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1. Introduction

In the last few years we could read terms like “variable stepsize method”,
“variable formula method”, “variable order method”, “cyclic method?”,
and “method with variable coefficients”, “adaptive integration method?,
“generalized multistep method”, “parametric method” in many papers
concerned with numerical methods for ordirary initial value problems.

In all these cases the situation is such that in fact the integration
method may change from one step to the next. This interchange can be
produced by

step-changing,

order-changing and formula-switching,

parameter-alteration.

We realize step-changing either by using a formula constructed for
variable stepsize directly — in this case the integration formula may
change stepwise by itself — or we combine a formula constructed for
constant stepsize with a step-changing technique, i.e., with a technique
of computing the required additional values for the mext application of
the constant-step formula. The combinations of constant-step formulas
with step-changing techniques can also be called stepwise varying multi-
Sstep methods.

Obviously, all methods in which formulas of the same type but
of different order are used (for instance, in the well-known subroutine
DIFSUB of C.W.Gear in [5]) are step-by-step variable methods. A simi-
lar situation arises when formulas of the same order but of different
type are combined, as was done by Z. Zlatev ([20]).

All methods depending on one or more parameters which can be
chosen in advance or automatically in an adaptive way per integration

[407]
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step naturally form step-by-step variable methods. E.F. Sarkany ang
W. Liniger ([15]), R. Mirz ([10]) and others have investigated such
parametric methods.

Consequently almost all of our methods in their implemented form
change stepwise. But there are only a few papers dealing with this
variability, whereas numecrous books and papers discuss the “constant”
methods, their consistency, stability, convergence and asymptotic
behaviour on great integration intervals. Therefore, if we want to bring
the theory closer to the way in which the methods are really applied, we
must admit and investigate stepwise variable methods.

2. Stability and consistency of variable multistep methods over grid-classes

Consider the initial value problem

@ (1) =f(m(t):t)5 telt, T],
2 (lg) = @,

in which the continuous vector-valued function f: R™ x[%,, T]--R™ is
assumed to satisfy the usual Lipschitz condition with a constant L.
Denote by «4{:) the exact solution of this initial value problem.
Let the grid {y<#; <...<iy =T on [{, T] be given. Denote by
y=4—4 41,1 =1,...;, Ny hpyy = max Fhy, by, = min h, the Ith step-
1=1,..,N =1, N
size, the maximal and minimal stepsizes of the chosen grid, respectively.

As we have agreed, we try to approximate the values x.(f) according

to the grid points by values =;, which are the solutions of the nonlinear
equations

k
Zazja;ls—j = lr (@, -0y Byp)y
(1) f=0

0fo =1, s=1,...,m, l=Fk..,XN.

We assume the starting valuwes g, ..., x,_; to be given. In (1) different
formulas can be used in each component and cach step. Especially the
functions ¢§: R™* IRy s =1,...,m, 1 =1k, ..., N, are usually differ-
ent from each other. All the methods mentioned above have form (1)
or can easily be transformed into (1).

As a simple example we want to mention the parametric modifi-

cation of the two-step variable stepsize Adams-Bashforth method ([10],
p. 11)

h,_ h
o —a ., =N (ff—z + _;L-,_lb (af’h,_l, TL) (fiea _ff-z))r
-1
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with parameters af e RY, ¢ =1,...,m, l =2,..., N, and the coefficient-
function

(147%)2—~1

ifﬁ=0’

b(ﬁ’k) = k—l-ﬁ_ﬂﬁ_l(a—kﬁ—l)

1—e?

otherwise.

Let Goqq be the class of all equidistant grids on [#,, T']. Consider
a grid-class G covering at least all equidistant grids, i.e., G, = G

DEFINITION. A variable -step method M, over the grid-class & is said
to be the set of the finite sequences of formulas (1) according to the grids
from @G.

Among (1) a variable k-step method may contain some formulas
degenerating into k;-step formulas, k; < k. Liet us agree to speak of a %-step
method if at least one of the formulas contained in (1) is a “proper”
k-step formulg. Denote by A(M,/&) < II, the set of all characteristic

polynomials > af,A*~7 occurring in the variable k-step method M, over
j=0

@, and by ©(M,/G) = [R™*+), R1) the set of all functions ¢!. The set

@ (M,|/@) may be a finite one or an infinite one. The set A (M, /G) is finite

in the methods published so far.

