¢ B/, , (X u Y). An example is given
to show that the assumption that X and Y are closed is essential. A metric
space X satisfies the Alexandroff equivalence provided dim X > k if and
only if there is an essential cycle y € Bi® (X) (where dim = covering dimension).
The classical Alexandroff dimension theorem may now be stated as follows:
If X is a finite dimensional compact metric space then each closed subspace
of X satisfies the Alexandroff equivalence. A metric space X is compactly
dimensioned if there is a compact set X, & X such that dim X, = dim X.
A finite dimensional metric space satisfies the Alexandroff equivalence if and
only if the space is compactly dimensioned. A finite dimensional metric
space may fail to be compactly dimensioned or may be compactly dimen-
sioned and yet have closed subspaces which are not compactly dimensioned.
The following extension of the Alexandroff theorem is proved: If X is a finite
dimensional metric space which is a locally countable union of locally
compact subspaces, then each closed subspace of X satisfies the Alexandroff
equivalence,



Chapter 1

Introduction

The subject of Vietoris homology theory is usually regarded as having
begun with the publication by Vietoris in 1927 of his classic paper Uber den
héheren Zusammenhang kompakter Rdaume und eine Klasse von zusammen-
hangstreuen Abbildungen [28]. In this work he carried the ideas of combi-
natorial topology over to compact metric spaces by introducing a type of
cycle called fundamental sequence. Such cycles were sequences of abstract
simplicial cycles whose vertices were points of the compact metric space.
They were required to satisly two conditions: first, that the mesh (maximum
simplex diameter) of the abstract cycles should converge to zero, and second,
that eventually the differences of successive pairs of the abstract cycles
should bound complexes of arbitrarily small mesh. Vietoris also defined
various homology relations among these cycles and discussed the resulting
homology groups. His main purpose in applying combinatorial ideas to
compact metric spaces was to establish a proposition now known as the
Vietoris mapping theorem [13], p. 347, [3], [25]. This theorem gives
a criterion for the isomorphism of the homology groups of two spaces
based on properties of a .inapping of one of the spaces onto the other.

Although Vietoris’ primary interest was in the mapping theorem, his
methods attracted much attention. Lefschetz discussed the Vietoris theory
in his 1930 Colloquium Publication [18], relating it to a homology theory
of his own and to an early one of Alexandroff [1]. The Vietoris theory
was soon applied to other problems by such ‘mathematicians as Whyburn
[29], [30] and Eilenberg [10]. Perhaps the most important application was
that of Alexandroff who in 1932 published his celebrated paper Dimensions-
theorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen [2]. In this
paper Alexandroff constructed a homological theory of dimension for com-
pact metric spaces and related the homological dimension to the covering
dimension of such spaces. He was then able to characterize the covering
dimension by means of a homological condition (see Chapter VI of the
present work). In the process of developing the homological dimension
theory, Alexandroff also developed the homology theory. His paper became
and has remained to the present time the standard relerence for Vietoris
homology theory.
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Since the publication of the Alexandroff paper there have been only
a few discussions of the theory itself. In his 1942 Colloquium Publication
[19], Lefschetz described a general theory of algebraic topology which included
Vietoris theory as well as the more recent homology theory due to Cech [8].
He was able to prove that the Vietoris homology groups are isomorphic to
the corresponding Cech groups for the case of a compact metric space.
Some additional discussion of the Vietoris theory occurs in Lefschetz’ com-
panion volume, Topics in topology [20]. Slightly earlier Steenrod in con-
structing a homology theory for compact metric spaces [27] gave a brief
comparison of his own theory to that of Vietoris. In 1950 Begle proved
a Vietoris mapping theorem for topological spaces which are compact but
not necessarily metrizable [3]. In doing so he used a generalized form of
Vietoris cycle, first defined by Spanier [26], for which the original metric
requirement was replaced by a condition described in terms of coverings
of the space. In their 1952 book Foundations of algebraic topology [11],
Eilenberg and Steenrod gave a thorough treatment of Cech homology theory
but mentioned Vietoris theory only in a note on the development of the
Cech theory.

Although Vietoris homology theory has not been included in the general
reorganization of algebraic topology which has taken place in recent years,
applications of this theory have shown a remarkable persistence. Floyd [12]
and Newman [22] published papers in 1949 and 1950 (respectively) using
Vietoris theory, long after Cech theory was well established and its relation
to Vietoris theory was known. Further applications occurred in 1955 papers
by Kosinski [17] and by Borsuk and Kosifiski [7]. A paper by Bing and
Borsuk [4] published in 1965 makes considerable use of Vietoris theory and
includes a preliminary brief outline of some of the main theorems of the
subject. Vietoris theory is also the fundamental homology theory used in
Borsuk’s 1967 book Theory of retracts [5], and several pages of the book
are devoted to statements of the basic definitions and theorems. A somewhat
more extensive outline was given by Borsuk in his 1968 lectures at Rutgers
University on the Topology of compacta [6]. In these lectures, which provided
the foundation for his new theory of shape, Borsuk proved many of the basic
theorems of Vietoris theory for the case of compacta embedded in the Hilbert
cube. Another important application of Vietoris theory was made recently
by Rolfsen [23], [24], who employed it in the proof of a lemma essential
to his characterization of the 3-cell as a compact 3-dimensional space having
a metric which is strongly convex and without ramifications. It is thus evident
that topologists have continued to use Vietoris homology theory up to the
present time.

One of the two principal objectives of the present work is to provide
an underlying structure for Vietoris homology theory as it is used by
topologists today. It is hoped that the existence of this structure will give
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formal status to the theory and enable results to be formulated and proved
with a degree of precision not previously attainable. The second objective
is to extend the classical theorems of Vietoris homology theory to a broader
class of metric spaces by removing the restriction of compactness and replacing
it by some weaker requirement. For this purpose it is necessary that the
structure provided for the theory be designed in such a way that compactness
is not assumed in defining the basic concepts or in establishing relationships
among them.

The organizational scheme of this work parallels the outline given by
Borsuk in his 1968 Rutgers lectures [6]. However, at each step of the
development the assumption that the metric spaces are compacta embedded
in the Hilbert cube is eliminated. In most cases results similar to those for
the compact case are obtained, but at the cost of adding considerable
complexity to the structure. The next paragraphs give a brief outline of the
work which appears in the ensuing chapters.

In Chapter II abstract n-dimensional simplexes with vertices in a set S
are defined as equivalence classes of ordered (n+ 1)-tuples of elements of the
set S. Chains are then defined as linear combinations of simplexes with
coefficients in a given abelian group, and a homomorphism of order two,
the boundary operator, is defined on the resulting chain groups. Elements
of the kernel of the boundary homomorphism are called cycles, elements of
the image are called boundaries. In case the set S is the point set of a metric
topological space X, further definitions are given. An abstract n-dimensional
simplex is called an ¢-simplex (¢ > 0) if the diameter of its vertex set is less
than e. An g-chain is an abstract chain of whose simplexes is an e-simplex.
It is observed that the e-chains form a group in each dimension and that
the boundary operator carries e-chains to e-chains, so that we may speak
of e-cycles and e-boundaries. An equivalence relation of #-homology (1 > 0)
on the class of g-cycles is iniroduced and elementary properties of the e-chain
groups and of the relation of n-homology are discussed. The chains described
in Chapter II are referred to as simple chains in order to distinguish them
from the sequential chains introduced in the following chapter.

Chapter III begins by establishing a terminology for the discussion of
sequences. Abstract n-dimensional sequential chains in a set S are then defined
as sequences of abstract n-dimensional simple chains with vertices in S.
An addition is defined for these sequential chains in terms of the addition
of simple chains, and a boundary operator on the sequential chains is defined
in terms of the boundary operator for simple chains. It is observed that
under these definitions the sequential n-dimensional chains form an abelian
group in each dimension n, and the boundary operator is a homomorphism
of order two from the group of sequential chains of dimension n to that of
dimension n—1. Sequential cycles and boundaries are then defined in the
natural way. If X is a metric space, a sequential chain in X is called an
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infinite chain provided there is a compact set, a carrier of the chain, which
¢ontains all vertices of each of the simple chains in the sequence, and
provided the mesh of the simple chains converges to zero. It is proved
that the infinite chains form a subgroup of the sequential chains and that
the restriction of the boundary operator gives a homomorphism of order
two from each infinite chain group to that of one lower dimension. Thus
we may speak of infinite cycles and boundaries, with the infinite boundaries
forming a subgroup of the infinite cycles. The resulting quotient group is the
general homology group of the metric space, and two infinite cycles are
homologous if they represent the same element of the general homology group.
Elementary properties of the infinite chain groups and the homology relation
arc established. An infinite cycle is called essential il it has a carrier in
which it is not homologous to the zero infinite cycle, and it is proved that
this notion is independent of the subspace which is regarded as containing
the cycle. An infinite cycle y is called a true cycle il the infinite cycle y’
formed by taking the differences of successive pairs of terms of y is homo-
logous to the zero cycle. The true cycles are shown to form a subgroup
of the infinite cycles. True cycies which are infinite boundaries are called
true boundaries and these form a subgroup of the true cycles. The quotient
group of true cycles modulo true boundaries is called the Vietoris homology
group of the metric space. Elementary properties of true cycles and boundaries
are discussed. Scveral theorems concerning subsequences of infinite chains are
proved. It is shown that infinite boundaries and true boundaries are identical.
The main result on subsequences is that each subsequence of a true cycle
is itself a (rue cycle. A theorem is proved stating that two infinite cycles
are homologous provided there is a compact set carrying both of them
in which for each n > 0, corresponding terms of the cycles are eventually
n-homologous.

Chapter IV is devoted to a discussion of the connection betwcen functions
from one space to another and resulting homomorphisms of the various chain
groups associated with the spaces. It is first shown that if S and T are sets,
each function from § to T induces a homomorphism from the abstract simple
chains in § to those in 7, and that this homomorphism commutes with the
boundary operator so that it preserves cycles and boundaries. The next step
is to show that a function from S to T induces a homomorphism from the
abstract sequential chains in § to those in T, again commuting with the
boundary operator. Suppose that X and Y are metric spaces and that f is
a function from X to Y (not necessarily continuous). If for some positive
numbers ¢ and g it is true that points a, b of X within a distance ¢ must
have images f(a), f(b) in Y within a distance #, then f induces a homo-
morphism from the e-chains in X to the x-chains in Y, and in fact this
homomorphism is defined by the homomorphism of abstract simple chains
mentioned above. If f is a mapping (a continuous function) from X to Y
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it is proved that f induces a homomorphism from the infinite chains in X
to those in Y, and in [act this homomorphism is defined by the homo-
morphism of abstract sequential chains mentioned above. The proof is based
on a lemma which uses the fact f is uniformly continuous on compact sets.
Elementary properties of the homomorphism of infinite chains are discussed
and it is proved that this homomorphism carries true cycles in X to those
in Y. Moreover, this homomorphism induces a homomorphism from the
general homology group of X to that of Y and another f[rom the Vietoris.
homology group of X to that of Y. The question of topological invariance
ol the general and Vietoris homology groups is considered next. It is first
proved that for a metrizable topological space these groups do not depend
on the choice of the metric yiclding the given topology. Then it is shown
that il h is a homeomorphism from X to Y, the homomorphism of infinite
chains induced by h is an isomorphism and in turn induces isomorphisms
of the general homology groups and of the Vietoris homology groups.
That the general homology group is not in general isomorphic to the
Vietoris homology group is shown by means of examples, alter two theorems
are proved in preparation. Next the homotopy theorem is proved which
states that if f and gy are mappings of X to Y and y is an infinite
cycle in X such that the restrictions of f and g to some carrier of y are
homotopic in Y, then f(y) and g(y) are homologous in Y. The proof is
based on a generalization of a lemma due to Borsuk. A corollary to the
homotopy thecorem is stated to the effect that a contractible space has trivial
general homology groups. The final part of Chapter 1V is concerned with
mull translations. A sequence of functions (f;> from X to X is called a null
translation provided there is a sequence of positive numbers {5;> converging
to zero such that for each point a of X the distance from a to fi(a) is
always less than n;,. After some preliminary discussion it is proved that
a null translation carries each infinite chain to an infinite chain and in fact
induces a homomorphism of the infinite chains in X which commutes with
the boundary operator. Basic properties of null translations are discussed.
The generalized Borsuk lemma is again used, this time to prove that a null
translation carries each infinite cycle into an infinite cycle homologous to it.

In Chapter V the classical Phragmen-Brouwer theorem for compact
metric spaces is first proved [2], [6]. The theorem states that if X and Y
are compact subsets of a metric space and if there is an infinite n-dimensional
cycle in X n'Y which is a boundary in X and in Y but not in XY,
then there is an infinite (n+ 1)-dimensional cycle in X v Y which is not
a boundary in X uY. A proof is given of an extension of ‘the theorem
in which the restriction that X and Y be compact is replaced by the
condition that X and Y be closed subsets of the metric space. An example
is then given to show that it is not possible to drop the requirement that
X and Y be closed.
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The central topic of Chapter VI is the Alexandroff dimension- theorem
[2]. The classical version of this theorem may be stated as follows (where
dimension means covering dimension). If X is a finite dimensional compact
metric space, then the dimension of X is greater than k if and only if there
is an essential k-dimensional infinite cycle in X which is homologous in X
to the zero cycle. A metric space X satisfies the Alexandroff equivalence
if it is true that the dimension of X is greater than k if and only if
there is an essential k-dimensional infinite cycle in X which is homologous
in X to the zero cycle. It is easy to see that each closed subspace of
a finite dimensional compact metric space satisfies the Alexandroff equivalence.
A finite dimensional metric space is compactly dimensioned il some compact
subspace has the same dimension as the space. It is proven that a finite
dimensional metric space satisfies the Alexandroff equivalence if and only
if the space is compactly dimensioned. Two examples arc then given, the
first showing that not every finite dimensional metric space is compactly
dimensioned, and the second showing that such a space may be compactly
dimensioned and yet have closed subspaces which are not compactly dimen-
sioned. The remainder of Chapter VI is devoted to a proof of the following
generalization of the classical Alexandroff dimension theorem: If X is a finite
dimensional metric space which is a locally countable union of locally
compact subspaces, then each closed subspace of X satisfies the Alexandroff
equivalence. The proof is based on five lemmas: (1) A locally compact metric
space has a locally finite covering by compact sets. (2) A finite dimensional
locally compact metric space is compactly dimensioned. (3) A locally compact
subset of a meltric space is a countable union of closed locally compact sets.
(4) If a metric space is a locally countable union of locally compact sub-
spaces, then it is a locally countable union of closed locally compact sub-
spaces. (5) If a finite dimensional metric space is a locally countable union
of locally compact subspaces, then it is compactly dimensioned.

