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1. Introduction
We consider a control system which is modelled by the equation
B(t) = A, (o (t)-+A;()y () +B,(Yu(t), =2(0) =a,
Ay (1) = A;(Na(t) +A,()y () +B. () u(t), y(0) =y°

where z(t) € R™, y(t) € R, u(t) € R", the time ¢ belongs to the interval
[0, 1] and 2 is a positive small parameter. The states z(?) and y(t) represent
slow and fast phenomena, respectively. For 4 = 0 the order m-+n of
system (1.1) reduces to m, i.e., (1.1) becomes

&(t) = A, () x(t) +4,()y (1) +B,(u(t), »(0) = a°
0 = As(t)a () +A44(1)y (2) + B (1) u(t)

for t € [0, 1], where the initial condition y° is dropped. Assuming that
A;'(t) exists and solving the second equation in (1.2) with respect to
y(t), we obtain a “reduced” model

B(1) = Ao()a(t) +Bo(t)u(t), x(0) = a°

(1.1)

1.2)

where
Ao(t) = 4, (1) —A, () A (1) As(t);  Bo(t) = By(t) —A,(1) A7 (1) Ba(2).
It is obvious that this order reduction procedure may lead to an
essential simplification of the original model.
In this paper the following optimal control problem (P,;) is con-

sidered: For fixed A, find a function %, € L{’(0, 1) which minimizes the
following performance index:

(1.3) Jiw) = g(z)+ [ (f(z(), 1)+ h(u(t), 1))dt,

where 2= (z, y¥), determined by (1.1), is an absolutely continuous function
of the time.

[181]
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The order reduction of singularly perturbed optimal control systems
has been investigated in a number of papers; see the survey [7]. In the
present form, problem (P;) has not been treated in the literature although
similar problems have been studied under various conditions for the
functions g, f and h (see, e.g., [4]-[6], [9]). In [9] the function g has the
following special form:

9@, y) = m, (@) + Ans (@) y + Ay T my () y

and the functions f and % are quadratic with respect to ¥ and . An asymp-
totic solution of the problem is constructed. Papers [4] and [6] deal with
linear quadratic problems and use a Ricecati equation technique, In {4]
it is assumed that the matrix B, is equal to 0. In [6] the function f does
not depend on . Work [5] proves that the result in [6] is valid for the
corresponding problem with nonquadratic but convex f and k. The present
paper extends the analysis of [5] for problem (P,), in which both the
terminal and the integral parts of the performance index are nonquadratic
and depend cxplicitly on the fast trajectories. For the case B, = 0 we
generalize the corresponding result in [4]. Our approach uses some prop-
erties of the solutions of singularly perturbed linear differential equations
and estimates of the solutions of perturbed strongly convex extremal
problems [2].

We shall denote by || the Euclidean norm and by an upper T the
transposition. The norm of a real vector space E of functions defined
on [0, 1] will be denoted by ||gz. All constants which are independent
of the time ¢ and the perturbation parameter A are denoted by ec.

2. Preliminary lemmas

We first start from some auxiliary results. Denote by (x,, ¥,) the solution
of the equation

z(t) = A4,z (1) + A4, ()Y (1) + 9o (t) +d@i(t), (0) =9,
2 (t) = A;()2(t) + A, ()Y () +wo(t) +Ape(t), ¥(0) = wy,
where lim 4, =0, @, ELgm)(Oa 1), vo EL(zn)(Oy 1) and {4}, {4y}, {v}y

k—++ o0
{w,} are given sequences. The solution of the equation

#(l) = A, (N2(@) +4.()y (1) +9o(t), 2(0) =,
0 = Ay(t)z(t) +4.(0)y (1) + po(t)
will be denoted by (x,, ¥,). We assume that

(2.1)

(2.2)

Al. The matrices 4,(t) are continuous on [0,1]. All the eigenvalues
of the matrix A4,(t) have negative real parts for ¢ € [0, 1].
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Levya 2.1. (i) Zet lim o, = vg, Wy, = wx/dy, lim o, = w,, and let
k—+oo k—++ 00

the sequences {dp,}, {4y} be weakly convergent to zero in L{™(0,1) and
I{M(0, 1), respectively. Let x, be determined by (2.2) with the initial condition
2(0) = v,—A3(0)A;"(0)wy. Then the sequemce {x,} is uniformly bounded
in [0, 1] and for every 0 €(0, 1),
{2.3) lim max |z,(t) —zy(t)] = 0.

k—~++m 0IC1

(ii) If, additionally, w, = 0, then

(2.4) lim |lz, —&,/l; = 0.
k—++m
(iii) Let lim I/Zw,, = 0 and let all the above conditions hold. Then the

k=400
sequence {y,} 18 Lg-weakly convergent to y,.