In practice, in implementations we have to select step-by-step the
next stepsize in such a way that the resulting grid remains in the given
class @.

Note that C. W. Gear and D.S. Watanabe ([4]) described a variable
formula method in a similar way as “a set of formulas {¥;}, step and
formula changing techniques and step and formula selection schemes”.
C. W. Gear suggested the use of the step selection function 6: [t,, T'] %
x (0, T—t,)~R" as a step selection scheme, i.e., a function with the

properties
0< AL 0(t, R)<1,
hy = Pmax0(t_1, Pmax) s l=1,...,N.

The step selection function defines the next stepsize h,,, subject to
the grid point ¢, and the admissible maximal stepsize of the grid, but
without 2 memory with respect to the last steps. Because of the possi-
bility of applying implication of the form

“if h, < hy_,, then by, <h”

or similar conditions, the use of grid-classes will be advantageous.
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Such kinds of restrictions on the grid are used in almost all imple-
mentations. On the other hand, they are also important for the stability
of some methods.

Let us now deal with the stability of the variable multistep methods,
the basic property for all numerical integration methods.

DEFINITION. The variable k-step method M, over @ is called stable
iff for any grid ¢, < {; < ... < ty = T from @ and each arbitrary collection
of starting values 2, ..., #,_, € R” and perturbations d, e R", I=F, ..., N
the equation gsystem

H]

k
Yatet; = holm, - p)Hind, s =1,..,m l=k.., ¥,
=0
is uniquely solvable and if for each two solutions {#}¥,, {Z}i, corre-
sponding to the two collections of starting values and perturbations
{a} @)y and {&)i=), {d}L, the inequality (')

(2) max [4—% <K( max [4—%+ max |d;—d))
1=K, N 1=0,....k—1 I=kyee N

holds with a global constant K for the whole class G.

Emphasize once more that the constant K is independent of the
chosen grid from G. Egpecially, K is independent of the number N.

If & consists of the grid sequence t, =1 <1{ <...<t{) =T,
7 enz, with A%, ——>0, then our stability “over G” means the usual stability

(or so-called zero-stability or inverse stability). Mostly only sequences
of cquidistant grids are comsidered here. For implementations we are
not interested in infinitely small stepsizes. In practice we like to choose
the stepsizes depending on the error control freely within the bounds
of the grid-class.

The widest grid-classes we are going to use are classes G, = G, (kpu,
kpogy B) of all grids with

0< kmtn \<\ hl/hl—l § kmax < oo,
N hpox < B,

(3)

where ki, kpees B are global constants for the class, i.e., are independent
of the special grid.

The “linearly convergent grid sequence” considered by H. J. Stetter
([17]) — here the inequality
€1

Gy
W <MY=, nene,
n kL]

(1) By 1] we denote the maximum-norm.
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is assumed to be valid — fulfils conditions (3) and forms a subeclass of
G, (0104, C2/C1y C;). Moreover, conditions (3) are assumed to be fulfilled
in all papers dealing with variable stepsize (for instance in [3], [8],
[14], [20)).

As usual, the local and global errors produced by M, with respect
to a chosen grid from & we define as

k
1
7 = I{Z a;;%a(b_y) — o7 (m*(tl)! coey Tu (tt—k))1

j=0

and
E,=.’I}*(t1)—-m“ l=k,...,.Nn

Therefore, with a stable variable k-step method A7, over G the global
error estimation

(4) max |g < H( max |g/4+ max |5)|)

I=F,e..,N 1=0,...,k-1 I=k,...,.N
holds. There & = @ () —2,, I =0, ..., 5k —1 are the errors in the starting
values.

If we complete a stable method M, over & with formulas for com-
puting starting values
4
Zazja;f_j = Mol (%), ...y %)y, s§=1,...,m,1=1,...,k-1,
F=0
to a so-called selfstarting method M, over G, we easily obtain
max [g < K max |7,
I=1,...,.N I=1,...N
it the functions ¢f: R™*V-R, s =1,...,m, I =1,...,k—1, are Lip-
schilz-continuous, and by using implicit formulas the corresponding
stepsizes are sufficiently small.

DEFINITION. The variable k-step method M, over @ is said to be
consistent with the above initial value problem with the consistency order
P >0 iff

1Tl < G(-’”*('))(j ];na‘l’t 1hz—j)p: L=~k .., N,

holds for all grids from G with a class-global constant C(z«(-)).