Chapier 11

Simple chains

2.1. Simplexes. Let S be a set. In the discussion that follows, the elements
of S wijl be referred to as vertices. Let Z denote the ring of integers and
let neZ. For n 2 0 an ordered n-simplex s with vertices in S is an ordered
(n+ 1)-tuple (aq, ay, ..., a,), where the a; are (not necessarily distinct) elements
of S. That is, s is a function from {0, 1,...,n} into S. For n = —1 the
emply set @ is the only ordered (—1)-simplex.
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Oriented simplexes with vertices in § are defined as follows. For n > 1
the permutations of {0,1,...,n} may be classified as even or odd. Let
o =[aga,...a,], where ag,eS, denote the set of ordered n-simplexes
(An(0)s dryys ++-> Angmy) fOr which 7 is an even permutation of {0, 1,...,n}
and let —o¢ denote the set of those for which 7« is odd. Then ¢ and —¢
are called oriented n-simplexes. For n = 0, if s = (a,) is an ordered O-simplex

the two symbols ¢ = [ay] and —o = —[a,)] are associated with s and are
called oriented O-simplexes. For n= —1 the two symbols ¢ = +¢ and
—0g = —@ are associated with @ and are called oriented (— 1)-simplexes.

Let X, (S) denote the set of oriented n-simplexes with vertices in S and for
ceZ,(S) let V(o) denote the set of vertices of o. The term “simplex”
without further qualification will always refer to an oriented simplex. For
n >0 a simplex [aga, ...a,] is said to be degenerate if a; = g, for some
J» k with j # k. In this case [aqq; ... a,] = —[aga, ... a,]. Given the set S,
for each simplex o let one member of the pair o, —¢ be chosen and called
positively oriented. This choice remains fixed throughout the entire discussion.

We note that if T is a subset of S, then for each neZ, X,(T) < 2, (S).

2.2, Chains. Let D be an abelian group. For n = —1 the collection of
all functions x%: X (S) — D such that x(¢) = O for all but a finite number of
o€ 2,(S) forms an abelian group C,(S, D) under the addition given for any
two such functions x,, x,, by the rule

(%1 +%x;)(0) = %y (0)+x,(0) for each o€ Z,(S).

It follows that each element xeC,(S,D) may be regarded as a linear
combination ¥ = d,0,+ ... +d,6,, where d,e D, ¢,€ X,(S), and d; = x(0))
for i=1,...,k. Let N,(S,D) denote the subgroup of C,(S, D) generated
by all elements either -of the form do, where o is degenerate or of the
form do+d(—o). The quotient group C,(S, D)/N,(S,D) will be denoted
C,:’ (S, D) and its elements will be called n-dimensional chains in S over D or
simply n-chains. For xe C,(S, D) let [x] denote the coset of N, (S, D) contain-
ing ». The notation x e C¥ (S, D) will be understood to mean [x]eC) (S, D),
and similarly the notation », = %, will mean [%,] = [%,].

It follows from the above definitions and conventions that the linear
combinations which represent the n-dimensional chains satisfy the following
rules of arithmetic:

(1) If = is a permutation of {I,..., k}, then
ety OnyF oo Flopy Ongy = 10+ ...+ dyoy
(for d;eD, o,€eXZ,(S), i = 1,...,k).
(2) dio+d,o = (d,+d,)e (for d,,d,eD, oeX,(3)).
(3) 0.0 =0 (for ce 2, (9)).
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(4) —(do) = (—d)a (for deD, o€ XZ,(5)).
(5) do = (—d)(—0o) (for deD, oceZ,(S)).
(6) If o is degenerate, do = 0 (for de D, o€ Z,(5)).

(7) t-(dyo,+ ... +dyo) = (tdy) o+ ... +(td) oy

(for te Z, d,eD, 0, Z,(S), i = 1,..., k).

According to these rules it is possible to obtain a representation for
each chain which is unique (except for the order of terms) by using only
positively oriented simplexes and deleting terms having a zero coefficient
or a degenerate simplex. By the set of simplexes of a chain %, denoted
Z(»), is meant the collection of all simplexes which occur in the unique
representation of x. The set of vertices of a chain x, denoted V(x), is the
collection of all vertices of all simplexes in Z(x); that is, V(x) = {J {V(0):
oeX(x). ‘

In the case n = —1, il +@ is chosen to be positively oriented, each
(—1)-chain is of the form d-Q, where deD. Thus C¥*,(S,D) may be
identified with the group D. For convenience we define C} (S, D) to be
the trivial group {0} for n < —1. .

THEOREM 1, If T is a subset of S, then for each neZ, C¥ (T, D) may
be regarded as a subgroup of C}(S,D). Moreover, if xeC*(S,D) and
Vi{x) S T, then we C! (T, D).

Proof. Let C(S), N(S), C(T), N(T) be abbreviations for C,(S, D),
N, (S, D), C,(T, D), N,(T, D) respectively. Thus CJ (S, D) = C(S)/N(S) and
C#(T D)= C(T)/N( T) We have noted previously that T = S implies
2,(T) s Z,(S). It follows that C(T) is isomorphic to a subgroup C(T)
of C(S). We may describe C(T) as the set of functions xe C(S) such
that »(s) = 0 for each g€Z2,(S\\Z,(T). The same isomorphism carries
N(T) onto a subgroup N(T) of C(T). Thus C*(T, D) is isomorphic to

C(TYN(T). It is clear that N(T) S N(S) and in fact N(T) = C(T) N N(S).
Therefore the Noether isomorphism theorem implies that C(TYN(T) is
isomorphic to the group (C(T)+N(S))/N (S), where C(T)+N(S) denotes
the subgroup of C(S) generated by C(T)u N(S). Since (C(T)+N(S))/N(S)
is a subgroup ol C(S)/N(S), this proves that CH(T, D) is isomorphic
to a subgroup of C;(S,D). For convenience we identily C!(T, D) with
its isomorphic image in C* (S, D).

The second assertion of the theorem now follows from this identification.
The hypothesis x € C, (S, D) actually means xe C(S ) and [x] = x+N(S)e
e C( S)/N ). The condition V(x ) S T implies that xe C(T), and consequent]y
xeC(T)+N(S) since C(T) = C(T)UN(S) < C(T)+N(S). Thus [x] =
+N(S)e(C(T)+N(S)/N(S); that is, [] is an element of the subgroup of
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C, (S, D) which we have identified with C; (T, D). Therefore according to
our conventions we may write xe C* (T, D).

2.3. Boundary operator. Cycles and boundaries. Let S be a set, D an abelian
group, and let neZ. We now define a function 2: C} (S, D)— C_ (S, D)
called the boundary operator. It is first defined on “elementary chains” of the
form do. For n> 1, let o= [ay...a,]eZ,(S) and let deD so that
doeC) (S, D). The boundary of do, denoted 0(do), is defined to be the
chain

M=

(—1Ydlag...a_ 1 8;dpyy ... a,] € CF_ (S, D),

n

0

where the notation 4, indicates that a; is deleted. It may be shown that the
resulting chain d(do) is independent of the representation of ¢. Moreover,
8(d(—0)) = —a8(ds) and consequently if ¢ is degenerate, (ds) = 0. For
n=0,let ¢ =[ay] or 0 = —[a,] and let deD so that doe C§ (S, D).
The boundary of do is defined by d(d[ug]) = d- @ or d{d(—[up]) = d(—D).
Thus 8(do)e C¥,(S,D). Forn= —1,let 6 =@ or 6 = —( and let deD
so that doe CY (S, D). The boundary of do is defined in either case by
d(do) = 0. Thus d(do)e C¥,(S, D). Now for n = —1 we extend @ to all
of C} (S, D) by the formula :

odyo,+ ... +dyo) = dd, o)+ ... +i(d,0,).

For n < —1, we define 8: C}(S,D)— C* (S, D) by 8(0) = 0.

It is clear from the definition that é is a homomorphism of CF (S, D)
into C;}_,(S, D) for each neZ. Moreover, a standard argument yields the
result that the boundary operator is of order two; that is, ddx = 0 for
xeCX(S, D).

For neZ we define the group of n-dimensionul cycles in S over D,
denoted ZF(S, D), to be the kernel of @: CY(S,D)— C' (5,D), and we
define the group of n-dimensional boundaries in S over D, denoted B (S, D),
to be the image of d: C),,(S,D)— C*(S, D). Thus Z} (S, D) and B (S, D)
are subgroups of CJ(S,D). Moreover, since 8@ =0 it follows that
BY(S,D)<= z} (s, D).

It is a consequence of Theorem 1 that if T is a subset of S, then for
each ne Z, Z* (T, D) is a subgroup of ZF (S, D) and B (T, D) is a subgroup
of BF (S, D).

2.4. Join operator. Let S be a set, D an abelian group, and let neZ
with n 2 0. If beS and o = [ay...-q,]€Z,(S) we define the join of b
and o, denoted b-o, to be the simplex [ba,...a,]eZ,.,(S). If beS and
x=d, o+ ... +d,0,€CY(S,D) we define the join of b and », denoted
b:x, to be the chain d,(b-0,)+ ... +d,(b-0,)e C}. (S, D) provided »x # 0
or to be 0eC},,(S,D) in case x = 0. For n = —1 we define the join
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by the formulas b-0 =0, b-® = [b], and b-(dQ)_) = d[b]. For n < —1
we define b-0 = 0. Now for each he S and neZ we define a [unction
J,: CF(S,D)— C}. (S, D), called the join operator for b, by means of the
formula J,(x) = b-x(xeC¥(S,D). Then J, is a homomorphism and it is
related to the boundary operator § by the following formulas.

(1) d(b-do) = do—b-0(do) for beS, ceZ,(S), deD.
() Ab-%) = x—b-dx for beS, xeC, (S, D).

2.5, ¢-simplexes and &-chains. Let D be an abelian group and suppose
that (X, ¢) is a metric space; that is, X is a topological space, ¢ is a metric
function for X, and the topology of X is that induced by the metric o.
Let R denote the field of real numbers and R, the subset of R consisting
of all strictly positive real numbers. If S is a non-empty subset of X we
define the g-diameter of S, 4,(S), to be sup {g(a,b): a,beS} in case the set
{g(a,b): a,beS} is bounded and to be infinite otherwise.

For ¢e R, we say that o€ Z,(X) is an n-dimensional e-simplex in (X, o)
if 4,(V(s)) < e. We denote the set of n-dimensional e-simplexes in (X, @)
by Z*(X, ). Thus Z:(X,0) S Z,(X). A chain xe C} (X, D) is said to be
an n-dimensional e-chain in (X, p) over D if X(x) € X!(X, 0). The collection
of all n-dimensional e-chains in (X, @) over D forms a subgroup of cHx,D)
which we denote by C%(X, g, D). For xe C (X, D) we know xeC:(X, g, D)
if and only if 4,(V(s)) < ¢ for each oeX(x). Moreover, the boundary
operator d: C¥ (X,D)— CF ,(X, D) defines a function, also called 8, on
Ci(X,e. D). It is an easy consequence of these statements that il e X} (X, o)
and deD, then d(do)eC,_,(X,a, D). Therefore 0 is a homomorphism of
C,(X,e,D) into C:_,(X, 0, D).

We now define the group of n-dimensional e-cycles in (X, g) over D,
“denoted Z: (X, o, D), to be the kernel of 9: Ci(X,po,D)— C;_,(X,0,D),
and the group of n-dimensional e-boundaries in (X,g) over D, denoted
B (X, o, D), to be the image of d: C;,,(X, ¢, D) C,(X, 0, D). Evidently
Z;(X,0,D) and Bj(X, g, D) are subgroups of C;(X, ¢, D), and again since
00 =0 it follows that B;(X,g,D) = Z;(X,e,D). The quotient group
Z,(X,0,D)/B;(X, g, D) is called the n-dimensional e-homology group of (X, @)
with coefficients in D and is denoted H.(X, g, D).

For v,,y,€Z;(X,0,D) and ne§+, we say that y, and 1y, are
n-homologous in (X, ), denoted y; ~ v, in (X,0), if y,~y,€B,(X,¢0,D).
Thus yy + v, In (X,0) if and only if there exists xeCj, (X, @, D) such
that dx = y,—y,. It is easy to show that the relation # defined on
Z,(X,0,D) by the rule y, &y, if and only if y, ~ 72 in (X, is an
equivalence relation.

Suppose now that (Y, ¢') is a metric subspace of (X, ); that is, Y is
a subset of X with topology given by the metric ¢’ which is the restriction
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of g to YxVY. In this case o' is called the metric for Y inherited from
(X,0). Let te R, and ne Z. The following facts are easily established:

(1) Z(Y, o) is a subset of Z:(X, o).

) C,(Y, o', D) is a subgroup of C:(X, 9, D).
(3) Z;(Y, ¢, D) is a subgroup of Z:(X, g, D).
4) B, (Y, o', D) is a subgroup of B:(X, g, D).

() If y1,72€Z5(Y, ¢, D) and y; 5 7, in (Y, @)
(where ne R,), then 3, ~ 3, in (X, ).

In each of the above definitions of metric concepts the name of the
metric has been included as part of the notation. This explicit mention
of the metric will usually be dropped in cases where no confusion is likely
to result. Thus the groups defined above will ordinarily be denoted C; (X, D),
Zi(X, D), etc. The same agreement applies to definitions of metric concepts
which are given in subsequent sections of this work.

Chapter 111

Sequential chains

3.1. Sequences and subsequences. Let S be a set and let N denote the
system of natural numbers. A function s: N - S is called a sequence into §.
For ke N, s(k) is usually written s,, and the sequence -s is also denoted
(8y,85,...) Or (s) The collection of all sequences into S is denoted S
The notation m: N » N indicates that m is a strictly increasing sequence
into N. If seS" and m: N 7/ N, the sequence s-m into S defined by
(s -m)(k) = s(m(k)) for ke N is called a subsequence of s. Each m: N /' N
may be regarded as a subsequence-forming operator in the sense that the
function F,: S¥ — S¥ defined by F,(s) =s-m for seS" assigns to each
sequence into S a subsequence of 1tsclf Moreover, each subsequence of
a given sequence is formed in this way for suitable choice of m. If s, te st
and m: N ~ N, then s-m and t-m are called corresponding subsequences
of s and ¢.

