CONTENTS INTRODUCTION.................................................................................................................................................................................. 5 Chapter 1. PRELIMINARIES.............................................................................................................................................................. 7 § 1.1. Basic concepts of quantum mechanics.............................................................................................................................. 7 § 1.2. Basic concepts of quantum informational thermodynamics........................................................................................... 8 Chapter 2. THE ENTROPY OF A SYSTEM OF COMMUTING OPERATORS............................................................................ 9 § 2.1. Definitions.................................................................................................................................................................................. 9 5 2.2. The entropy of a system of operators with finite simple spectra..................................................................................... 10 §2.3. The entropy and the generalized temperature.................................................................................................................... 18 § 2.4. Thermodynamically regular systems of operators............................................................................................................ 22 Chapter 3. THE MOTION OP PHYSICAL SYSTEMS...................................................................................................................... 26 § 3.1. Basic notions and definitions................................................................................................................................................. 26 § 3.3. Some property of the entropy of moving systems............................................................................................................... 28 § 3.4. Macrostates invariant under motion...................................................................................................................................... 31 Chapter 4. MACROSTATES WITH RESPECT TO p-STATISTICAL MOMENTS OF THE OPERATOR A.............................. 35 §4.1. Basic concepts.......................................................................................................................................................................... 35 §4.2. Some properties of the entropy $S_A(\bar{Φ}(\bar{M}))$.................................................................................................. 36 Chapter 5. INFORMATIONAL THERMODYNAMICS IN THE CASE OF A SYSTEM OF NON-COMMUTING OPERATORS........................................................................................................................................................................................ 39 REFERENCES.................................................................................................................................................................................... 43
[1] L. Dubikajtis, R. S. Ingarden and A. Kossakowski, On regularity of information, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 16 (1968), pp. 55-56.
[2] P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, New York 1951.
[3] R. S. Ingarden, A simplified axiomatic definition of information, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 11 (1963), pp. 209-212.
[4] R. S. Ingarden, Information theory and variational principles in statistical theories, ibidem 11 (1963), pp. 541-547.
[5] R. S. Ingarden, Physics and Techniques of Low Temperatures, Proc. 3rd Reg. Conf. held in Prague 1963, Prague 1964, p. 45.
[6] R. S. Ingarden, The higher order temperatures and zeroth principle of thermodynamics, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 13 (1965), pp. 69-72.
[7] R. S. Ingarden, The density operator and information thermodynamics, Acta Phys, Polon. 27 (1966), pp. 179-196.
[8] R. S. Ingarden, Information Theory and Thermodynamics of Light, Part II, Principles of Information Thermodynamics, Fortsch. Phys. 13 (1965), pp. 755-805.
[9] R. S. Ingarden and A. Kossakowski, Statistical thermodynamics with higher order temperatures for ideal gases of bosons and fermions, Acta Phys. Polon. 28 (1965), pp. 499-511.
[10] R. S. Ingarden and A. Kossakowski, An axiomatic definition of information in quantum mechanics, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 16 (1968), pp. 61-68.
[11] R. S. Ingarden and K. Urbanik, Information as a fundamental notion of statistical physics, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 9 (1961), pp. 313-316.
[12] R. S. Ingarden and K. Urbanik, Information without Probability, Colloq. Math. 9 (1962), pp. 131-150.
[13] R. S. Ingarden and K. Urbanik, Quantum informational thermodynamics, Acta Phys. Polon. 21 (1962), pp. 281-304.
[14] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), pp. 620-630.
[15] A. Kossakowski, Bloch equation with higher order temperatures, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 13 (1965), pp. 367-368.
[16] A. Kossakowski, On the quantum informational thermodynamics, ibidem 17 (1969), pp. 263-267.
[17] A. Kossakowski, On a measure relative information in quantum mechanics, ibidem 17 (1969), pp. 77-79.
[18] L. D. Landau and E. M. Lifshitz, Quantum mechanics (in Russian), Moscow-Leningrad 1948.
[19] J. von Neumann, Mathematische, Grundlagen der Quantenmechanik, Berlin 1932, English translation Princeton 1955.
[20] F. Riesz et B. Sz. Nagy, Leçons d'analyse fonctionnelle, Budapest 1965.
[21] K. Urbanik, The principle of increase of entropy for spin operators, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 10 (1962), pp. 349-352.