The proof of consistency for row-wise different formulas is not triv-
ial in general. E. Griepentrog ([6]) investigated the consistency of row-
wise different one-step methods. In the case of linear multistep methods
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k k
Nagop, =0 ) O4ft i), =T, N, s=1,..,m,
=0 =0
the consistency follows from the consistency of all single methods used
in the rows.
With a stable and consistent method M, over @, for each tolerancy

6> 0 we can select a grid from G for which the inequality

max |7| < 0

I=k,....N
is fulfilled. The existence of such a grid is secured by the consistency
and because of @ > G,. We might choose an equidistant grid with a guffi-
ciently small stepsize. In practice the grid is selected step-by-step by
uging local error estimations. With (4) for our grid the inequality

holds.

Note that in general the constant K grows as a consequence of the
widening of the grid-class G. But the restriction to the smallest grid-class
G,qu i8 Dot ingenious, as the computations have shown for a long time.
On the other hand, with grid-classes being too wide, very large constants
may arise and there is really no difference to the instability (comp. [3]).
Therefore it is an important tagk to discover useful grid-classes for the
methods.

3. Some results concerning stability

In the following we denote by G* a subclass of @ containing grids with
sufficiently small stepsizes.
P. Piotrowski ([14]) proved

PrOPOSITION 1. The variable multistep method M, consisting of Adams—
Moulton formulas of fized order which are directly constructed for variable
stepsize over G, is stable,

ProposiTION 2. The variable k-step methods consisting either of vari-
able-step Adams—-Moulton formulas with variable orders 2 < p, < k+1,
or of variable-step wvariable-order Adams—Bashforth formulas with orders
1<p, <k or of kj-step Adams—Bashforth—Moulion predictor-corrector for-
mulas direclly designed for variable stepsize with k, <k are stable over
G, resp. G,.

The proof may be found in [4], [10].

PROPOSITION 3. The variable k-step method consisting of formulas of
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the kind
9
(5) o = a(8)my_ + (1—0!(-9:))931—2‘1‘7‘:2 by; fi-1s
F=0
i<k al)=1 O<am)<2 foran=1,...,k
where the coefficients by ;, 5 = 0, ..., 8;, are computed in such a way that (8) in

the 1-th step has order s; in case b,o = 0 and order s;+1 otherwise, is stable
over G, or @, if implicit formilas are used.

The variable k-step methods consisting in predicior-correcior formulas
with correciors of type (B) are stable ower G,,.

For the proof see [20].

Note that in (5) with a(s,) =1 the Adams-formulas occur. With
a(s;)) = 0, (5) gives the Nystréom or the Milne—Simpson formula. Notice
that the case a(s;) = 0 is not admitted in Proposition 3.

In the three propositions formulated above the sets A4 (M,/&,) (or
A (M, (@) are finite ones. In Propositions 1, 2 they contain the single
polynomial A*¥—2*~! only. In Proposition 3 the set .4 (M,/G,) of the
method M, according to a given function a: {1,2,..., k}—(0,2) with
a{l) =1 covers the polynomials

F—an)i¥1—(1—am)*? n=12..,k

Furthermore, in all variable k-step metheds M, that can be found in
Propositions 1-3 the functions ¢ from @(M,/G,) are collectively Lip-
schitz-continuous, i.c., there exists a constant L, with

K
9 (20y « -5 21) — @ {(Zay - -y Zp)| < L”‘Z |2 — 1

J=0
for all 2;,% eR™ § =0,...,%k, and each ¢ € B(M,;/G,). Of course the
Lipschitz-constant L, depends on the function f of the original problem.
For the purely linear interpolation methods written as

Za,ja', = h,Zb”f,_]

j=0
the Lipschitz-continuity of the corresponding ¢f follows from the uni-
form boundedness of the coefficients b,; resulting from properties (3)
of the grid @, and from the Lipschitz-continuity of the function f. With
predictor-corrector methods we obtain the Lipschitz-continuity by sue-
cessive estimations.
Before we can formulate the next proposition we are still occupied
with the set A(M,/d,). For each polynomial

k
p(d) = 2 af (A

=0
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we define the & X ¥ Frobenius matrix

& 8
—y e — %

whose eigenvalues are the roots of the corresponding polynomial p(A).
If this polynomial satisfies the root-condition formulated by G. Dahi-
quist, then there are such R*-norms |-|,, that for the corresponding in-
duced matrix-norm the inequality

"‘Ald'”l.s < 1

holds.