Let s = {s;,5,,...) be a sequence into §S. For n=0,1,2,... the
sequence f,(s) = {Sy+1sSp+2....» 18 called the n-th tail of s; that is, t,(s)
is the subsequence s-m of s, where m, = n+k, and in particular z,(s) = s.
The first tail of s, £, (s) = {s3,$3;...7, is called simply the tail of s.

If X is a topological space, ae X, and xe X", the notation x -«
indicates that the sequence x converges.io. the point a.

&)
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3.2. Sequential chains. Let S be a set, D an abelian group, and let
ne Z. A sequence xz = {x;) such that each x; e CY(S, D) is called a sequential
n-dimensional chain in S over D. The collection of all such sequential n-chains
is denoted C#*(S; D). Thus C}(S, D) = (C; (S, D). It is clear that C}(S, D)
forms an abelian group under the addition defined by

e+ = G+ 4, where (xp, <4 € CF (S, D).

The zero element of C¥(S, D) is the sequence <0,0,...), denoted 0.

We define a boundury operator 0: C¥(S, D) — C¥_, (S, D) by the formula
a3, = {d%;> where Jx; has been defined previously in Section 2.3. Evidently
0 is a homomorphism of C}(S,D) into C¥_,(S,D) and d(0x) = Q for
xe C*(S,D). The kernel of d: C}(S,D) —» C¥_,(S, D) is called the group
of sequential n-dimensional cycles in S over D, Z¥(S, D), and the image
of a: Cr.,(S,D)— C}¥(S,D) is called the group of sequentiul n-dimensional
bounduaries in S over D, B}(S,D). Again it follows from 90 = 0 that
B¥(S, D) € Z*(S, D).

The set of simplexes of a sequential chain x e C¥(S, D), denoted by Z(x),
means the set {J{Z(x%): ie N}. The set of vertices of a sequential chain
x€ C}(S, D), denoted V(x), means the set |J {V(x,): ieﬁ}. The set V(x)
may also be described as {J {V(o): o€ Z(x)}.

Il T is a subset of S, it follows from Theorem 1 that for each neZ,
CH(T, D), Z¥(T,D), and B}(T, D) are subgroups of CX(S,D), Z*(S, D),
and B} (S, D) respectively.

3.3, Infinite chains. General homology groups. Let (X, o) be a metric
space, D an abelian group, and let ne Z. A sequential chain xe C*(X, D)
is called an infinite n-dimensional chain in (X,g@) over D provided the
following two conditions are satisfied:

(1) There is a sequence ¢ into R, with ¢ — 0 such that for each ie N,
x;€Cii(X, 0, D).

(2) There is a compact subset X, of X such that V(x) < X,.

Any sequence ¢ satisfying (1) is called a majorant of x in (X, @), and
any compact set X, satisfying (2) is called a carrier of x in (X, g). It is easy
to verify the following statements:

(3) If ¢ is a majorant of % in (X, ), and ¢ is a sequence into R,
with ¢ > 0 such that ¢ > ¢ for each ieN, then & is a majorant of x
in (X, ).

(4) If X, is a carrier of » in (X, ), and X} is a compact subset of X
such that Xj 2 X,, then Xj is a carrier of x in (X, g).

In the definition of an infinite n-chain given above we may replace
condition (1) by the following requirement:

(5) There is a sequence ¢ into R, with ¢ = 0 such that for each ieN,
il oeXZ(»), then 4,(V(0)) < ¢.
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The collection of all infinite n-dimensional chains in (X, g) over D is
denoted C, (X, Q, D). Since C(X, @, D) & C¥(X, D), the boundary operator
¢ CH(X,D)— Cf_| (X, D) defines a function, again called @, on C/ (X, 9. D).

THEOREM 2. For each neZ, C*(X,0,D) is a subgroup of C¥(X, D).
The boundary operator 0 is a homomorphism of C* (X, @, D) into C*,(X,0,D)
and satisfies the condition 00 = 0.

Proof. Suppose xeC;(X,g,D) with majorant 75, carrier Xo, and
x'eCy(X,,D) with majorant », carrier Xj. Then for each ieN, Xis
xie Cii(X,0,D), where ¢ = max {n;, n;}, and hence x,+xeC,i(X,o,D).
Clearly, ¢ = {g) — 0. Also since V(x;) & X, and V(x) € X, it follows
that V(x,+%x;) S Xqw Xg. Thus x+x'e C¥ (X, @, D) with majorant g, carrier
XouXy. I xeCl(X,0,D) with majorant », carrier X,, then since
#,€Cli(X, 0, D) implies —xeCl(X,0,D) and since V(—%)= V(x), it
follows that —x = (—3;>e C; (X, ¢, D) with majorant 5, carrier X,. This
proves that C; (X, o, D) is a subgroup of C¥(X, D). B

That 0 is a homomorphism satisfying d0 = 0 follows from the cor-
responding fact about d: C¥(X, D) — C¥_, (X, D). It remains only to show
that (Cr(X,e,D)) € CF-,(X,0,D). Suppose xeCy(X,¢,D) with ma-
jorant u, carrier X,. Then since x,e Ci(X, ¢, D) implies dx;e CiL, (X, ¢. D)
with V(d%,) S V(x,), we see that dx = (Jx,>e C* (X, ¢, D) with majorant
n., carrier X,.

We may now define the group of infinite n-dimensional cycles in (X, @)
over D, denoted Z7F(X,e¢,D), to be the kernel of d: Cy(X,e,D)—
— CX (X, e, D), and the group of infinite n-dimensional boundaries in (X, g)
over D, denoted BX(X,g,D), to be the image of d: C;%((X,0,D)—
- C*(X,0,D). Again B¥(X,0,D) € Z?(X, e, D) since 90 = 0. The quo-
tient group ZZ*(X, g, D)/B¥(X,0,D) is called the n-dimensional general
homology group of (X, @) with coefficients in D and is denoted H°(X, g, D).
We remark that if e G (X, 0, D), then yeZ>(X,0,D) if and only if
y,€Z¥ (X, D) for each ie N.

For y,y'eZ7(X, 0, D) we say that y and y' are homologous in (X, @),
denoted y ~ y' in (X, ), il y—y' € By (X, 0, D). Clearly the statement that
y ~ 7 in (X, 0) is equivalent to the statement that [y] = [y'] in H; (X, e, D),
which in turn is equivalent to the statement that there exists xe C%.,(X, @, D)
such that dx = y—9. It is also clear that the relation # defined on
Z*(X, o, D) by the rule y#y if and only if y ~ 9 in (X,¢) is an equi-
valence relation.

3.4. Infinite chains in subspaces.

THEOREM 3. Suppose that (Y,@') is a metric subspace of (X, o). Then
for each ne Z:

(1) CX(Y.¢', D) is a subgroup of Cr(X,¢, D).
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(2) Z>(Y, ¢, D) is a subgroup of Z)¥ (X, e, D).
(3) B (Y, ¢, D) is a subgroup of BY (X, ¢, D).
@) If y,v€Z?(Y,o,D) and y ~y' in (Y,¢'), then y ~y in (X,0)

Proof. (1) Suppose ye C;(Y, @', D) with majorant ¢, carrier Y,. Then
yeCy(X,D) since C°°(Yg D) € C¥(Y,D) < (X,D) by previously stated
results. For each ie N, y;,e Cii(Y, o', D) and hence vi€ CiH(X, 0, D), since
Ci(Y, o, D) < C4(X, o, D) by another previous result. Thus ¢ is a majorant
for y relative to the space (X,0). Also Y, is a carrier for y relative to
the space (X,g) since Y, is a compact subset of X. This proves that
yeCr(X, o0, D) 2) If yeZ;?(Y, ¢, D), then by (1), ye C;° (X, ¢, D). Therefore
yeZ>(X, o, D) since By =0. (3) If ye B (Y, ¢, D), then y = dx for some
xeCr (Y, @, D) But C7%, (Y, D) S €24, (X, 0, D) by (1) and s0 y = dx,
where xe C;% (X, @, D). Hence ye B’ (X, Q,D) (4) Suppose 7, v 'eZ* (Y, ¢, D)
and y ~ ¥ in (Y, ¢) so that y — ' ‘€ B> (Y, ¢', D). Then by (2), y 7,V €Zy(X,0,D),
and by (3), y—y €Br(x,0, D). Therefore y ~ 7 in (X, o).

THEOREM 4. Let xe C° (X, @, D) and suppose that X, is a carrier for x
in (X,0). Let ¢ be the metric for X, inherited from (X,g@). Then
xeCP(X,, 0, D). Moreover, if xeZ? (X, 0, D), then xe Z? (X,, @', D).

Proof Let ¢ be a majorant for » in (X,¢g) so that for each ieN,
x;€Ci(X,p,D). Since X, is a carrier for x in (X,9), V(%) € X,, and
hence, for each ieN, V(x) S X,. Now the condition »xeC(X, g, D)
implies that x;€C, (X,D) and 4,(V(c)) < ¢ for each ceZ(x). Then
%;& Cy (Xo, D) by Theorem 1 since x,€CF(X,D) and V(x) < X,, and
4,(V(9)) < g for each oe Z(x) since~ ¢ =90 on X,. Thus xeC}¥(X,, D)
and x%;€C;(X,, 0, D) for each ieN. Therefore xeCZ®(X,,0', D) with
majorant g, carrier X,. The second assertion of the theorem now follows
from the first, since if x€ ZP (X, 0, D), then xe C®(X,, 0, D) and dx = 0
so that xe Z® (X,, ¢', D).

An infinite cycle yeZ* (X, 0, D) is called essential in (X, o) if y has
a carrier X, such that y ~ 0 in (X,, ¢'), where ¢’ is the metric for X,
inherited from (X, ). The condition y ~0 in (X,,¢) may be restated
in the form y ¢ B? (X,, o', D).

THEOREM 5. Let (Y, @) be a metric subspace of (X,p), and let neZ.
Suppose that ye ZF (Y, ¢, D). Then y is essential in (Y, ") if and only if y
is essential in (X, o).

Proof Assume yeZ2?(Y, ¢, D) with carrier Yy, and the y is essential
in (X, ). Then y has a carrier X, in (X, ) such that y ~ 0 in (Xoq,0"),
where ¢” is the metric for X, inherited from (X,p). Now XoNY, is
a compact subset of Y and hence is a carrier of y in (Y,¢). Assume
¥y~ 0 in (Xg N Yy, @), where g is the metric for X, N Y, inherited from
(Y, ). Since X;N Y, is a subset of X, and § = ¢’ _Q—g" on XoNY,,
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it follows that (X, N Yy, ) is a metric subspace of (X, ¢”). Thus by part (4)
of Theorem 3, y ~0 in (X,N Yy, ) implies y ~0 in (X,,¢"). This
contradiction proves that 7y is essential in (Y, ¢').

Conversely, if y is essential in (Y, o) then y has a carrier Y, in (Y, ")
such that y ~ 0 in (Y,, "), where ¢” is the metric for Y, inherited {rom
(Y,0). Now Y, is a compact subset of X and hence is a carrier of y in
(X,0); and ¢" =g =g on Y, so that ¢” is also the metric for Y,
inherited from (X, g). Therelore the condition y ~ 0 in (Y,, ¢”) implies
that y is essential in (X, ). )

3.5. True cycles. Vietoris homology groups. Suppose that ye Z,° (X, ¢, D)
with majorant g, carrier X, so that for ie N, y,e Cii(X, g, D) and dy; = 0.
Then for each ie N, y;,7;+,€Cl(X, g, D), where n; = max {¢, £.,}, and
hence y,,,—y;€ Cli(X, 0, D) also. It is clear that n » 0 and that V(y,,,—
—7,) € X,, for ie N. Therefore the sequence y' = (¥} = (;4, —7;> is an
element of C* (X, ¢, D) with majorant #, carrier X,. Moreover, '€ Z®(X, 0, D)
since for ieN, 0y, = dy;.,—0y; = 0. We say that y = (y,) is a true
n-dimensional cycle in (X,0) over D if y = {y,s,—%> ~0 in (X,o0).
We denote by Z'(X,e,D) the collection of all such true cycles in
Z¥{(X,0,D). The collection of all those true cycles yeZ;(X, o, D) such
that y ~ 0 in (X,g) is denoted B;(X,@,D) and its elements are called
true n-dimensional boundaries in (X, @) over D.

THEOREM 6. For each neZ, Z'(X, g, D) is a subgroup of Z®(X, e, D),
und B (X, @, D) is a subgroup of Z,(X, 0, D).

Proof. Suppose y,8€Z\ (X, o, D) so that each of the infinite cycles
(ivq =7 and {6, , — 8, is an element of BX (X, ¢, D). Since y,0€Z;(X,e,D)
we also have f = y+4 € Zy (X, 0, D). Furthermore

Bror1 =B = KBiv1+0141) =i+ 0> = Piwr1 =2 +<{0141— 0

and hence {B,,;—pB:>€B’(X,p,D) since it is the. sum of two elements
of this' group. Thus e Z}(X,¢, D). Therefore Z,(X,¢,D) is closed under
addition. Now il ye Z' (X, ¢, D) so that {y,,,—7y;> € BX (X, e, D), it follows
that i

A=Yi+1)— (=1 = =yis1—1> €BY (X, 0, D)

and hence —yeZ'(X,o0,D). This proves that Z;(X,e,D) is a subgroup
of Z*(X, 0. D).

The definition of B'(X,e,D) implies that it is the intersection of the
(two subgroups Z' (X, ¢, D) and B* (X, ¢, D) of ZZ (X, ¢, D). Thus B,(X,e,D)
is a subgroup of each of them.

The quotient group Z.(X, ¢, D)/B,(X,¢, D) is called the n-dimensionul
Vietoris homology group of (X,@) with coefficients in D and is denoted
H,(X, 0, D).
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THEOREM 7. Suppose that (Y, ') is a metric subspace of (X, @). Then
for each ne Z:

(1) ZL(Y, @', D) is a subgroup of Z,(X,¢, D).