(iv) Let lim v, = v, and lim ngk = 0, Then the following esti-

k—++oo k—++o0
mation holds for k sufficiently large:
(2.5) 16 — Tolig + Wi — Yoll, < ¢( 4@z, + 1 dpellz, + ),
where lim &, = 0.
k—++00

(v) Let the above conditions be salisfied and, additionally, y, € C™[0, 1],
let the sequence {w,} be bounded, and for every 6, €(0,1),
lim max [dy,(t)] = 0.
k-4 0<I<Oy
Then for every 0 ¢ (0,1/2),
(2.6) lim max |y,(t) —y.(t)] = 0.
k—++oo Ot —0
Proof. Let Y (¢, t,4,) be the fundamental matrix solution of the

equation A4,2(t) = A (t)2(t). By [10], there exist constants a,, ¢ > 0,
such that

t_
@.1) T, 7, )l < ooexp(—a : )
)]

for all t, v €{0, 1], ¢t > v. Writing Az, = v, — oy, 4Y;, = Y — Yo, We have
(2.8) Az (l) = v, — o +4,(0) A7 (0) o+

¢
+ [ (A1(2) Az, (7) +- A4 (7) Ay, (v) + Ay (7)) dr,

{
@9 du) = X0, M+ [ T, ) (4(0) Ay () +

+ Ay (7) — A (7)yo (7)) dr — o (1)
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In the sequel we use the following standard result: if p e L{M(0,1), ¢
e Z{V(0,1) and

¢t
r(t) = [p(t—7)g(r)dr,
then
(2.T) iz, < lipl, g, -

Let 8 be an arbitrary positive number. Choose a function y? € C{™[0, 1]
such that [y’ —y,ll,, < 8. In view of (2.7), for every t € [0,1]

210) | f = T, 7, A2 (2) s~ (0|

1/ .
<e (ly‘(t) —4, ()| + 14°(0)|exp (”"T,,) + ny"uc)-

Let

i
1
B0 =7 [ T 7 W Augo(@)dr.
0

Since 8 could be arbitrarily small, from (2.T) and (2.10), integrating by
parts, we obtain

(2.11) lim | —¥ollz, = 0.
F—++00

For an arbitrary but fixed ¢ > 0 one can choose matrices A;(f) and
A'(t), whose elements are smooth in the time variable, such that
4, —Ajllc< e and [[4;7'—A4A"g < e. From

1
Tkof 4,(9) ¥ (z, 0, Z)dr

[
f ) AS? r)—Y(r 0, A,)dz
0

¢

f (1) ATH(T) — AL ()4 (7)) Ao () X (2, 0, &) dr +

I
NIH

+ [ 4304015 e, 0, 4,
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integrating by parts and taking advantage of (2.7) we get

i
(2.12) 71; fAz('r)Y(t, 0, A wedr -+ 4,(0) A7 (0) w,

11
< 0(3+ || @XP ( -0 T) +oy(e) A+ o — ch’ol)y
k

. Write
c

Ex(l) = Aqy(1) Ay (8) + Ay (1)

d
where ¢, (¢} > “ ] (4;A4°)

and
1 !
() = - f Y, 7, A,) & (T)dr.
k [i]
Applying (2.T), we get
Gy
(2.13) Inzllz, < o Ikl -

Using (2.7), (2.T), (2.13) the Holder inequality and integrating by parts,
we obtain

f i
(2.14) ] [4@m@ar|< [ 140 - 23] Ime(w)l de+

¢ i
+| [ 4304 @ A @] + [ 1430 147 (0 —4 @) 1A (0187

t T
Fij
<oelltlz, + | [ 4304 (1) [ Tz, 0, )t (0)dedr |+
0 0

4
+| [PHOYOTACLE
0

¢
d
< cellépllp, + A ( |43 (2)A° ()i (0)] 4 | f <7 a0 A () m(x)dr | +
0

+| f 43(0) 4°(5) u(0) |

<elle+Va, + 62 (&) &) I Exllz, +

)