Because of the equivalence of all R*-norms we also find norm transi-
tion coefficients

0i1s>0, ¢=1,2, 9,>0
with
01,16 1y, s < 1W< 0g,1,6 10,09

%
|Wl,s < Y36 Wh1,sy W € R

Now, if we allow finitely many characteristic polynomials different from

each other in M; over @ ounly, then A (M,/G) is a finite set and we find
01y g2 With

0<g, = min g,,, 00> 0 = IAX gy,
&8=1,...,m 8=l,...,m
I=k,..,.N I=k,...,N
grid fron & grid from &

and

alwls < 1w < oslwly,y, we RF,

holds for 8 =1,...,m, I =k, ..., N, and all grids from the given grid—
class G. '

PROPOSITION 4. Let a variable k-step method M, over G, (or G, re-
spectively) be given. Let 4 (M, [G,) be finite. Let the root-condition of Dahl-
quist be fulfilled for each polynomial p e A(M,/G,). The functions
¢ € B(M,[@,) are assumed to be collectively Lipschitz-continuous.

Then the following stability-like imequality holds:

max |g,—7%| < K, I, max |g—7|+ max |d,—d)))
luklnle l‘onn,k—l {=
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where K, is a class-global constant and

N
r, = H max{l, max p;}
Je=k 8=15...,701
depends on the chosen grid g from G,.

If the constants I') are bounded on the class G < Gy, I''<< T, g €@,
then M; over G is stable with the stability-constant K = K,T.

The proof is explained extensively in [10]. It is obtained by collecting.
the interesting equations component-wise, introducing the k-tuples

g =3
8 __ .
U = :
L =8
Bkl ™ 21

and taking some trivial equations to

P12y ooy Zi) — 9 (Zy ooy Zpy) @ —d
u = Ay iy 0 + Ry 0 ,
0 0
s=1...,my 1 =%k ..., N.
From this the asgerted inequality is derived by successive estimations.

Note that Proposition 4 is valid for grid-classes in which the condi-
tion

h
0<kmln é'h—lgkmux< oo
-1

is dropped. But, in practice this extension is useless. From Proposition 4
we get sufficient stability conditions for a great many variable multistep
methods. First of all Propositions 1,2 and Proposition 3 with functions
a: {1,2,...,k}—~[0,1] are their special cages. In fact, in these cases
only matrices 4,, of the type

10...0 0...1.. 0
i6... 0 1 0
, or , O
0 10 0 10
a(n) 1—a(n) 0 0
1 0
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arise. Here we can obviously choose [-|,; = || because the row-sum
norm of thege matrices is not greater than one. Therefore we have
01 =g =1, y,=1, I, =TI =1 for all grids g e@,.

The above consideration is valid for all so-called interpolation for-
mulaas. _

Further we find trivial stability conditions bounding the number
of admissible formula-switchings with respect to the whole grid-class.

Moreover, from Proposition 4 we get the stability of the parametric
multistep methods

k k
(6) Dy = b)) (b (i -65(ah) )

j=0 Jm0
over Goq,. In (6) the coefficients b,(ah), ¢(o;h) are mxm matrices.
a; is assumed to be a matrix-parameter. (In many papers one tries to
compute o; as an approximation of the Jacobian of f. In [10], [11] and
[15] a, are diagonal matrices whose elements are computed in an adaptive
way.) The functions 6,(+), b;(+) are agsumed to be smooth and the domaing
in which the parameters a; may alter are assumed to be bounded. Finally,
let the matrices @, have diagonal form, a,; = diag(a;;, ..., a;). More
precisely, either we admit there stepwise constant coefficients, only,

k
;= a4, =diag(a},...,a) where afA*7, s=1,...,m,
F=0
fulfil the root-condition, or we demand in addition to @, = F that
for each s and each I among the coefficients af,, ..., o}, 2 single one is
equal to —1 and the others vanish. In the second case we are concerned
with different parametric modifications of interpolation methods (e.g.
[2], (8], [10], [13], [16], [16], [18]). Mostly parametric modifications of
Adams methods are considered.