(2) BL(Y, @', D) is a subgroup of B,(X,¢,D).

Prool. (1) Suppose yeZ,(Y,@. P\ so that yeZr(Y,¢,D) and y
= (o1 —Y> €BR(Y, ¢, D). Then parts (2) and (3) of Theorem 3 imply
that yeZ>(X,¢,D) and y' €By(X,¢,D). Thus yeZ, (X, ¢, D). (2) Since
Z'(YQ D)e Z\(X,0,D) by part (1), and B,‘j‘(Yg D)< BY(X,g,D) by
part (3) of Theorem 3, it l'ol]ows that B, (Y, ¢, D) = Z,(Y, ¢, D)n B} (Y, ¢, D)
is contained in B (X,0,D) = Z,(X,0,D) "B} (X ,Q,D).

3.6. Subsequences of infinite chains. Let (X, ¢) be a metric space. D an
abelian group, and let ne Z.

THEOREM 8. A subsequence of an infinite chain is an infinite chain. More
precisely, if we C*(X, D) with majorant ¢, carrier Xo, and m: N 7 N, then
x-meCy (X, D) with majorant ¢-m, carrier X,.

Proof. Evidently 1 = x-me C¥(X, D) and A = %, € C:2 (X, D) for
ieN. Since e-m—0, ¢-m is a majorant for 1. And X, is a carrier
for A since V(4) € V(x).

THEOREM 9. Each subsequence-forming operator is a homomorphism of
the infinite chain group. More precisely, if m: N » N and %, € C*®(X, D),
then (x+x)-m = (x-m)+(x -m).

Proof. Let ie N. Then ((x+x)-m)(i) = (x+2x')(m;) while

(2 m)+(2' - m)) (i) = (3¢~ m) (D) + (2’ - m) (i) = % (m))+ 2 (my),
and these two expressions are equal.

THEOREM 10. The boundary operator commutes with each subsequence-
forming operator. More precisely, if m: N /' N and xe C*(X,D), then
d(x%-m) = (0x) - m.

Proof. For ie N, (3(x-m)) (i) = d((2¢ - m) (i) = d(xyq), and ((9x)-m) (i)
= (%) (m (i) = 0(ty).

THEOREM 11. A subsequence of an infinite cycle is an infinite cycle.
More precisely, if ye Z¥ (X, D) with majorant g, carrier Xy, and m: N N,
then y-meZy (X, D) with majorant g-m, carrier X,.

Prool. By Theorem 8, y-me Cy (X, D) with majorant ¢-m, carrier X,.
By Theorem 10, d(y -m)=(dy) - m=0.

THEOREM 12. A subsequence of an infinite boundary is an infinite bound-
ary. More precisely, suppose Y€ By (X, D) with majorant ¢, carrier X,, and
y = ﬂx, where xe Ci, (X, D) with majorant w, carrier Yo, and suppose
m: N2 N. Then y-meB, (X, D) with ma;o;ant_s m, carrier Xq, and Yy m
= x m), where x - meC,,H(X D) with majorant n-m, carrier Y,.
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Proof. By Theorem 8§, y-me Gy (X, D) with majorant ¢-m, carrier X,
and x-meC.. (X, D) with majorant n-m, carrier Y,. By Theorem 10,
d(x-m) = (%) -m = y-m so that ll-me_B,]"(X, D).

THEOREM 13. Corresponding subsequences of homologous cycles are homo-
IOJous More precisely, if Y~ d in X, where y,beZ{," (X,D), and if

m: N7 N, then y-m~3-min X.

Proof. Theorem 11 implics that y-m, §- meZ*(X,D). Now if y ~ §
in X, then y—8 e B? (X, D), and thus by Theorem 12, (y—§)- meB>* (X, D).
But by Thcorem 9, (y—=8)-m=(y-m)—(8-m), and therefore y-m ~ §-m
in X. ) ]

THEOREM 14. An infinite cycle is true if and only if it is homologous
to its tail. More precisely, if yeZ) (X, D), then yeZ,(X,D) if and only
if y~ti(y) in X, ) i

Proof. The definition of true cycle implies y € Z. (X, D) if and only if
¥ = i+ =y € By (X, D). But since y' = 51(2)_-‘)’ the latter condition is
satisfied if and only if Yy~ ti(y) in X, )

THEOREM 15, Each infinite boundary is a true cycle; thus infinite boundaries
are the same as true boundaries. More precisely, BY (X, D) < Z, (X, D); thus
BX(X,D)= B, (X,D).

Proofl. Il yeBy (X, D), then by Theorem 12, t,(y)e By (X, D) also.
Hence _—tl(y)eB“’(X D) so that y ~ t;(y) in X, and consequently by

Theorem 14, y € Z, (X, D). The equality of B* (X, D) and B, (X, D) follows
immediately since B! (X, D)n BP (X, D) by definition.

THEOREM 16. An infinite cycle homologous to a true cycle is true. More
precisely, if yeZ,(X,D), 6eZ;(X,D), and § ~ y in X, then e Z,(X, D).

Proof. Since § ~ y in X, Theorem 13 implies that t;(d) ~ t{(y) in X.
Theorem 14 implies that y ~ ty(y) in X. Thus we have d ~y in X,
y ~ t;(y) in X, and tl('yj ~ tl(é) in X. Transitivity of the relation
“~ in X” implies 8 ~ t;(§) in X, and consequently d€Z,(X, D) by
Theorem 14. '

THEOREM 17, A subsequence of a true cycle is an infinite cycle homo-
logous to it. More precisely, if yeZ,(X, D) and m: N/ N. then ym
eZy(X,D) and y-m ~ y. in X.

Proof. By Theorem 11, y-me Z;S (X, D). Since y € Z, (X, D) there exists
xeC¥ (X, D) with majorant n, carrier Yo, such that dx = {yipi—70-
We must show y-m—yeB;*(X,D). Now y-m—y = Y —7,» and

Yan =V = a1 =¥ +@ir2 =V )+ oo 0w = Yu-1)
which in turn may be written

(3KJ+("J<]+1 + ... +axm(j)— 1
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where x;€ Cpy (X, D),
%j+1€ G X, D), .. o Emp-1€ C""'U) (X, D).

If we let

7y = max {Nj, Ny+1s s Mmiy-1}>
then

Xjs Hjats o Xm(j)-1 € C:U+ 1 (X, D),
and hence

#p=utmj + . THwp-1 € Cl (X, D)

also. Now % = (%;>eC},{(X,D) and 0% = (0% = ('y,,,u, Y =y m—y.
It remains only to show that e C®, (X, D). Clearly Y, is a carrier for *
since V(%) € V(x) € Y. We show 77 = (7> is a majorant for # by proving
—0. Let Se R, be given. Since n - 0 there exists ioe N such that i > ig
implies 0 < #; < 6. Thus j = i “implies Njs Njsts o Mmiy—1 < 0 and so
iy < & also. This proves that ke C® (X, D) and therefore that y-m—y
= dxe B (X, D).

THEOREM 18. A subsequence of a true cycle is a true cycle. More
precisely, if yeZ\(X, D) with majorant ¢, carrier X, and m: N 7 N, then
y-r_n_eZ:,(X,_D) with majorant ¢-m, carrier X,.

Proof. By Theorem 11, y-me Z? (X, D) with majorant ¢-m, carrier Xo.
By Theorem 17, y-m~7y in X, and consequently by Theorem 16,
y'meZy(X,D).

3.7. A condition for homology of infinite cycles. Let (X, g) be a metric
space, D an abelian group, and let ne Z.

THEOREM 19. Let 9,y be elements of Zy(X,D). Assume there exists
a compact set Xo S X such that the following two conditions are satisfied:

(1) Y v V() € Xo.

(2) For eachne R, there exists ioe N such that i > iy implies y, v yiin Xo.

Then y ~ y" in X,.

Proof. For each ne R, let i(y) denote the least natural number i,
such that i > iy implies y; ~ 9 in X,. Then i = i(y) implies y, ~ Yin Xo,
or equivalently, i > i(y) implies there exists € C),,(X¢, D) such that
Ox; = y;—y;. It is clear from the definition of i(y) that 5, < n, implies
i(n,) = i(n,). We now apply these remarks to the case where the numbers
are reciprocals of natural numbers. For each ke N, i(l/k) i(1/(k+1)) so
that k+i(1/k) < (k+1)+i(1/(k+1)). If i > k+i(1/k), then i = i(1/k) and thus
there exists x; € C¥, (Xo, D) such that dx; = y;,—y;. We define a sequential
chain % = {(x%;>e C¥,,(X, D) and a sequence { = ({,) into R, as [ollows.
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Let b be an arbitrary point of X,. For 1 < i < 1+i(1), define 3 = b-(y;—7)
and let {; = 1+max {4(V(0)): ceZ(x;)}. Let ke N. For

k+i(l/k) < i< (k+1)+i(1/(k+1)),

define x; to be an element of CM¥, gXo,D) such that dx%, = y;~¥!, and let
¢; = 1/k. Thus for each ie N, »,eC,’, (X,, D) and 9x; = y,—v; moreover,
¢ = (> — 0. It follows that ¥ = {x;> € C;°,,(Xo, D) and dx = y—y’. There-
fore y ~ 7 in X,. S

Chapter 1V

Functions, mappings, and null translations

4.1. Homomorphisms of simple chains induced by functions. Let S and T
be sets and let f: S— T be a function. For each ¢ = [ay... q,]€ Z,(S)
we define f'(o) to be the simplex [f(ap)... f(a,)] € Z,(T). Thus f induces
a function f": Z,(S)— %,(T). Now let D be an abelian group. For each
x=d,o,+ ... +dyo,eCy(S,D) we define f“”(x) to be the chain
dif'(e)+ ... +df (6 )eCY (T, D). Tt is clear that f”(x+x") = f" (x)+f" (')
for all %, %’ € C,} (S, D). An easily proved theorem summarizes properties of 1.

THEOREM 20. Let S and T be sets and let D be an abelian group.
Each function f: S — T induces a homomorphism f": Cy (S, D) — C} (T, D)
such that the following conditions are satisfied:

(1) f" commutes with the boundary operator; that is, "0 = of":
Cy (S,D)— C, (T, D).

Q) [ carries cycles into cycles; that is, f"(Z) (S, D)) € Z; (T, D).

(3) f" carries boundaries into boundaries; that is, f"(By (S, D))
< B)(T. D).

@) id” = id; that is, if [+ S~ S is the identity function, then f":
CY (S, D) — C} (S, D) is the identity homomorphism.

(5) @) = ¢"f"; that is, if [+ R—= S and g: S = T are functions (where
R is a set), then (¢f)Y' = ¢"[": C}(R, D)= C) (T, D).

(6) f" interacts with the join operator J, (where beS) according to the
rule ["Jy = Jyg /72 CHS, D)~ Clyy (T, D).

4.2. Homomorphisms of sequential chains induced by functions. Lel §
and T be sets and let D be an abelian group. For each function f: §S—>T
we have defined a homomorphism f”: Cy (S, D) = C; (T, D). We now define
a function f"': C¥(S,D)— CX(T, D) by the rule f"({x)) = (" (%)) for
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each % = <x,>e C¥(S, D). It is easy to see that f” is a homomorphism.
This and other elementary properties of f*' are stated in the next theorem.

THEOREM 21. Let S and T be sets and let D be an abelian group.
Each function f: S —» T induces a homomorphism [": C¥(S, D) = CY(T, D)
such that the following conditions are satisfied.

(1) f™ commutes with the boundary operator; that is, f"0d = df"
Cr(s,D)— Cy- (T, D).

(2) [ carries cycles into cycles; that is, f"'(Z¥(S, D)) < Z¥(T, D).

(3) [ carries boundaries into boundaries; that is, [’ (B¥(S, D))
< B¥(T, D).

(4) id" = id; that is, if f: S~ S is the identity function, then [
C*(S,D)— C}(S, D) is the identity homomorphism.

(5) (gfy”" =g"f"; that is, if f: R—-S and g: S—> T are functions
(where R is a set), then (gf)"” = g"'/"": C¥(R,D)— C¥(T, D).

(6) [ commutes with each subsequence-forming operator; that is, if
m: N7 N and xe C¥(S, D), then " (x-m) = (" (%) m

4.3. Homomorphisms of &-chains induced by functioms. Let (X, ) and
(Y,¢') be metric spaces and let D be an abelian group. Suppose that
f: X - Y is a function (not necessarily continuous). For each ce R, we
know that 2, (X, ¢) € Z,(X). Thus the induced function f': XZ,(X)— Z,(Y)
defines a function f': X} (X, ) — Z,(Y). We also know that Ci(X, ¢, D)

< CF¥ (X, D) so that the homomorphism f": C* (X, D) — C* (Y, D) defines
a homomorphlsm J": Ci(X,,D)~ Ccr (v, D).

Now suppose that ee R, and ¥ = d,0,+ ... +dy0,€C:(X, 0, D). Let
n(x)e R, be such that #7(x) > max {4, (V(f’a,)): i=1,...,k}. Then f"(x)
=d, f'(e))+ ... +d,.f (o)) € C"""(Y 0, D) However, it may be false, even if
is continuous, that there exists # € R, such that f"(Ci(X, e, D) s ClY, @, D)
To prove this statement a simple may be constructed for the case X = Y= R,
by defining f(x) = 1/x for each xe€ X. On the other hand let ¢,7e R, and
suppose that g(u,b) < ¢ implies ¢'(f{(a), f(b)) < n, for all a,be X. Then
ceX,(X,o) implies f'(g)eZ)(Y,o) so that f' defines a function f":
L (X, 0) — ZN(Y, ). It follows that il ¥ € C5(X, g, D), then [ (x)e C!(Y, o', D)
and hence f” defines a homomorphism f": Ci(X,e,D)— CI(Y, ¢ D).
Because f” commutes with the boundary operator (by Theorem 20) we
see that f* carries e-cycles in X into #-cycles in Y and carries
e—boundaues in X into n-boundaries in Y. Thus f” induces a homo-
morphism f": H:(X,po, D) — H)(Y, o', D) defined by the rule /"([}])
= [f"(y)] for each [y]e H;(X,g.D). The following theorem summarizes
properties of f”.