14 ¢
+ [1asy@ian+ | [ Ax) 40 dpie)an
0 0
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where c,(e) > H % (42 4°)

. Taking into account (2.8), (2.9), (2.12),

Ly
(2.13) and (2.14), we have

¢

@18) 1 day(t) < log—l-+o{e+eu(e)iy-+lagtexp (o) +
'k

+ |y — @ol + (6 + VA +03(8) &) (1424llz, + I Awellz,) +

4

¢ ¢
+ 1T —Yolzy + [ 14au(@)1d)+ | [ dpu()ae
0 0

)

Let us recall that if a sequence {z,} is L,-weakly convergent to zero, then

¢
+| [ 430 4°) awa(ey e

¢
k&l:; :2?;]:'0"’2"(1)‘14 =0,

and the sequence {|iz;|.,} is bounded. Applying the Gronwall inequality
to (2.15), we get

188,11z, < Idmlls < (e + VA, +0x(e) A} Al +ec.

Choosing ¢ < 1/¢ and tending to zero with Ay, we conclude that
(2.16) lim sup || 4z, || L, < +oo.
k400

Using this result in (2.15), we finally obtain

t
(217) |4, 0) <c(e+ [ !Awk(f)ldr+lwklexp(—al—i) +ak),

where lim 4, = 0 uniformly in [0, 1]. From the Gronwall lemma we get
k—++400

that for every 6 € (0, 1),
lim max |4z, (l)| < ce.
k>t+m BI]

Since ¢ is arbitrarily small and Az, does not depend on &, this relation
implies (2.3).

Part (ii) of the statement follows immediately from (2.17).

If lim VA, w, =0, then from (2.3), (2.7), (2.9), (2.12) and (2.T)

k—++ o0

limsup |4yl < +oo.
k=4
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In order to prove (iii) it is sufficient to show that for every ¢ e[0,1],
¢

(2.18) lim [ Ay,(r)dr = 0.

k—’-i'ﬂo
Using a sequence of inequalities similar to (2.14), we have
t

1 fof Y (7, 8, &) Ay, (8)dadr

= <o e+ Vi +os(e) ) | Ay, +
k 0

+| f A*(z) dyy(v)de | .
0

In view of this relation and (2.4), (2.11) we obtain (2.18).

The estimate for 4z, in (2.5) follows immediately from (2.11), (2.15)
and (2.16). In order to obtain the estimate for Ay, we use (2.T), (2.9)
and (2.11).

Next let the conditions in (v) hold. Since ¥y, € C"®[0, 1], one can
choose ¥* e ({™[0, 1] such that |ly’—y,ll<< 6. Then

¢
1
219 B0 =301 <| 7 [ T 7 ) A yo()— 9 () x| +

' 8
+ of—at—Y(t,r,ak)y‘(r)dr—yo(t)

<c(a+ |y"(0)|exp( —o{:) + A lh'/"uo)-

Substituting (2.19) in (2.9), we obtain (2.10). This proves the lemma
completely.
Consider now the control system (1.1) with the assumptions Al and

A2, The matrices B;(t) are continuous and
(2.20) rank [B,(1), 4,(1)B5(1), ..., 4,(1)"7 B4(1)] = n.

LEMMA 2.2. Let (x4, ¥,) be the solution of (1.2) for a given u, < C"[0, 1].
For every point w € R™ and for every sequence {4}, lim A, = 0, there exists
k—++eo

a uniformly bounded sequence of conirols {du,} so that if (z, y.) corres-
ponds to uy,+ du,, and A, according to (1.1), then for every 6 € (0, 1/2),

(2.21)  lim (o, —@olg+ max |y,(t) —yo(t)| +
k—++o0 i1-0

+ [¥(1) —w| 4+ max |du,(t)]} = 0.
0ct<ct
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Proof. Let (&, ¥,) be the solution of (1.1) for 4, and u,. By Lemma 2.1
(ii) and (v), we obtain for every 6 € (0, 1),

(2.22) im (|8, —zollc+ max |§,(t) —yo(t)]) = 0.
<igl

k=400
Let t{; =1 —-1/3.:. Introduce the matrices

1

M, =;1L Y (1,t,4,)B.(t)BT () Y7 (1,1, 1,)dt,
kg

1-—-1¢

&

1
. 1 1-—1t
i, =— [ exp (A.(l) )Bﬂ)Bf(l)exp(A.T(l) =,
k& k
+ o0
M, = [ exp(A,(1)t)B,(1)Bf (1)exp (4] (1)t)ds.
0
Condition (2.20) implies that the matrix M, is nonsingular; see [8].