Note that the parametric modifications of classical multistep methods
are usually designed with constant stepsize. There the variable-step
forms are too expensive.

TFor the parametric modification of the two-step variable stepsize
Adams-Bashforth method mentioned in Section 2, from Proposition 4
we get the stability over &, if the domain for parameter-alteration is
assnmed to be bounded (comp. [11]). Obviously, for the parametric
modification of the trapezoidal rule used with variable stepsize a similar
result is valid,

4. Stability of combinations of constant-step formulas
with step-changing techniques

Now, let us deal with the combinations of constant-step formulas with

step-changing techniques. First we describe some step-changing tech-
niques.
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Let the values w,...,%_3%,...,%;_, approximating the a.(i,),...
..y Zx(t;_,) be computed. To compute the next value z;, =z, by means
of the constant-step formula

p——

-1

o
Ma-l

li
o

ﬁls,jﬁla—j = hz?f(ﬁu vy El—E): Ezs,o = 17 $ = 1) cary My

7
we need the values #_, =@,_,, F_;, j = 2,..., k, approximating the
exact solution x4 () at the points _;, =t,—jh, j =1,..., k.

Step-changing technique 1 (SCHT1): If ,_, coincide with the grid-point
gy WE put #;,_; = 7, iz and fl_j = f,_ i; 28 needed,

For each “assistant” point #,_; not bemg a grid-point at the same time
we seek the biggest smaller grid- pomt (“reference” point) By Then we
compute

Z_; = wf—f-‘l‘ (EZ—J _tz—ij) ‘Pfij(wt-ij)r $ =1,...,m,

with a suitable explicit one-step method characterized by tp“ If the
value fi—; is also meeded, we compute f,_; = f(Z._;,I_,) or put fios
= (pl 11( 1—1i; )

Obv1ously, in this step-changing variant it may Dbe necessary to
keep accumulated very many of the saved values z_;, f;_;.

Btep-changing technique 2 (SCHT2): We interpolate zi_; = Pj(f_))
where Pj(-) is an interpolation polynomial through the retained values
&)_%, .-, a1, and derivatives f;_z, ..., f{_; or through scme of them.

In general the implementation of SCHT2 is just as complicated as
that of multistep formulas constructed for variable stepsize directly.
For instance, if for the construction of P;(-) the interpolation condi-
tions

P;(tl—l)r'ml—l? Pg(tl—j)=fl—j; j=1r-~:7_‘71

are used, then the number of operations for the computation of

b4 &
(8) fo =ot ) [ [ [t
=117 i
T#EN

is comparable with the number of operations of the k-step variable-stepsize
Adams—Bashforth method.

The situation will be simpler if in (7) no #;,_;except ¥, =@, &_, = 4
are really contained. This situation ariges, e.g., if (7) has the form

k
(9) B—F, =0y )bl s =1 ..., m.

=0

27 — Banach Center t, XIII
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(9) may represent variable order Adams formulas as constructed in [5].
For such methods the following modified technique is useful:

Step-changing technique 2’ (SCHT2'): For the use of (9) we put 7_,
=2_,, f,_j =13,(5H), j=0,...,k where P,(-) is the interpolation
polynomial passed through f_x, ..., fi-1, (fi)-

Step-changing techmique 3 (SCHT3): Assume 5h;, ;=g =...
voo = ly_q, By # hy_y (at least for I = k—1). We interpolate as in SCHTZ
and obtain the value x;, = #; by the constant-step formula (7). But for
the next step We Save % _jiiy ..+ &y fi_f41s o5 Jy iDstead of @ 5., ...
coy By Ji-kg1s ooy J1y a0d SO om.

In this way we accumulate values for equidistant points in each
step and we always change over to new equidistant points. A. Nordsieck
and C.W. Gear noted very practicable formulag for the realization of
this technique.

Step-changing technique 3’ (SCHT3'): For the multistep formula
(9) a speecial modification of SCHT3 is useful. As in SCHT2', the
interpolation polynomial links the f;_z, ..., fi-1, only. For the next step
the values fi_z.,, ..., f; must be retained.