THEOREM 22. Let (X, ) and (Y, @) be metric spaces and let D be an
abelian group. Suppose that for some ¢,ne R, a function f: X = Y satisfies
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the condition that o(a,b) < & implies Q’(_/’(a),f(b)) <n, for all a,beX.
Then the homomorphism f: C} (X, D) = C}¥ (Y, D) defines a homomorphism
[ Ci(X,a,D) - Ci(Y, ¢, D) such that the following statements hold:

(1) f"o=20o" Ci(X,g,D)~ C_,(Y,¢, D).

) ["(Zy(X,e,D)) = Z}(Y, ¢, D).

(3) f"(Ba(X, 0. D) = Bi(Y,¢, D).

@) f" induces a homomorphism f": H:(X, 0, D) — HI(Y, ¢, D).

44. Homomorphisms of infinite chains induced by maps. Let (X, ¢) and
(Y,¢) be melric spaces and let D be an abelian group. Suppose that
[+ X =Y is a map; that is, [ is a continuous function. Since C;*(X, g, D)
€ C¥(X, D) the homomorphism f*: C¥(X, D)— C*(Y, D) defines a homo-
morphism /" G (X, ¢, D) = Cx(Y, D). We will show that /"' (C* (X, o, D))
c C,/ (Y, ¢, D). Tt will then follow that f" defines a homomorphism
S CH (X, 0. D)y = CF (Y, ¢, D) which commutes with the boundary oper-
ator and which in turn induces a homomorphism f™: H*(X,o,D) -
- H! (Y, ¢'. D). We first prove a lemma.

THEOREM 23, Let (X, 0) and (Y, o') be metric spaces and ussume that X
is compact. Then for cach map f: X = Y and for each ¢ R, there exists
A/, e)e R, such that the following conditions hold:

(1) o(a,b) < ¢ implies ¢'(f(a), f(b)) < #(f,e) for all a,be X.

(2) 7(f.e)=0uase—0.

Proofl. Let f be a map of X into Y. For each ee R, we define n(g)
to be the greatest lower bound of the non-empty set S(¢) = {neR.: g(a,b) < ¢
implies o' (f(a), f(b)) < n for all a,be X}. That S(e) is non-empty is a con-
sequence of the compactness of X, for this in turn implies that f(X)
is a compact subset of Y and hence has finite diameter d = 4g'(f(X)).
Then for all a,he X, o'(f(a), f(b)) < d+1 so that d+1€eS(¢). It is clear
from the definition of #(¢) that if a, he X and g(a, b} < €, then ¢'(f(a), /(b))
< n(s). We prove now that n(e) » 0 as ¢ » 0. Let se R, be given. We must
show there exists re R, such that 0 < ¢ < t implies 7n(g) < s. Since f is
continuous on the compact set X, it follows that f is uniformly continuous.
Thus there exists te R, such that g(a,b) < t implies g’ (f(a),f(b)) < s/2.
Now supposc that 0 < ¢ <t. Il g(a,b) <&, then g(a,b) <t and so
o' (f(a), [(b)) < s/2. Then s/2€S(e) and consequently n(e) = glb S(e) < /2
< s. This proves n(g) -0 as ¢ — 0. We now define #(f,¢) = n(e)+e, for
each ce R, . Then condition (1) is satisfied since if a,be X and g(a,b) <&,
then o' (/(a), /(b)) < nle) < nie)+e = n(f, ¢, and condition (2) is satisfied
since as ¢ = 0, () = 0. and hence n(e)+¢ = 7(f, &) = 0.

Theorem 23 enables us lo prove the remark made earlier that
[7(Ci (X, 0. D) € CF(Y, @, D).

THEOREM 24. Let (X, ) and (Y, Q') be metric spaces and let D be an
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abelian yroup. Suppose that f: X - Y is a map. Then the homomorphism
S Ci(X, 0, D)= C¥(Y, D) satisfies the condition f’”(C,‘," (X,e0,D)
c Cr(Y,¢, D).

Proof Let xeC¥(X,o0,D) with majorant g carrier X,. Then by
Theorem 4, xeC,“,"(XO,Q,D) and hence for each ieN, »;eCli(X,, 0, D).
We must show f”(x) = {f"(x;)> is an element of C;° (Y, ¢, D). To do this
it is sufficient to show that (1) there is a sequence 75 into R, with n—0
such that for each ie N, f"(»;) Cl(Y, ¢, D), and (2) there exists a compact
set Yo S Y such that V(/”'(x)) € Yo. (1) Since X, is compact and the
restriction of / is a map of X, into Y, Theorem 23 may be applied. Thus
for each ie N there exists n = A(f, &)e R, such that for all a,beX,,
ela, b) < ¢ implies ¢'(f(a), f(b)) < n;. Moreover, 4 — 0 since ¢ — 0. Since
the hypotheses of Theorem 22 are satisfied (for X = X, & = ¢, 1 = 1) we
conclude that for each ieN, f” carries Ci(X,,0, D) into Cli(Y, o', D) and
hence f"(x;)e Cli(Y, o', D). (2) Let Yy = f(X,). Then Y, is compact since X,
is compact and f is continuous. And V(f"’(x)) € Y, since for each ie N the
condition V(x;) S X, implies that V(" () € f(X,) = Yo.

It follows from Theorem 24 that f' defines a homomorphism of
Cr(X,e,D) into Cr(Y,¢,D). We summarize properties of this homo-
morphism in the following theorem:

THEOREM 25. Let (X, 0) and (Y, ¢") be metric spaces and let D be an
abelian group. Suppose that f: X = Y is a mup. Then the homomorphism
S CY(X,0,D)~ CX(Y,D) defines a homomorphism [": C*(X, ¢, D)~
= CX (Y, @, D) such that the following conditions are satisfied:

(1) /"0 =of": CF(X,e,D) > Ci-, (Y, 0\ D).

2) f"(Zy(X,e.D)) = ZX(Y, ¢, D).

(3) (B (X, 9, D) < BF(Y,q, D).

(4) [ induces a homomorphism f': H®(X, o, D) — H*(Y, ¢, D).

(5) f"(2(X 0. D)) € Zi,(Y, ¢, D).

(6) f"(By(X,¢,D)) € By (Y, ¢, D).

(7) f" induces a homomorphism f"': H'(X, g, D)— H'(Y, ¢, D).

Prool. Only (5) requires further discussion. Suppose yeZ,(X, e, D).
Then t,(y)—yeBy (X, g, D) and (3) implies that I (e 1 ()= y)eB"’ (Y, ¢, D).
But f”'(t (y) P) =" (e ) =S () =t (f"()- f’”(y where the Ilast
equality is obtained from pd.lt (6) of Theorem 2I. Then f, (/" (y) -
—f”’(y)eB;f’(Y, ¢, D) and this is equivalent to the statement j'”’-(y)e
eZy(Y, ¢, D). )

From this point on we shall usually delete the notations AR AR
[, ] and refer to all of these lunctions simply as f.

)

4.5. Topological invariance of the ceneral and Vietoris homology groups.
Let X be a metrizable topological space and let D be an abelian group.
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We show first that the general and Vietoris homology groups of the metric
space {X, o) are independent of the choice of the metric g, provided g
is a metric which induces the given topology for X. To prove this we
suppose that ¢ and ¢’ are metrics for X both inducing the given topology.
We know that C* (X, 0, D) and C¥(X, ¢, D) are subsets of C¥(X, D). The
identity function ¢: (X, g) - (X, ¢’) is continuous and thus by Theorem 25
induces a homomorphism ¢"": C¥ (X, o, D) - C¥ (X, ¢', D). Moreover, ¢’ is
the identity homomorphism by Theorem 21. It follows that C (X, ¢, D) and
Cr(X,o', D) are the same subset of C¥(X,D). If yeZy(X,e,D), then
yeC®(X,0,D) = C®(X,0,D) and dy,=0 for each ieN, so that
yeZ#(X, @, D). Conversely Z*(X,o,D) S Z*(X, 0, D). If ye B*(X, 0, D),
then yeZ; (X, ¢, D) = Z;*(X, 0, D) and y = 0x for some x€ C4, (X, ¢, D)
=Ch,(X,0,D), so that yeBr(X,o,D). Conversely By (X,¢,D)
< B®(X,p,D). It is an immediate consequence of these statements that
Hr(X,e,D)= Hy(X,¢,D). Suppose now that yeZ,(X,e¢,D). Then
yeZP(X,0,D)=2Zy(X,¢,D) and t((y)~yeBy(X,¢,D)= By (X,¢, D),
so that yeZ,(X, ¢, D). Conversely Z,(X, o', D) € Z, (X, ¢, D). Moreover,
B.(X,g,D) = B®(X,0,D) and B(X,¢,D) = B*(X, g, D) by Theorem 15,
so that B! (X, ¢, D) = Bi(X, ¢, D). Consequently H:(X, 0, D) = H}(X, @', D).
Thus we have the following theorem:

THEOREM 26. Let X be a metrizable topological space and let D be an
abelian group. Suppose that ¢ and @' are metrics for X both of which induce
the given topology for X. Then the following statements hold:

(1) €7 (X, e, D) = C7 (X, ¢, D).

2) Z¥(X,¢,D) = ZF (X, ¢, D).

(3) By (X, o, D) = By (X, 0, D).

4) HX(X,e,D)= HZ (X, ¢, D).

(5) Z,(X,e,D) = Z,(X, ¢, D).

(6) By(X, ¢, D)= B,(X, ¢, D).

(7) Hy(X, 0, D) = H}\(X, ¢, D).

Now the topological invariance of the general and Vietoris homology
groups can be established. Let (X,g) and (Y, o) be metric spaces and
let D be an abelian group. Suppose that h is a homeomorphism of (X, @)
onto (Y,¢’). It will first be shown that C7?(X,e,D) is isomorphic to
C*(Y, ¢, D). We use the homeomorphism h to carry the metric ¢’ for Y
back to a new metric  for X. That is, we define 3 (x,, x;) = ¢'(h(x,), h(x,))
for all x,, x,€ X. Then § is a metric for X and since h is 2 homeomorphism,
o and ¢ induce the same topology for X. Thus by Theorem 26, C (X, ¢, D)
= C®(X,0,D). It is easy to see that C;(X,@,D) is isomorphic to
Ce(Y, ¢, D). This follows from the fact that h is an isometry (that is,
a distance-preserving homeomorphism) of (X, ) onto (Y, ¢’). Then the
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composition of the identity isomorphism of Cy'(X,¢, D) onto Cr(X,o,D)
and the isomorphism of C,(X,@,D) onto Cy(Y,¢’, D) induced by the
isometry h is an isomorphism of C,(X,g, D) onto C;(Y,¢', D). We note
that the last-mentioned isomorphism is in fact the homomorphism h"":
C/(X,0,D)— C;(Y,¢, D) described in Theorem 25. Then h'" carries
Z*(X,0,D) onto Zf(Y,¢,D) and B;°(X,,D) onto By(Y, o', D) thus
inducing an isomorphism of the quotient groups, that is, of H, (X, e, D)
onto H/ (Y,o. D). Moreover, h" carries Z,(X.0,D) onto Z,(Y,0. D)
and B'(X,o,D) onto B.(Y,¢',D) similarly inducing an isomorphism of
H'(X,o0,D) onto H.(Y, ' D). These facts are summarized in the [ollowing
theorem:

THEOREM 27. Let (X, 0) and (Y, @) be metric spaces and let D be an
abeliun group. Suppose that h is a homeomorphism of (X, ) onto (Y,¢).
Then the homomorphism W": C)(X,@,D)— Cr(Y, ¢, D) is an isomorphism
of Cx(X.0.D) onto C*(Y,¢@,D). Moreover, h"" induces isomorphisms of
H? (X,0.,D) onto HX (Y, 0. D) and of H}(X.o,D) onto H,(Y, ¢, D).

4.6. Non-equivalence of the general and Vietoris homology groups. Let
(X,0) be a metric space and let D be an abelian group. We shall prove
that if the general homology group H, (X, D) is not trivial and if the
Vietoris homology group H; (X, D) is finite, then these two groups are not
isomorphic. This result will enable us to mention some specific examples
of spaces and coefficient groups for which the general homology groups
differ from the Vietoris homology groups. We begin by proving a lemma.

THEOREM 28, Let (X, 0) be a metric space and let D be an abelian group.
If Z*(X,D) = Z'.(X, D), then Z*(X, D) = B*(X, D).

Proof. Assume ZP (X, D) # B (X, D). Then there exists an infinite
cycle y = {9y, 72,...76 Zy (X, D) such that y is not homologous to zero in X.
It follows that the infinite cycle y = <y,,0,7,,0,...) is not true. That is,
if we define y; = 0 when i is even and y; = y;4+1)2 when i is odd, then
v = ¢ Z,(X, D). For if y'eZ,(X, D), then

V' =t1y = <¥1, =2, Y2, —V3sY3....» € By (X, D)

and consequently ye By (X, D) by Theorem 12 since y is a subsequence of

y'—t;y". This contradiction proves that Z;°(X, D) # Z,(X, D).
We may now prove the result mentioned at the beginning of the section.

THEOREM 29. Let (X, g) be a metric space and let D be an abelian group.
Assume that HX(X,D) # 0 and that the group H.(X,D) is finite. Then
HY (X, D) is not isomorphic to H,(X, D).

Proof. Let B denote the group B?(X,D)= B,(X,D). Then
Be Z)(X,D)y<s Z¥(X,D). The assumption H(X,D)# 0 implies that
Z' (X, D)y # B? (X, D) and hence by Theorem 28 that Z* (X, D) # Z,(X, D).
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Thus Z, (X, D) is a proper subgroup of Z; (X, D). It follows that H}(X, D)
= Zy,(X,D)/B is a proper subgroup of H;(X,D)= Z*(X,D)/B since
(Zx (X, D)/B)/(Z,(X, D)/B) is isomorphic to Z* (X, D)/Z. (X, D) by a stand-
ard isomorphism theorem. If H}(X, D) is finite the conclusion of the
theorem now follows since a finite group cannot be isomorphic to a group
which properly contains it.