For t e[t,,1], write

Py(t) = Y(l,t,z,,)—exp(A.a) l;kt).

Using (2.7), one can get the estimate

|Py(?)] < ¢ max |A,(1)—A,(s)].

{p el
Hence
]im IMk ‘_ﬂk| =0,
fe—+ o0
Furthermore
=+ oo
20
M, — M| < e f exp(—208)ds < aexp(— —-=—),
a=1f2 Vi
k

which implies lim M, = M,. Thus, for k sufficiently large the matrix
k—+o0

M, is nonsingular.
Let us define the sequence {du,}:as follows:
Sy (1) = {0 : : for t1€[0,1%),
. BY () YT(L,t, ) MM (w—y,(1)) for  te[t, 1],

where k i3 sufficiently large. Then

(2.23) |du, (8)] < cexp(—o l;t ),
&
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and
1
B0 —3u(0) = [ T, 1) 430) (ou(0)—G0(0) -0 — o 1).

Lemma 2.1(ii) yields

lim |lo — @yl = 0.
k—++4 00

In view of (2.22) we obtain

lim y,(1) = w.
k—++oo

The convergence of ¥, to y, follows from Lemma 2.1(v).

Remark 2.1. The above lemma implies that the controllability of
the reduced system and condition A2 are sufficient conditions for control-
lability of the full-order system; see [3] for details.

LEMMA 2.3. Let z, be the solulion of the equation

( t d 1-1¢
(2.24) 2(l) = w(d)+aexp —a—) +—exp(—a ) -+
A y) A
A A
+70f exp \—a 7 )z(t)dr,

where w(d)—>¢ as A—->0; a, d, b, o are positive constanis and o > 2b. Then
Jor every 6 € (0, 1/2),

(2.25) lim max [z,(t})] = 0.

A+0 OgI<I-0

Proof. Equation (2.24) is equivalent to the following boundary value
problem:

iz =riz—ow(d),
22(0) —02(0) = —w(4)o—2ac,

2do
2 ’

A#(1)+oz(l) = w(A)o+

where #* = (0 —2b). et D, = ¢—1r, D, = o+r. This problem has the
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following exact solution:

A 2bw (A
z(t) = :_o(_;Z +(— o'w(2;)a (Dz ( )—

a3 {5 o5

t t—2 2do 1-—-1
a3 ~+4) s+ 52) + 2 p,exp( - 251) -

e ) - 3)

which satisfies (2.25). m

3. L,-convergence of the optimal control

In the sequel we concern ourselves with the optimal control problem
(P,), defined in Introduction. We assume that Al, A2 and the following
two conditions hold:

A3. The function g(x, y) is continuous, convex and bounded below
in R™*" For a fixed bounded set X < R™ there exists a continuous fune-
tion @: X—R" such that

g(z, Q@) < g(z,y)
for all (¢, y) € X xR" and the function g(z,Q(w)} is convex.

A4. The function fis continuous and there exists an integrable function
v such that f(z,y,?) > y(t) for all (z,y) e R™®*" and te[0,1]; f(-, -, t)
is convex and differentiable for all ¢ € [0,1] and the derivatives f,, f,
are continuous. The function % is continuous, it is strongly convex with
respect to % in R™ with a constant » uniformly in [0, 1}, i.e., for each
u,7e€ R, ae[0,1], and t [0, 1],

hlau+ (1 —a)v, 1) < ah(wl) + (1 — a) h(v,8) —a(l — a) x [u— o).

By a standard argument {8], there exists a unique optimal solution
(@,, §1, %,) of problem (P,) for each 1> 0 such that the maximum prin-
ciple holds. Moreover, the optimal control %, can be considered as a funec-
tion which is continuous with respect to the time in [0, 1]; see [2].