Sometimes it is advantageous to reduce the grid-class and allow
only halvings and doublings of the stepsize. With this we keep the number
of values which have to be computed additionally (e.g., in SCHT1) small.
After a halving the stepsize is not doubled immediately, but kept for
at least one further step. Define a grid-class Gz, = G, according to these
restrictions. Let Gyp be the clase consisting of all grids which have prop-
erties (3) which satisfy the following conditions:

I ‘max < 2% hmin} N
either h, = 2h;_, or by =h,_, or h; = 2"'“"h,__1 with ¢ < p,
if by < hy_y/2, then < Ay_;.

Let the natural number p be global for the grid-elass.
Let us now define a suitable variable k-step method over Gy, which

combines the constant-step %-step formula (7) with SCHTI.
First we put

p
e =27k— > (277 —1) = 27(E—2)+p+2.
i=0
The number % is calculated in such a way that ¢_, < {,— kh, holds.

Now we select those grid-points from our grid which coincide with
aspistant points. Certainly ¢ = i,1,_, = §_, holds. Let b=t

U

4=0,..,m, m=1, jf =1, =0, jt =4 =1, be all these grid-points.
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For any assistant point il_,_, y 4 = m+1, ..., k, not being a grid-point
w
at the same time we choose the biggest smaller grid-point tz 7 28 a ref-
~1
u

erence point. Note that while the grid-points or the assistant points are
different from one another, the reference points may coincide. For example,
the case n; = 1, o= u, =2, u=2.. , k, occurs as soon as B,
> (Ic '1)hz

Yet, in any case 2 < <, <k holds for # =n,+1,..., k.

Now, we compose & k-step method (1) resulting from the combination

of (7) and SCHT1 over Ggp. With

-8 — mB —_—
xl—jL - l—il b ?& —_— 0’ 1, vory nz’
—g8 8 g ot kA
] =2 ,—{—(t =t i@ ;) w =m+1,...,k
-1y, - A LR S AR A LA S AL A R
we find
% k

a g rf , = hl{g—”;g(iu Zy_p)— y _sz ! (2 —1 ;)X

Z L T Zu L, -3¢ -4t

0 i u Wrrer hl i 7

X @° (2 =1,...,M.
‘Pt.jz( l—if‘)}’ §=1..,m

The expression in the braces on the right-hand side we sum up to the
function ¢f(x;, ..., 2;_;) in each row. Obviously, the resulting functions
¢%(+) are collectively Lipschitz-continuous if both the functions @; and
the functions @f, are collectively Lipschitz-continuous.

Finally we put

to obtain

The following situations may arise:

It ¢,_; acts for je {2, ..., k} neither as an assistant point nor as
a reference point, then aj; =0, s = 1,..., m.

It t,_; = f_ =0 , k, then the sct of reference points is empty

and we have n;, = k, i}, -gu—-u,u~0 vy Ry
a,u = Eim, _7 = 0 IC,

az_.,:o, j=k+1’--.,ko



420 L. MARZ

It h,_, > (E—1)h;, then none of the grid-points is also an agsistant
point, except for f,t,_,. Here

I

— s . ‘
af.2=2"'ls,ua a;; =0, §=3,..,k,

e
is valid.
M hy =2k f=1 00 by =h_p j=p+1,...,k~1, then
all agsistant points are grid- pomts at the same time, amely tl, = f_(p +2l’
t, i = Li@Pi—nipia ¢ =3y . , k. Hence we have 31, =4, % =0,...,k

=28 (y—2)+p+2, u = 2 , &, and especially i = k.
Now, if we investigate such formulas as const'mt—step formulas
which possess characteristic polynomials of the form

2% _ qk—11s
{e.g. the Adams formulas), then we obtain
a, =1 and Wy = —1 for only one j; {1, ..., Lk},
aj; =0 for j#E4, IJi=1,...,k.
In the case of Adams-type formulas (@, =1, @, = —1) we get

i.e.,, the resulting variable k-step method is also of Adams-type.
PrOPOSITION &, The combination of the constant-step k-step formula

(10) Ef—ﬁf—i;,a =@ (T, ooy Tg)y 1 :{‘iLSQ ky 8 =1,...,m,

with the step-changing technique SCHT1 over the grid-class Ggp represents
a variable k-step method over Qgp, k = 22(k—2)4-p+2.

This variable %-step method over Gy is stable if the funciions @f, and
gy are both collectively Lipschilz-continuous.

In order to diminigh the number of values which must be kept in
the computer-memory, we can choose a number %,

E<h<k =27(k—2)+p+2,

and consider the above combination of (10) with SCHT1 over an addi-
tionally restricted grid-class.