It is a consequence of Theorem 29 that any choice of (X, ), D, and n
for which H; (X, D) is finite and non-trivial will provide an example where
HY (X, D) is not isomorphic to H}(X,D). We appeal to some classical
results to establish the existence of such examples. Lefschetz [19] has proved
that for the case of a compact metric space X, each Vietoris homology
group H! (X, D) is isomorphic to the corresponding Cech homology group
A,(X, D). Moreover, for the case of a polyhedron (the point set of a finite
simplicial complex) it is well known that each Cech homology group is
isomorphic to the corresponding simplicial homology group. Thus for example
HP (8% F) is not isomorphic to H,(S* F), where S§* is the k-dimensional
sphere and F is any non-trivial finite abelian group. That the coefficient
group need not be finite in such an example is shown by the fact that

®(P?,Z) is not isomorphic to H'(P? Z), where P? is real projective
2-space and Z is the group of integers. In fact H' (P2, Z) is isomorphic
to Z,, the group of integers modulo two.

4.7. The homotopy theorem. In this section we prove a version suitable
for Vietoris homology theory of the classical proposition that homotopic
cycles are homologous. We begin by proving a theorem which is a slight
generalization of a lemma due to Borsuk [6].

THEOREM 30. Let (X, 0), (Y,0') be metric spaces, D an abelian group,
and let f and g be functions (not necessarily continuous) from X into Y.
Assume that for some pair of numbers e,neR, the following statements
hold: (1) If aeX, then o' (f(a),g(a)) < n. 2) If a,beX and g(a,b) < &,
then ' (f(a), f(b)) < n and @'(g(a), g(b)) < n. Then for each ne Z and each
yeZ,(X, D), f(v),9(v)e ZW(Y, D) and f(y) 3 g(v) in Y. Moreover, there exists
a chain peC2 ((Y,D) such that ou = g(y)—S(y) and such that V(u)
< V(f() v V(g»).

Proof. Let yeZ:(X, D) and suppose that the unique representation of
yisy =d,0,+ ... +d,0,. Assume that the vertices of the simplexes o, ..., g,
have been ordered in some way so that we may write V(y) = {ay, a3, ..., a,}.
For j =0, 1,...,m we define a lunction f;: X — Y by the rule fj(x) = g(x)
if x=ay,...,a; and f;(x) = f(x) otherwise. We note that each f induces
a function f;: Zi(X) - Z, Y and a homomorphism f;: C;(X,D) - C, (Y, D)
as described in Section 4.3. Also by condition (2) of the hypothesis
f and g induce functions from Zi(X) into Z}(Y), and Theorem 22 implies
that f and g induce homomorphisms {from C;{(X, D) into Ci(Y, D) such that
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fy), gly)eZi(Y, D). We see from the definition of the f; that fy = f so that
fo(¥) = f(y), and that f,(a) = g(a) for i = 1,..., m so that f, () = g(y). Also
if 0 <j < m, then fj(x) = f)+, (x) for each x # a;,, and fj(a;+1) = f (a;4,),
fi+1(a;41) = g(a;+,). Now for each simplex o; of y we define V; to be the set
V(f(e)) v V(g(ay). It follows that V(fj(o)) SV, for j=0,1,...,m, and
that U {V;: i =1,...,k} = V(f() v V(g(y). Conditions (1) and (2) of the
hypothesis imply that 4, (V) < 2 for each i since 4,(V (o)) < e. Con-
sequently f;(o)eZ¥(Y) for j=0,...,m and i=1,...,k so that fi(y)e
e C2"(Y, D). Of course g (y)e C2"(Y, D) also. Therefore f(y), g(y), and all f;(y)
for j = 0,...,m are element of Z3"(Y, D). For each j (0 < j < m) we wish
to show that fj,,(y)—f;(y) is the boundary of a 2#-chain in Y whose
vertices lie in the set V(f(y)) U V(g(y)). We begin by writing y in the form
y = a4 %+4, where x€ C;_ (X, D), Ae C;;(X, D), and a;, is not a vertex
of » or of . Now y is a cycle so that d(a4, x+1) = d(y) = 0. But by
statement (2) of Section 2.4, d(a;+, - %+ 24) = %x—a;,, - 0x+0i. Hence a;, - 0x
=x%+0A. We know a;,, is not a vertex of the chain x+d4 nor of the
chain Ox. If dx # 0 we have the contradiction that js1 is a vertex of
aj4,0x. Thus dx =0 and hence x is a cycle, that is, x€Z,_,(X, D).
It follows immediately that f;(x) is a cycle, that is, f,(x)eZ (Y, D).
To obtain an expression for fj;;(y)—f;(y) we write

Si+1M=L0) = fre1(ayer %+ D—f1(a)41 - x+ )
= fj+1(aj+1 : x)+.f:i+1(}~)—f}(aj+1 ”)—f_}('{)
= fi+1(@141)  Si+1 00— fi{aj+ 1) ;%)
= fr+1(ape1) - [0 = fi(aj4 1) - £;(0).

In this computation we have twice used fact that f; and f;,, must agree
on a chain which does not have a;,, as a vertex, and we have also made
use of part (6) of Theorem 20. In view of the expression obtained for

Ji+1 () —f;(y) we now define w; = fi(aj+1) - fi+1(a;41) " f (®)e Ca+ 1 (Y, D). To
compute du; we appeal to formula (2) of Section 2.4 and write
al-l_,' = a(f}(“}ﬂ)‘fjﬂ (aj+l) fj(’f))

= fj+1(aj+1)'fj(%)_]}(aj+1)'a(]}+1(aj+1)'fj(“))

= fj+1(aj+1) ‘fj(")—fj(ajﬂ)'(fj(")—fjﬂ (aj+l)'afl(x))

= fi+1(aj+1) 00 —fi(ag+ 1) - f;(%),
where the last equality follows from the fact that fj(x) is a cycle. The
previous two computations yield the result du, = f;.,(y)—f;(y). We show
now that p;e C74,(Y, D) and that V(u) = V(f(») v V(g(y). Suppose that
€2 (). Then since p; = fi(a;+1)-fj+1(a;4+4) fj(x), © is of the form

Ji(@+1) - fiv1(aj+1)- fj(6), where o € X (x). But if o e X (x), then a4, 0€X(y);
say dj.1-0 = 0;. We know V; contains all vertices of fj(s;) and f}+,(c)
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and therefore V; contains all vertices of t = fj(a;.,)- Si+1(a541) - f;(0); that is,
V(t) € V. Thus 4,(V (1)) < 27 since A4, (V) < 2. Then for each PAHR
4y(V(1) < 2nand V(r) € U {¥: i = 1,..., k}. Therefore uy e CLy (Y, D)y and
Vi) s U{Vei=1,..,k} = V(f(3) U V(g(y)). The final step of the proof
consists of combining the chains y; to form a chain g which will satisfy,
the conclusion of the theorem. For this purpose we define u = po+py + ...
.o tm-1. Then peCRl (Y,D) since each p;eC2L,(Y,D), and V(w)
S V(f(») v V(g(y) since for each j, V(u) = V(f(y)u V{g(y)). Moreover,

O = Ao+ ... + 0y,

= (/1 ()’)—fo ('}’))'*‘ e +(fm('y) _fm-l (?))
=M= =g —/().

It follows immediately that f(y) > g(y) in Y. This completes the proof of
the theorem.

Now we apply Theorem 30 to obtain a proof of the theorem about
homotopic cycles mentioned at the beginning of this section. First, if
¢: §~ T is a function and A4 is a subset of S, the symbol ¢|A4 denotes
the restriction of ¢ to A; that is, ¢|A is the function from A into T
defined by the rule (¢|A4)(x) = ¢(x) for each x € 4.

THEOREM 31 (homotopy theorem). Let (X, g), (Y, o) be metric spaces,
D an abelian group, and let f and g be maps of X into Y. Suppose that
YEZS (X, D) so that f(y), g()eZy (Y, D). If f1X, is homotopic to g|X,
in Y for some carrier X, of v, then f(y) ~ g(y) in Y.

Proof. By hypothesis there is a compact set X, S X such that X, is
a carrier of y and f| X, is homotopic to g|X, in Y. Hence there is a map
@: XoxI =Y (where T denotes the unit interval [0, 1] € R) such that for
each xe Xo, @(x,0) = f(x) and ¢@(x,1) = g(x). We note that XoxI is
a compact topological space and that its topology is given by the metric g
defined by the formula g((x, ), (x', t)) = (e (x, x')* +[t —t'|?)"/2 for (x,t),(x, t")e
€ XoxT. Thus @(XoxT) is a compact subset of Y since ¢ is continuous.
Also ¢ (X, x T) contains the set V(f(y)) U V(g(y)) because f(X,) and g(X,)
are subsets of ¢@(XoxI). According to Theorem 19 we may conclude
f(9) ~ g(y) in @(XoxI) (and hence in Y) provided we show that for each
neR, there exists ipe N such that i > iy implies f(7)) 3 g(:) in ¢ (Xox 1)
Let ne R, be given. The compactness of X, x I implies that ¢ is uniformly
continuous. Thus there exists ¢e R, such that if (x, ), (x, t)e Xox T and
0((x, 0, (x', ) < &, then ¢'(p(x, 1), ¢ (X, 1)) < n. In particular if x, x'e X,
and g(x,x') <&, then for each tel, o'(p(x,t),@(x,t) < 5. Now let
lortisen in€Tbechosensothat0 = t, <t < .. < t, = land |t;~t4,| <&
for j =0,1,...,m—1. Then for each xe& X, ¢'(p(x,1), @ (X, t;41)) < 5 for
j=0,1,...,m—=1. For each such value of j we now define a function
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i;: Xo— Xox{t;} by the formula i,(x) = (x, t;), and we denote the composite
function ¢ -i; by the symbol f;. Thus for j = 0,1,..., m— 1 we have a func-
tion fj: X, — Y satisfying the condition f;(x) = ¢(x, t;) for each xe X,.
We note that fy = f|X, and f, = g|X,. For j=0,1,...,m—1 we shall
apply Theorem 30 to the functions f; and f;,; [rom X, into Y. We must
show that conditions (1) and (2) of the hypothesis of Theorem 30 are
satisfied. Condition (1) requires that for each x e X,, o' (f;(%), fi+1 (X)) < 7.
Since f;(x) = @ (x, t) and fj4, (x) = @(x, t;4,) it follows that ¢’ (f;(x), fj+1(x))
= 0'(p(x.t), @(x,t;+ ) and we have observed above that o’(p(x,t), @ (x,t;+,))
<. Condition (2) requires that if x,x'e€X, and ¢(x,x’) <e, then

o' (f;(x), f;(x")) < n and g (,’,J,l(x),fJJ,1 (x)) < n. Now we have observed
above that under these assumptions o'(@(x, t), ¢(x’,t)) < n for each tel.
The desired conclusion follow since

o' (f;(x), f;(x)) = &' (p(x, 1)), @ (x', t))
and
Q’(.f:f+1(x), Ji+1 (x')) = Q’(‘P (%, tje1), P (x, tj+l))'

Thus conditions (1) and (2) are satisfied. We conclude from Theorem 30
that if yeZ;(X,, D), then f;(y), fi+1(y)eZ}(Y,D) and there is a chain
pe CHL (Y, D) such that du = fi+1(y) L(v )and V{(u) = V(fJ NV (fi+1 ().
The latter condition implies that V(u) is contamed in the compact set
o (XoxI) so that peC2l,(p(XoxI),D). Thus for j=0,1,..,m—1,
Ji0) 5 fi+1() in @ (XoxT) whenever yeZ;(X,,D). By the transitivity of
this ho_l_nology relation we conclude that f(y) = fo(p) 5 fu(® =g In
@ (Xox1) provided yeZ;(X,, D). Now for sufficiently large values of i,
it will be true that y,€Z;(X,, D) so that the condition f(y;) 5 9 in
¢(Xox 1) will be satisfied. Therefore as remarked at the begmmng of this
proof, Theorem 19 enables us to conclude that f(y) ~ g(y) in (p(XoxI)
and hence in Y. ! )

The following corollary to Theorem 31 is easily proved.

THeOREM 32. Let (X, ) be a metric space and D an abelian group.
If the topological space X is contractible, then Z® (X, D) = B* (X, D).

4.8. Null translations. Let (X,¢) be a metric space and D an abelian
group. If f= (f;> is a sequence of functions from X into X, we shall
write f: X=Xor {3 X>X provided no confusion is likely to result.
Suppose that J: X - X and there exists 1 = {n;) € R+ with n — 0 such that

o(x, fi{x)) < n; for each xe X, ieN. Then J is called a null translation
of X with majorant n. It is clear from the triangle mequahty that for each
eeR., if g(a,b) < ¢, then g(fi(a), fi(b)) < e+27; for ie N, since

e(fita), i) < o(fi(a), a}+a(a, b)+e(b, £i(b)).
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Thus f; induces a homomorphism f;: C;(X, D) - C:*2"(X, D) as described
in Theorem 22, and, moreover, f;0 = df;: C;(X, D) — C:*}"(X, D). Suppose
now that ¥ = (%;) € C;° (X, D) with majorant g, carrier X, so that for each
ieN, %;€C;i(X, D). Then for each ieN, f;(%;)eCii*?"(X,D). We denote
the sequence fi(%)> by f(x) or (f;> (x). The following lemma will enable
us to prove that f(x) is itself an infinite chain.

THEOREM 33, Let (X, @) be a metric space and D an abelian group.
Let f: X —» X be a null translation and let xe CP (X, D) with carrier X,.
Then the set Xqu |J {V(f,- (%)) ieﬁ} is compact.

Prool. Let # be a majorant for f. For each ie N let Nn;(X,) denote
the 7, neighbourhood of the set X,; that is, Nn;(X,) = {xeX: o(x, xo) < 1
for some xo€ X,o}. It is clear that for each ie N, V(fi(x:)) € Nni(X,) since 5
is a majorant for f and since V(x) S X,. Suppose that {Ua: ae A4} is an
open covering of the set Xou {J {V(fi(%)): ie N}. Some finite subcollection,
say Uw,y,..., Uy, covers X, since X, is compact. The set W = (}{Ua;:
j=1,...,k} is an open set containing X, and hence W contains each
of the sets Nu;(X,) for sufficiently large i, since n— 0. It follows that for
sufficiently large i, say i > iy, W contains each of the sets V(f;(x)). Since
there are only finitely many vertices in the set {J {V(f;(¢): i = L,...,ip—1}
we may choose a finite subcollection of {Ua: ae A}, say Usysq, ..., Uay,
containing these vertices. The sets Uay, ..., Uay, Uty y, ..., U, form a finite
subcollection of {Ua: ae A} whose union |J{Ug;: j=1,...,9} contains
Xou U V(filx): ie N}.