Let us introduce the following optimal control problem (P,) for the
reduced system (1.2): minimize the funectional

1
3.1)  Jo(w) =g(z(1), Q=)+ [ (flzt),y(0), ) +h(u(t), t))dt
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over L{"(0, 1), where z, y are determined by (1.2). We shall denote the
continuous function which represents the optimal control for (P,) by 4,,
and the optimal trajectory by (Z,, ¥,) (Where ¥,(t) = —A;'(t) (A5()Z, (1) +
+B, (t)itg(1))).

THEOREM 3.1. The following relation holds:
llm(lJA(“A)—Jo( fbg)| =+ 1183 — fholl g, + 152 —Follg + IF2—YollL,) = O.
Proof. Let the function % be determined as follows:
#(t) = argminh(u,t), wuekR"
for all ¢t € [0,1]. Then #%(-) is a continuous function [2], and
x|, (1) — B(D)| < B (@, (2), 1) — R (T(D), ¥).
By the boundedness of g and f we get
J1(0) = J (i) > »|lib, — T, +c.

Applying Lemma 2.1(v) we conclude that hmsupJ,(O)< + o00; hence
hmsup lballz, < + oo.
Ghoose a sequence {i.},limi, =0, such that the corresponding

k—+oo
sequence of controls {&, } is L,-weakly convergent to #. By Lemma 2.1(ii)

the corresponding trajectory .'n, is C-convergent to » and y,, is Ly-weakly
convergent to ¥, where (&, %) solves (1.2) for u = 4. Smce the integral
part of the performance index (1.3) is L,-weakly lower semicontinuous
[1], we have

(3.2) Jo (1) < J5 (%) < Lim meak(“ak);

k4o

where J} (,,) is determined by (3.1) for (&;,,4,). On the other hand,

(3.3) T3 (i) < T (i)

Applying Lemma 2.2, we choose a sequence of controls {u,}, u,(t)—>i,(?)
for all t € [0, 1), sup |lu,llg < + oo, such that the trajectory (z, ¥,), corres-
k

ponding to u, and A, according to (1.1) satisfies

Hm (e, — Zallo + [y (1) —@Q (Fo (L))] + 19:(1) —Fa(2)]) = 0

k—++ 00

for all t € (0,1). Hence

(3.4) llm J‘k ('u;k) < lim J;k(uk) = Jo. (ao) .
k—++o0 k—++o0
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Combining (3.2)—(3.4), we obtain that J,(%,) is convergent to J;(%,).
Using the strong convexity of k(-,?), we obtain L,-strong convergence
of #, to #,. The convergences of #, and ¥, follow from Lemma 2.1.

Remark 3.1. The following example shows that assumption A3 is
essential for the obtained result. Consider problem (P,) with
g9(2,9) = g:(@)+¢"y,

where ¢ € B, ¢ # 0. From Lemma 2.2 it follows that for every x> 0

and for every sequence {4,}, lim1, = 0, there exists a sequence of controls
k—++o00

{w;} such that lim ¥,(1) = —ue, and the remaining part of the perfor-
k—~+oo

mance index J, (%) is tending to a constant a, which does not depend
on u. Hence

lim J,, (%) < Nm J, (4) = —plef*+a,
k=>4 00 k—++co

Since y is arbitrarily chosen,
lim J‘(‘l“‘) = — 00,
A0
Remark 3.2. The boundedness below of g in A3 can be replaced by

the following condition: the functions g, @, (-, ?) are C, and h,, is conti-
nuous. In order to prove Theorem 3.1 we use the relations:

# a7, < J1(0) —d3 (i) < J3(0) —J3 (i,)
< (g2 (20) + 9, (20 Q' (F (L)) (B(1) —Fa(1)) +

1
+ [ (FUm0), 7@ 0 —5a() +

+iy(Ba(1), )7 (Fa (2) —Fa(1) — R (0, 1)T iy (1)) it

where z; = (E,(l),Q(E,_(l))) and 9, = (%,, 7:), where (Z;, #,) is deter-
mined by (1.1) for » = 0. Applying Lemma 2.1(v), we obtfain that
lln'i Eup”‘l“‘"L2< + o0.

o .

4. Uniform convergence of the optimal control

We consider problem (P,) under conditions Al-A4 and

AB. The functions g, Q are differentiable and the derivatives g, g;, Q'
are continuous. The function ¢ is strongly convex with respect to y uni-
formly in z, belonging to a bounded set in R™, or the function ¢ does not
depend on y. The derivatives f,, f, are Lipschitz continuous with respect
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to y with a constant L, for z € X, y € R", ¢ € [0, 1], where X is a bounded
set in B™, The function % is differentiable with respect to 4 and the deri-
vative h, is continuous. (In this case the boundedness below of g in A3
can be dropped; see Remark 3.2.)