By Ggp we denote the subclass of Gyp the grids of which satisfy
the condition

b=ty =M+ +h_ji > Ehy.
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The combination of (10) and SCHT1 over Gyp represents a variable,
%-step method over Gy, which is stable under the assumption of Prop-
osition b.

Especially, Proposition 5 is valid for variable-coetficient constant-step
linear methods of the form

(11)  #—F_y, =W ) e}, 1<y,

L]
j=0

A
=1
Cn
I
s

F

i.e, for all parametric modifications of interpolation methods from [1]
(23, (71, (91, [10], [12], [13], [15], [16], [18], [19]-

Now let us deal with the second step-changing technique. Com-
bining the constant-step formula (11) with the special case of SOHTZ
given by (8), we get a variable-stepsize k-step formula over @, which
has the same type as that described by (11). As we mentioned above,
SCHT?2 is rather complicated in general. Compared to that the implemen-
tation of the combination of (9) and SCHT2’ is easy.

ProPOSITION 6. The k-step method over @, resulting from the com-

bination of (9) and SCHT2' is stable if the coefficients b;; are uniformly
bounded.

Next we consider the technique SCHT3' for the use in eombination
with (9).

IJet hl—l_c+1 — sss — hl_] - hz, the ml__];, veey .’Bl_l, ft_fc, ""fl—l be
retained. The value #; will be computed directly by (9).

Now, let A, # . To compute x;, by means of (9) we need the
values

EE
_ n b=l — T .
fl[i-]l—j = Z e bt edeld f1+1 -0 .7 = 1? ey k'

Sl e
For the next step we retain
71 71 il =
fEJr]z—E;---;fE] = Ffis fl[-l-]1 =Jfie1y By = By
To compute x;,, = :‘EH,, we need

tl+z jhl+2 tl+2 H 1 : 7
gi-]2—J 2 I 1 tll] —t[” fl[~I!2 R J = 17 T k.

=1 p=l I+2—7n I42—u

Having computed a,,,, f,+2, we retain

2 rl £l2 — — .
zl+]3 PRI 112]’ f)[!-2i-]1 = z+1 = fis1 fz[rlz = flrey  Fppa = Tppa,

and so on.
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In this way, as the computation formula for =, ¢>1, in the
true sense we get a formula containing all values

fz+1—l?7 - -3fz+q—1

on the right-hand side.

C. W. Gear and XK. W. Tu ([3]) showed that instabilities may arise
if the stepsize in the grid (from G,) changes too often.

Using the idea of [3], we demand

(%) Pipr =My = oo = Iy
and calculate

Flk—-11 _ f -
i1 = Jiti-1

Fle—-11 __ Flk—21 __ f -
fl+7a—z _fz+7c—z = fi+z-2s

------------------

Thig means that the restriction (*) guarantees that the “original” values
Joy ooos fipio1y @ %-1 8gain occur as retained values for the computation
of &y -

Note that we use fI57% fi, ..., fleioe, T4z tO compute z,,;_,.In
fact, we use fi_z.1y..osfimy Joo ooy frakoey @yz_py ie, the resulting
variable multistep method is a (24 —1)-step method over the subclass
of ¢, according to our additional agsumptions.

PRropPOSITION 7. Lel Ggp < G, be such a subclass that for each grid
of Ggp the following condition holds:

of Ryyy Fhyy then by = by = .0 =My

(after each stepsize-change, kE—1 equal steps must be performed).
The variable (2k —1)-step method over Ggp resulting from the combina-
tion of (9) and SCHT3' over Gy, is stable.

If in SCHT3’ one takes an interpolation polynomial based on k+1
nodes (instead of the % nodes used above), a similar proposition holds
with % equal steps instead of £ —1 ones in Proposition 7 (comp. Theorem &
in [3]). |

For similar grid-classes in whose grids some consecutive stepsize-
changes are admissible, we can formulate further propositions. For in-
stance, if we denote by Gyp, the set of grids from &, fulfilling the condi-
tion
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“jf hl-i-l :,é hl’ 'bhell ei’bhel‘ hH-l = hl+2 = .., = hl-l-ﬁ—l or hl‘f-l 7‘_' hl+2
and by = by = ... = hyx,” _ then the combination of (9) and SCHT3'
is really a stable variable (2k)-step method over Ggp,.
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