The following theorem is now easily proved.

THEOREM 34, Let (X, @) be a metric space and D an abelian group.
Suppose that [: X — X is a null translation with majorant n. If xe Cy(X,D)
with majorant ¢, carrier X,, then f(x)e Cy(X,D) with majorant e+ 21,
carrier Xou U {V(fi(x)): ie N}.

THEOREM 35. Let (X, @) be a metric space, D an abelian group, and
let f: X—> X be a null translation. Then f induces a homomorphism
f: C*(X,D)— C®(X,D) such that the foIloinng conditions are satisfied:

(1) f commutes with the boundary operator; that is, f0 = df: CF(X,D)—
- C*.,(X, D).

(2) f carries cycles into cycles; that is, f(ZX(X,D)) & Z¥(X, D).

(3) / carries boundaries into boundaries; that is, f(By (X, D)) € BX(X, D).

Proofl. Theorem 34 implies that f is a function from C,; (X, D) into
C*(X,D). To show that f is a homomorphism we must prove that
fx+2) = fx)+S() for all x,AeCy(X,D). Now f(x+4) = {fi+4)
and f(x)+f(A) = {J;(¢)+£;(A4))>. The required equality follows from The-
orem 20 according to which f;: C%(X, D) » C* (X, D) is a homomorphism
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for each ie N. To show that condition (1) holds we must prove that
f(cx) = ([ (%)) for each xe C,; (X, D). Now [(dx) = {fi(03x;)> and H([(g))
= (P(j;(x,-)j). The desired result again follows [rom Theorem 20 which
implies that for each ie N the homomorphism f;: C; (X,D)— C; (X, D)
commutes with the boundary operator. Finally it is an immediate con-
sequence of condition (1) that conditions (2) and (3) are also satisfied.

It is easy to see that a null translation which carries a subset into
itselfl may be regarded as a null translation of the subset. Thus we have
the foliowing theorem:

TieOREM 36. Let (X, @) be a metric space and let f: X — X be a null
translation with majorant n. Suppose that A is a subset of X and that for
each ie N, f,(4) S A. Then [ defines a null translation [ A— A with
majorant n. More precisely, if for each ieN, a function g;: A~ A is
defined hy— the rule gi(x) = fi(x) for each xe A, then g: A— A is a null
translation with mdjorant n.

THEOREM 37. The composition of null translations is a null translation.
More precisely, let (X, g) be a metric space and suppose that f: X — X
is o wnull translation with majorant n and g: X - X is a null translation
with majorant {. Then the compositi—on g-f of f and g which is defined

10 be the sequence {g,-f,>: X = X is a null translation with majorant n+¢.

Proof. Evidently for each ie N, g;-f; is a function from X into X.
Thus we need only show that for each ieN and each xelX,
o(x.gi- fi(x)) < m;+{;. This follows from the triangle inequality; that is,
e(x.gi- fix) < ofx, fitx)+e(fi(x), gi (fix)) where o(x, fi(x)) < n; and
Q(j,i(x), i (f,-(x))) < {j since n and { are majorants for f and g respectively.

The following theorem suggests the usefulness of the concept of null
translation. Its proof emplovs the generalized Borsuk lemma, Theorem 30.

THEOREM 38. A null translation carries each infinite cycle into an infinite
cycle homologous to it. More precisely, let (X, o) be a metric spuce, D an
abeliun group, and suppose that f: X — X is a null translation. If yeZy (X, D)
(und hence SWEZY (X, D), then f(y) ~ in X.

Proof. Suppose that y has majorant g carrier X, and that f has
majorant n. Let id denote the identity function from X into X. For each
ie N we shall apply Theorem 30 to the functions f; and id from X into X,
replacing ¢ by & and n by & +2n,. Condition (1) of the hypothesis of
Theorem 30 is satisfied since for each xe X, ¢(/fi(x),id (x)) = ¢(x, fi(x))
< n; < &+ 2n;. Condition (2) is also satisfied since if «, he X and ¢(u, b) < ¢;,
then ¢(fi(a), fi(b)) < &;+2n, as noted previously. and g (id («), id (h)) = o(u, b)
< &; < g+2n;. Thereflore we may conclude from Theorem 30 that if
7. €Z,(X, D), then fi(y) and id (y;) = y, are elements of Z.i*2"i(X, D) and

fi(hi) 4, 74y, Vi in X. Moreover, there exists a chain 1 eCiT™(X, D) such
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that dw; = y;—fi(y) and such that V(w) € V(y) W V(fi(n) S Xo U V(/i(y)-
Now letting u = {;) we see that the scquence (2¢;+4#;> is a majorant
for u. Also V(u) is contained in the set Xou (J {V(fi(y)): ie N and hence
this set is a carrier for u since it is compact according to Theorem 33.
Thus peCy (X, D). Moreover, du = () = {yi—fi(y)> = y—f(y), and
consequently f(y) ~ y in X.

Chapter V

The Phragmen-Brouwer theorem

5.1. Introduction. The first theorem of this chapter is the classical
Phragmen-Brouwer theorem for compact metric spaces [2]. The proof
given here is essentially similar to that outlined by Borsuk [6]. It is
included for the sake of completeness. References to this proof occur in
the proof of the second theorem, which is an extension of the Phragmen-
Brouwer theorem to arbitrary metric spaces.

THEOREM 39. Let X and Y be compact subsets of ua metric space (M, Q)
und let D be an abelian group. Suppose there is a cycle yeZy (XY, D)
such that y¢ By (X NY,D) but yeB,”(X,D) and yeBY (Y, D). Then there
is a cycle 0eZ) (X VY, D) such that ¢ BY (X v, D).

Proof. Suppose that yeZ; (X*n Y, D\B;(X nY, D) and ye B (X, D)
M BZ (Y, D). Since y e B¥ (X, D) there exists A€ C2, (X, D) such that 94 =y,
and since ye By (Y, D) there exists peCyyy (Y, D) such that du =7y. Let
d=A—p. Then deCs (XUY,D) and in fact §eZZ (XY, D) since
3(8) = d(A—p) = y—y = 0. We shall prove that ¢ B (XU Y, D). Let us
assume the contrary, that is, that deB/ (X U Y, D). Then there exists
a chain xeC/,,(XuY,D) such that dx = §. We first construct a null
translation f: X U Y — X uY which carries X into X and Y into Y, and
which has the further property that each simplex of f(x) lies entirely
within X or entirely within Y. Now X and Y are compact sets and
XNnY#@ since yeZ/(XNY,D\B(XNnY,D). Also XnY # X since
yeB/ (X, D\B/ (XN Y,D), and X nY #Y since yeB,(Y,D\BS (X nY,D).
For each je N let U; be the 1/j neighbourhood of X NY in X U Y, that is,
Uj=lueX uY:glub)< 1/jfor some be X Y} Since X\U; and Y\U,
are disjoint compact sets, there exists ajeﬁ+ sluch that o(x, y) ?.a,‘ whenever
xe X\U; and ye Y\U;. And there exists ije N" such that x,€C, (X v Y,D)
whenever i > i;. We may assume that the sequence | = (i;> is strictly
increasing. Because X NY is non-empty and compact, there is for each
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aeX uY at least one point of X nY nearest to a. Thus we may define
a function go: XY —> XnNY by selecting for each ae X UY some g,(q)
e X n'Y for which the distance g¢(a, go(a)) is minimum. Now for each j eN
let g XUY > X0UY be the function defined by the rule g,(a) = a if
ae(X UY\U, and g;(a) = go(a) if ae Uj. It is clear that g(a,g;(a) < 1/j
for each ae X U'Y and that g,(X v U) € X and g¢,(Y v U) < Y. Suppose
that i > i; so that %,€Cl (X UY, D), and let 0eX (). Then V(e) S X UY
and 4o(V(0)) < ¢;. It follows that V(o) = X UU; or V(o) € YU U, and
consequently g;(V(s)) € X or g,(V(0)) S Y. We are now ready Lo define the
desired null translation f: XUY—>XuY. For each ieN and each
ae X UY, let fi(a) =gola) if i <i; and let fi(a) = g;(a) if i; <i<ij.
Then f; is a function from X uY into XuY and for each ae X U,
o(a, fila) < 1+do(XuUY) if i <iy and ofa, file)) < 1/j if i < i< ijy,.
Therefore f=(f>: XUY - XuY is a null translation with majorant
n = (n,) defined by the rule n, = 1+4g(X v Y) if i <i, and 5, = 1/j if
i < i< iy, ForeachieN itis clear that f;(X) S X and f£;(Y) € Y, and
that if o€ 2 (%;), then V(f;(s)) X or V(fi(s)) = Y. According to Theorem
35, for each geZ, J induces a homomorphism f: CP(X VY, D)—
- CX(X v Y, D) which commutes with the boundary operator. Moreover,
according to Theorem 36, since for each ie N, f;(X) € X and f(Y) S Y,
f defines null translations f: X - X, f: Y—-Y, and /1 X nY—>XnNnY.
These null translations again by The—orem 35 induce homomorphisms
fi C2(X, D)~ C2(X,D), f: C=(Y, D)~ C(Y,D), and f: C*(X nY,D)-
- C“U (X Nn'Y, D), respectively, each of which commutes with the boundary
operator In fact each of these homomorphisms is defined by the first-
mentioned homomorphism f: CF(X v Y,D)— CF(X v Y, D). Let the im-
ages of %, 9, 4, y, y under the homomorphisms J be denoted by %, 8, 4,
f, ¥ respectively. “Then the above remarks 1mply that %, e C> ,(X L Y, D),
5.0eZ% (X UY,D), A, leC® (X, D), i, peC (Y, D), and y,7eZy x
x(X NnY, D). Moreover, dx = § implies dx = $ since a(f(x) = f(dx), and
=A- 1mp11es é = Z j (since f is a homomorphism), and hence
0% = l . Also y = 04 = du implies y = 2k = djt since f commutes with
the boundary operator. By applying Theorem 38 to the null translation
fiXNnY—>XANY and to the cycle yeZ (X nY, D) we find that 5 ~ y
in X nY. It follows immediately that_?¢B“‘ (X nY, D). The final portion
of the proof of the theorem will consist of deducing that yeB“’ (X nY, D),
thus providing Lhe required contradiction. Since for each ie N, cgeX(xn)
mnplies that V(fi(a)) € X or V(fi(0)) S Y, it lollows that e X (%,) implies
lhdt V(a) S X or V(6) € Y. Thus we may represent #; uniquely in the form
i = % ~%, where E(NHUZ@EN = Z(®R), V(& )C X, and V(@) c Y\X.
In lhlS way we obtain two mﬁmte chams 2= &Hece , (X, D) and
= e C+2 (Y, D) such that % = #*—%" and consequently 9% = 9z*

-

—ax Then 1—j = 0%°— %" since as we have noted previously, A— U=

I%

lon
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where i — oz ec”,(x D) and g—3%"eCy, (Y, D). It follows
eC7. (X NY,D). Moreover, 8(2—0%") = di—0d0%* = dk = 5. Th
obtain the contradiction that e B;° (X nY, D).

)

5.2. The Phragmen—Brouwer theorem for non-compact spaces. The fol-
lowing theorem is an extension of Theorem 39. The restriction that the
subsets X and Y of the metric space (M,g) be compact is replaced by
the weaker requirement that X and Y be closed subsets of (M,g). The
prool is based on the statement and proof of Theorem 39.

THEOREM 40. Let X and Y be closed subsets of a metric space (M, g)
and let D be an abelian group. Suppose there is a cycle yeZ® (X nY, D)
such that y¢ By (X nY, D) but yeBy (X, D) and yeB;"(Y,—D). Then there
is @ cycle §eZ%, (X U Y, D) such that §¢ B>, (X UY,D).

Proof. Suppose that ye Z° (X n'Y, D\B? (X nY, D) and ye B’ (X, D) n
A B2 (Y, D). Since ye B (X, D) there is a chain lXEC".,_l(X_ D) such that
y = 0A*. Let X, be a carrier of A* in X. Then A'eC% ,(X,,D) and
YE€BY (Xq, D) € Z;¥ (X,, D). Smularly since ye By (Y, D) there is a chain
A"eCE, (Y, D) such that y = 8". Let Y, be a carrier of 2" in Y. Then
A'eC® ,(Y,, D) and yeB‘”(YO,D) c Z2(Y,, D). We note that X, and Y,
are compact sets and that X,nY, € XNnY. And yeZP(X,n Y,, D) since
yeZP (X, D)YNZZ(Y,, D). Moreover, y¢ B® (X, N Y,, D) for otherwise we
would have y€BY (X nY, D). Thus the hypothesis of Theorem 39 is satisfied
for the case ol the compact sets X, and Y, and the cycle y. It follows
that there exists a cycle 8 € Z%,, (X, U Yy, D) such that §¢ B®,, (Xo v Yy, D).
In fact we see from the proof of Theorem 39 that we may take § to be the
cycle A¥—A". Clearly 6 € Z%, , (X U Y, D). Therefore in order to complete the
proof of the theorem it is sufficient to show that ¢ B% (X v Y, D). Let
us assume that contrary, that is, that de B (X v Y, D). Then § = du
for some pue Cr,(X UY,D). Let Z, be a carrier of g in XUY so that
peC®,(Zy, D) and 8 € B>, (Z,, D). The set X N Z, is compact since X
being closed in M implies that X N Z, is closed in the compact set Z,.
Hence the set X, = X,uU(X nZ,) is compact. Similarly the set Y, = Y, U
v (Y nZ,) is compact since Y is closed in M. Thus X, and Y; are compact
sets such that X, € X, < X and Y, & Y, = Y. The following inclusion
relations are also satisfied:

(1) XonY,S X, nY, S XNY.
(2) X,uY, S X,uY,c XuY.
(3) Z,S X,uY, S XUY.