Using the maximum principle [8] we obtain the relations

(4.1) hu(ia(), 1) = BY (1)pa(t) +B; (s ()

for all ¢ € [0, 1], where (p;, ¢;) is the solution of the adjoint equation
p(t) = —AT(Mp ) —AT ) q(t) + [, (T, (1), 72(0), 1),

(4.2) 24t = —ATWp ) —AT W) g() +1, (8:00), 3:(0), 1),

‘g . 1.,. R
p(1) = —go(a,(1), 9:(1)), q(1) = —79,,(%(1), g1(1)).

For the reduced problem (P,) we have similarly
(4.3) hu{@o(t), ) = BT (1)po(t) +B3 (1) o (1),
where p,, g, satisfy
p(t) = —AT) PO —ATO () +F2(Zo(1), Fo(8), 1),
(4.4) 0 = —ATW)p(t) —AT(1)q(t) +F; (Bo(1), Fo(8), 1),
p(1) = —g;(&(1), @(&,(1)))
since
g,(%.(1), @ (&,(1))) = o0.

Let us recall that the constants ¢, and o are defined in (2.7), » is
the strong convexity parameter of the function A(-, t), and L, is the Lip-
schitz constant of f, with respect to y.

THEOREM 4.1. Suppose that

1 4
. — By, L, {| < —.
A6 max[zx |Bylle, ,] S0,

Then for every 0 €(0,1/2),

lim max (|%,(2) — fo(8)] + |#1(8) — §o(1)]) = 0.
A0 Oigl—0

Proof. We first prove that
(4.5) lim gy (#,(1), §a(1)) = 0.
A0

13 — Banach Center t. 14
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Since the integral part of J,(u) is L,-weakly lower semicontinuous with
respect to (v,y,) and lim J,(f,) = J;(%,), we conclude that
A0

(4.6) lim infg (2, (1), 94(1)) < 9(8a(1), @ (@0(1)))-
On the other hand,
(47 g(B(1), (D) > lim g(3,(1), Q(@:(1)) = g{Be(1), Q(B0(1)))-
Combining (4.6) and (4.7), we get
Lim g(@:(1), 92(1)) = 9{Fe(1), @ (Ba(1))-

Using A5, we obtain that (4.5) holds. Applying Lemma 2.1(ii) to equation
(4.2), we get
(4.8) lim ||p;—Pollc = 0.
A0

Let Ay = 4,—%, and Aq, = ¢; — ¢,. From Theorem 3.1, a relation similar
to (2.10) and from (4.8) we have
(4.9)

1-—t L,
|4q, (t)|<(T)exp( ) + d° exp(

¢

1
—e ) iaputoas+ o,

where a(4) and a,(4) tend to zero as A0, uniformly in [0, 1]. The strong
convexity of 2 implies (see [2]) that

(4.10) 2% |13 (8) — iy ()| < IBallolPa — Pollo + 1Bl | 444 (2))
for all ¢ € [0, 1]. Then, using Theorem 3.1, (2.10) and (4.10), we get
(4.11)

| Ay, (D) <oexp(—a—;-) + d°"32"°f (—a

where ag(4)—0 as A—0, uniformly in [0, 1].
Let v,(t) = |4y,(t)| + |4q,(t)|. From (4.9) and (4.11) we have

1—1

=) 14 e+ anta,

(4.12) 2,() < aa(l)—l—cexp( a—) +— (1) xp(—
b —
+-Iofexp(—a ltlr])v‘(r)dt,

1
@A) = a(A+as(d), b = gomax [3; X L,,].

where
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Since 2b/o< 1, the spectral radius of the integral operator in the
right-hand side of (4.12) is less then 1. Then, for all t € [0, 1],

v,(1) < 2,(1),

where z; satisfies equation (2.24). Applying Lemma 2.3 and (4.10), we
complete the proof.

Remark 4.1. The above result could be interpreted in the following
way. Consider a family of problems (P,(y)) under conditions A1-AS5,
where

Jal, 7) = g(@(1), y(D) + [ (wf(z®), y), 9+ b (u(), 1) ds.

Then there exists y, > 0 such that Theorem 4.1 holds for the problem
P, (y) for each y < y,.

Assuming that the function f is independent of 4, one can choose
a problem, equivalent to (P,), for which A6 holds. Theorem 4.1 generalizes
the corresponding result from [5].

Remark 4.2. Suppose that B, = 0, Al and A4 hold, the function g
is convex and C,and h is differentiable with respect to « with k. being
continuous. From Lemma 2.1 (for y, = 4y, = 0) we obtain that #,(1)—
—4,(1), when @, tends L,-weakly to i,, and lim sup [,/ < -+oco. More-
over, A0

(4.13) max |§,(t) —Yo (1) < el —Tollo+ ai(4)
[E<4T41

< clliey —itgliz, + au(2),
where 0 €(0,1), lim q,(A) = 0. The performance index for the reduced
a0

problem will have the form

Jo(w) = g(z(1), —AT (V)4 (Da(1) + [ (Fl=(t), y(0), 1) +h (), ))dt,

where (z, y) is determined by (1.2) with B, = 0. By repeating the argu-
ments of Remark 3.2 and using (4.13) we obtain that lim sup ||12,1|}L2 < +oo.
A0

Choosing a L, weakly convergent subsequence of {f,}, we have

J o (i) < lim inf J,(%,) < lim J,(4,) = J4(i,).
10 30

By the strong convexity of J,(-) and Lemma 2.1(v) we get

im ([, — fhollz, + 18— Bollg+ max |9;(t) —Ho(t)]) =0
A0 o<i<l
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for all 6 € (0, 1), and {#,} is uniformly bounded. Applying Lemma 2.1(i)
to equation (4.2), we obtain that for every 0 e(0, 1),

lim max |p,(t) — po(t)| = 0,

D oIgO

where p, satisfies (4.4) with the final condition

po(l) = —gl(2) +AT (1) (474 (1))7g5 (),
with 2z = (Z,(1), —A71(1)A4(1)3,(1)). From (4.10) we get

lim max |@,(t) — #,(t)} =0,
A0 00

Note that if g does not depend on ¥, then lim ]112,-'-'120110 = 0. A similar

A0
result is obtained in [4] for quadratic g, f and h.

Remark 4.3. If the function g depends only on m; the result obtained
is valid for problem (P,) with additional control constraints, i.e., u{t) e U
where U is a closed and convex set in R".

5. Final discussion

This paper studies the qualitative effects due to changes of the system
order for optimal control problems. Our analysis differs from the related
papers in the following:

(i) The fast trajectories are involved in both the terminal and the
integral parts of the performance index.

(ii) The performance index is not quadratic.
(iii) We do not use asymptotic expansions of the optimal solution.

The results obtained provide a basis for a validation of static models
for optimal control systems with a dynamics fast compared with the
optimization horizon. Consider the problem

A2(t) = A (t)z(t) +By(t)u, 2(0) = 29,
(6.1)

1
Ji(w) = glz))+ [ (flz(®), 1) +2(u(®), t))di->min,

where 0 << 4 € 1. Suppose that system (5.1) is controlled by %, which
i8 the optimal control for the static problem

f(—A7'(t) B, (t)u, t) + k(u, t)>min, ¢e[0,1].

Then this suboptimal (open-loop) control structure leads to performance
losses given by

S(A) = J).("A‘o) —J‘(‘ﬁ,,) .
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The function S(A) is ealled the sensitivity measure of the cons:dered control

structure; see [11]. Our analysis implies that, on assumptions related
to A1-A6,

lim8(1) =0,
A0

that is, for small A the performance losses will be small enough. Moreover,
the optimal solution is tending to the limit solution, uniformly in each
compact subset of (0,1). Note that the limit problem does not depend
on the funetion g (when it is bounded below; see Remark 3.1).

Similar conclusion can be obtained for the case where the optimization
horizon is very large. Consider the problem

2(t) = Az()) +Bu(t), 2(0) =2° te[0,a],
J(u) = g(z(a)+ [ (F(z®)+ R (u(2)))dt—>min.
0

After a time transformation, applying Theorem 4.1, one can get

lim @,(t) = t,,
a-»+ oo
t—>+00
tja<)

where

#, = arg min (f(—A;  B,u)+h(u)).
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