We now apply Theorem 39 again, using the same cycle y but this
time using the compact sets X, and Y,. Clearly yeZ?(X,nY,, D)
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since yeZ) (XyonY,,D), and y¢ B (X,nY,,D) or else we would have
yeB* (X nY, D). And ye B*(X,, D) since y = d4*, where A¥eC¥* ,(X,, D)
= C% (X, D). Similarly yeB>(Y,, D) since y = dA", where 1'e C* (Y,, D)
c Cr (Y, D). Thus the hypothesis of Theorem 39 is satisfied and
we may conclude that there exists a cycle 6*eZ)% (X, U Y,, D) such
that §*¢ B, , (X, v Y,,D). In fact we see from the proof of Theorem 39
that we may take §* to be the cycle A¥—A". But A¥—A" = §. That is,
d¢BX. (X, uY,, D). However, we have seen previously that é € B,",, (Z,, D)
and that Z, € X, v Y;. This contradiction completes the proof of the
theorem.

In Theorem 40 the sets X and Y are required to be closed. The
following example shows that this requirement is essential. Let X and Y
be the subsets of the plane R? defined as follows: X = X, U X,uUX,,
where X, = {(a,0): 0<a <2 and 0 b <6}, X, =1{(a,h):2<ux<4
and 0€b <2}, Xy={(a,b):2<ua<4 and 4 <b <6}, Y={a,b):
2<a<6and 0 <bh<6). Then XU Y is homeomorphic to the ball B2
and hence is contractible. Let p = (3,1) and ¢ = (3,5). Let y be the
sequence whose ith term is the O-cycle y, = g—p. Then yeZZ (X NY, Z)
and ¢ B (X nY, Z) (where Z denotes the group of integers). Let r = (1, 1),
s=(1,3),t=(1,5),r = (51} 5 =(5,3), t' = (5,5). The usual subdivision
process applied to the 1-dimensional chain [pr]-+[rs]+[st]1+[tq] yields an
infinite chain A*e C{ (X, Z) such that 9A¥ = y. Thus ye B (X, Z). Similarly
by considering the chain [pr']+[rs]+[s'¢']1+[t'q] we find that there is
an infinite chain A" e C7 (Y, Z) such that dAY = y. Hence ye B¢ (Y, Z) also.
Thus, except for the requirement that X and Y be closed subsets, the
hypothesis of Theorem 40 is satisfied. If the conclusion of Theorem 40
held, there would be an infinite cycle §eZ7 (X uY,Z) such that
8¢ B (X UY,Z). But this is clearly impossible since the fact that X UY
is contractible implies by Theorem 32 that Z7 (XU Y, Z)= B! (X U Y, Z).
Therefore the conclusion of Theorem 40 does not hold in this case.

Chapter VI

The Alexandroff dimension theorem

6.1. Introduction. In this chapter we shall require various results from
the topological theory of dimension. For convenience we adopt (he definitions
and statements of theorems which appear in the book of Nagata [21].
Il (X, o) is a metric space we shall mean by the dimension of X, denoted
dim X, the covering dimension of X. Equivalently dim X may be regarded
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as the strong inductive dimension of X. We shall write dim X < oo to
indicate that X is finite dimensional.

We recall [rom Section 3.4 that if (X, ¢) is a metric space and D an
abelian group, then an infinite cycle y € Z” (X, D) is called essential if y has
a carrier X, such that y¢ B (X,, D). Throughout this chapter we let D
denote the additive group of real numbers modulo 1. The classical Alexandroff
dimension theorem [2] may now be stated in the following way.

THEOREM 41. Let (X, ) be a compact metric space with dim X < o0.
Then dim X > k if and only if there is an essential cycle yeZ} (X, D)
such that y ~ Q in X. )

In this chapter we shall prove that the conclusion of Theorem 41
remains valid when the hypothesis of compactness is replaced by the weaker
assumption that the space is a locally countable union of locally compact
subspaces. For this purpose we introduce some new terminology.

6.2. Compactly dimensioned spaces. We shall say that a metric space
(X, o) satisfies the Alexandroff equivalence if the following statement holds:

(1) dim X > k if and only if there is an essential cycle ye ZZ (X, D)
such that y ~ 0 in X. )

We may now restate Theorem 41 in the following way.

THEOREM 42. Let (X, @) be a compact metric space with dim X < oo.
Then X satisfies the Alexandroff equivalence.

The [ollowing apparently stronger form of Theorem 42 suggests the
conclusion desired for a generalization of the classical Alexandroff theorem.

THEOREM 43. Let (X, ) be a compact metric space with dim X < .
Then each closed subspace of X satisfies the Alexandrofi’ equivalence.

Proofl Il A is a closed subspace of X, then A is itsell a compact
metric space with dim A < oo, Thus A satisfies the Alexandrofl equivalence
by Theorem 42.

The next theorem gives a necessary and sufficient condition that a finite
dimensional (not necessarily compact) metric space satisfy the Alexandroff
equivalence. We first state a definition.

A finite dimensional metric space (X,g) is said to be compactly
dimensioned il there is a compact subspace X, of X such that dim X
= dim X.

THEOREM 44, Let (X, o) be a metric space with dim X < %. Then X
satisfies the Alexandroff equivalence if and only if X is compactly dimensioned.

Proofl. We first assume that X is compactly dimensioned and show
that the Alexandroff equivalence is satisfied. Il dim X > k, then dim X, > &k
for some compact subspace X, of X, since X is compactly dimensioned.
Then X, is a finite dimensional compact metric space and dim X, > k
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so that by Theorem 42 there is an essential cycle y € Z (X,, D) such that
y ~0in X,. It follows from Theorem 3 that yeZk (X, D) and that y ~0Q
in X. Moreover, Theorem 5 implies that y is essential in X. On the other
hand, if there is an essential cycle ye Z;° (X , D) such that y ~ 0 in X, then
there is an infinite chain xe C% (X, D) such that dx = y. Let X, be
a carrier of x. Then X, is compact and is also a carrier of y. Theorem 4
implies that xe C2.,(X,, D), yeZP(X,, D), and consequently that y~0
in X,. Another application of Theorem 5 yields the result that Yy s
essential in X,. Therefore X, is a finite dimensional compact metric space
such that there is an essential cycle yeZg(Xo, D) with y ~ 0 in X,.
It follows from Theorem 42 that dim X, > k. Hence dim X > k by the
monotonicity of the dimension function. Thus we have shown that if X is
compactly dimensioned, then the Alexandroff equivalence must be satisfied.
Now suppose that X satisfies the Alexandroff equivalence and that dim X = n.
Since dim X > n—1 there is an essential cycle yeZ," (X, D) such that
¥ ~0 in X. Then there is an infinite chain xe C? (X, D) with dx = y.
Letting X0 be a carrier of x we see in the first part of the proof
that X, is a finite dimensional compact metric space, that ye Z;>,(X,, D)
with y ~ 0 in X,, and that y is essential in X,. Theorem 42 then implies
that dim X, > n—1. Since rnonoton1c1ty of the dimension function implies
that dim X, < n, it follows that dim X, = n. Thus X is compactly
dimensioned.

The two examples which follow indicate the nature of the difficulty
of extending the classical Alexandroff theorem to a more general class
of metric spaces.

ExaMPLE 1. Not every finite dimensional metric space is compactly
dimensioned. In fact there is a separable metric space X with dim X = 1
such that X is not compactly dimensioned. To obtain such a space we
appeal to a well-known example due to Knaster and Kuratowski [16].
A simple description of the example appears in the book of Hurewicz
and Wallman [14]. In the plane R? let C denote the Cantor set constructed
on the unit interval {(x,y): 0 < x < 1,y =0} by successive deletion of
open middle thirds. Let a = (},3) and let a-C denote the join of the
point a with the set C; that is, a-C = | {@p: peC}, where ap denotes the
line segment joining @ and p. Now if pe C and p is an endpoint of one
of the deleted intervals, let 4, denote the collection of all points (x, y)
of ap for which y is rational. If peC and p is not such an endpoint,
let A, denote the collection of all points (x, y) of ap for which y is irrational.
Then the set A = {J{4,: peC} is a connected subset of a-C and the set
X = A\{a} is totally disconnected. Thus X is a totally disconnected separable
melric space and, moreover, dim X = 1 [14]. We show now that X is not
compactly dimensioned. Suppose that K is a compact non-empty subset of X.
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Then K is a compact totally disconnected metric space. It follows that K
is homeomorphic to a subset of the Cantor set C [13], p. 100. But dim C =0
and hence dim K < 0 since dimension is a topological invariant and is
monotone. Therefore dim K # dim X and we conclude that X is not
compactly dimensioned.

ExAMPLE 2. A finite dimensional metric space may be compactly dimen-
sioned and yet have closed subspaces which are not compactly dimensioned.
Let X be the 1-dimensional separable metric space described in Example 1.
Let Y denote the plane subset {(x,y): 2 < x<3,y=0}. Then Z = XUY
is a subset of the plane such that dim Z = 1. Now Y is a compact subset
of Z and dim Y = dim Z = 1 so that Z is compactly dimensioned. However,
X is a closed subset of Z and as we saw in Example 1, X is not compactly
dimensioned.

6.3. The generalized Alexandroff theorem. The next five theorems are
lemmas to be used in proving the above mentioned generalization of
Theorem 41.

THEOREM 45, Let (X, ) be a metric space. If X locally compact, then X
has a locally finite covering by compact sets.

Proof. Since X is a metric space, each open covering of X has an
open locally finite refinement; that is, X is paracompact. It follows that
each open covering of X has a closed locally finite refinement [15], p. 156.
Now because X is locally compact there is for each xeX an open
neighbourhood U, of x whose closure U, is compact. The collection
# = {U,: xe X} is an open covering of X. Let # = {F,: ye '} be a closed
locally finite refinement of %. Then & is a locally finite covering of X by the
sets F,. Moreover, for each yeT, F, is compact since F, must lie in some
set U, (because # refines %) and hence F, is a closed subset of the
compact set U,.

THEOREM 46. Let (X, o) be a metric space with dim X < co. If X is
locally compact, then X is compactly dimensioned.

Proof. Suppose that dim X = n. Theorem 45 implies that X has a locally
finite covering F = {F,: yeI'} such that each F, is compact. Then F is
a locally countable covering by closed sets and hence the Sum Theorem of
dimension theory [21] may be applied. According to this theorem, if
dim F, < n—1 for each ye I, then dim X < n—1, contrary to the fact that
dim X = n. Therefore there exists & I' such that dim F; = n. Since F; is
a compact set with dim F; = dim X we conclude that X is compactly
dimensioned.

THEOREM 47. Let (X, @) be a metric space. If L is a locally compact
subset of X, then L is a countable union of closed locally compact sets.

Proof. Since L is locally compact there exists sets V, open in X, and F,
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closed in X, such that L =V nF, [9], p. 239. The set V, being an open
subset of a metric space, is an F,, and hence may be writteg V=U{C;: jeN},
where each C; is a closed subset of X. Thus L= {J{C;: je N} nF = {C;nF:
jeN) so that L is a countable union of the closed sets C;nF. Moreover,
each set C;NF is a locally compact subspace of L since it is a closed
subset of L and L is locally compact.

THEOREM 48. Let (X, 0) be a metric space. If X is a locally countable
union of locally compact subspaces, then X is a locally countable union of
closed locally compuact subspuaces.

Proof. Suppose that X = J!|L.: yerl}, where {L,: yeI} is a locally
countable collection of locally compact subspaces. Theorem 47 implies that
each L. can be written L. = ) {Ci: ie N}, where each C} is a closed locally
compact subspace of X. Therefore we may write

X =U{UlCi:ieN}:yer} =U{C:yerl,ieN}.

Then X is a union of closed locally compact subspaces C. and it remains
only to show that the collection {C.: yeT,ieN} is locally countable. Let
pe X. Since the collection {L.: yeTI'} is locally countable there is an open
neighbourhood U of p such that U meets at most countably many of the
sets L.. Say U meets L,,L;,,...; that is, UnL.= @ for y # v, 7, ...
Then UNnCi = Q for y # ,,7,,... and for each ie N, since Ci < L. for
each ie N. Therefore if U C’ # @ it follows that ye {y,,7,,...] and ieN.
But the collection {Ci: yely,.7,,...},ie N} is countable and hence we have
shown that U meets at most countably many of the sets Ci.

THEOREM 49. Let (X, @) be a metric space with dim X < oo. If X is
a locally countable unmion of locally compact subspaces, then X is compactly
dimensioned.

Proof. Theorem 48 implies that X is a locally countable union of closed
locallty compact subspaces, say X = |J|F.: yel}, where {F,: yel} is
a locally countable collection and each F. is a closed locally compact
subspace of X. Suppose that dim X = n. Since {F,: yel} is a locally
countabie covering of X by closed sets, the Sum Theorem of dimension
theory may again be applied. As in the earlier application we obtain the
result that there exists ye I’ such that dim F: = n. Since F. is locally
compact, Theorem 46 implies that F:. is compactly dimensioned. Hence
there is a compact set Fy; € F: such that dim F, = dim F. = n. Then F,
1s a compact subset of X such that dim F, = dim X and consequently X is
compactly dimensioned.

Finally we are able to prove the generalization of the classical
Alexandroff dimension theorem which was mentioned in Section 6.1.

THEOREM 50. Let (X, 9) be a metric space with dim X < oc. Assume
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that is a locally countable union of locally compact subspaces. Then each
closed subspaces of X satisfies the Alexandroff equivalence.

Proof. Let {F,: yeI'} be a locally countable collection of locally
compact subspaces of X such that X = (J {F,: yeI'}. Suppose that A is
a closed subspace of X. Then 4 is a metric space and dim A < co.
We show that A is a locally countable union of locally compact subspaces.
Since A = AnX we may write A = An{F.: yel'} = U{ANF.: yerl}.
Each of the sets AN F, is locally compact since A4 closed in X implies
that AnF, is closed in the locally compact space F.. Thus A4 is a union
of the locally compact subspaces ANF.. If ue A, then ye X and since
{F.: yel'} is a locally countable coliection of subspaces of X there is an
X-open set U, such that ue U, and U, meets at most countably many of
the sets F.. But then AN U, is an A-open set such that «ueAnU, and
evidently A n U, meets at most countably many of the sets AN F.. Hence
{ANF,: yel} is a locally countable collection of subspaces of A. It now
follows from Theorem 49 that A4 is compactly dimensioned. Therefore A
satisfies the Alexandroff equivalence according to Theorem 44.
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