Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Sur l'élimination des "infinis" en théorie quantique des champs : la régularisation zeta à l'épreuve de l'interprétation de Colombeau ou vice versa

Seria
Rozprawy Matematyczne tom/nr w serii: 383 wydano: 1999
Zawartość
Warianty tytułu
Abstrakty
EN

Zeta regularization is one of the heuristic techniques used, specifically, in quantum field theory (QFT) in order to extract from divergent expressions some finite and well-defined values. Colombeau's theory of generalized functions (containing the distributions and allowing their multiplication) provides a mathematically rigorous setting for QFT, where only convergent expressions appear. The aim of this paper is to compare these two points of view, both in their underlying logic and in their results. After an account of the general idea proposed here (a link between zeta regularization and Colombeau constraints), this idea is applied and put to test in some instances of the Casimir effect for the conformal Klein-Gordon (CKG) equation (the meaning of all these terms is recalled):

  • first, on a sphere $S_R^{d-1}$: for d=2 one recovers the Casimir energy given by zeta regularization; for d odd too, if some constraints imposed to make the result finite are consistent; for d even ≥4 a term which seems arbitrary remains - it seems that in order to give a specific value to this term, one ought to complete the standard Colombeau interpretation;
  • then, on the cylindrical space $S_R^{1} × ℝ^{d-2}$: Colombeau's interpretation gives the same result as zeta regularization; here the unique constraint does have solutions. We also consider some variants (a space confined between two hyperplanes - here, there are two constraints - and the historical Casimir effect, where there is only one constraint, and it does have solutions).

One also considers the diagonal values of the CKG Green function on $S_R^{1}$, where zeta regularization does not give a finite result: the Colombeau formalism provides a (Colombeau) number which is not associated with an ordinary number, and whose dependence on a "resolution" ε corresponds to the usual renormalization (semi-) group.
Finally, applying the method to the embedding of the string worldsheet into the Minkowski space-time, one recovers the correct Virasoro algebra, in the sense of Colombeau's weak equality, and obtains a mathematical formulation of some heuristic arguments by Susskind about the quantum spread of the string.
The paper is to a large extent self-contained, and is accessible to a wide audience of mathematicians.
FR
Table des matières
0. Introduction......................................................................................................................................................................................5
 0.1. Le problème.................................................................................................................................................................................5
 0.2. Les solutions................................................................................................................................................................................6
 0.3. Ce que propose le présent article................................................................................................................................................7
1. Présentation heuristique de la méthode: la substance intuitive de la régularisation zeta.................................................................8
 1.1. Fonction theta "anomale".............................................................................................................................................................8
 1.2. Régularisation zeta et contraintes de Colombeau........................................................................................................................9
2. Effet Casimir et fonction de Green sur le cercle.............................................................................................................................11
 2.1. Rappel de la théorie classique, notations...................................................................................................................................11
 2.2. Quantification.............................................................................................................................................................................11
3. Effet Casimir dans un espace sphérique $S_R^{d-1}$: dimension d ≥ 3........................................................................................16
 3.1. Fonctions test, zooms.................................................................................................................................................................17
 3.2. Définition des ensembles $𝒜_q$ de fonctions test....................................................................................................................17
 3.3. Définition des fonctions et nombres généralisés........................................................................................................................18
 3.4. Rappels de la théorie de Klein-Gordon classique......................................................................................................................20
 3.5. Quantification.............................................................................................................................................................................22
 3.6. "L'effet Casimir cosmologique"...................................................................................................................................................26
 3.7. Méthode de la fonction génératrice............................................................................................................................................31
4. L'effet Casimir dans un espace cylindrique $S_R^1 × ℝ^{d-2}$.....................................................................................................32
 4.1. Notations et théorème................................................................................................................................................................32
 4.2. Preuve du théorème 4.1: d pair (≥4)..........................................................................................................................................33
 4.3. Preuve du théorème 4.1: d impair..............................................................................................................................................35
5. Application à la quantification canonique de la corde....................................................................................................................36
 5.1. Théorie classique: rappels.........................................................................................................................................................36
 5.2. Quantification par la méthode de Colombeau............................................................................................................................37
6. Appendice I: Introduction à la théorie de Colombeau.....................................................................................................................42
 6.1. Fonctions généralisées..............................................................................................................................................................42
 6.2. Valeurs des fonctions généralisées et intégration......................................................................................................................44
 6.3. Généralisations..........................................................................................................................................................................44
 6.4. Une nouvelle sorte de géométrie................................................................................................................................................45
7. Appendice II: Preuve que ∀n, ∀t, $∂ⁿₜφ(ψ_{ε,θ},t)$ est modéré......................................................................................................45
8. Appendice III: Preuve que $F_{ε,ψ}$ est une fonction de Schwartz................................................................................................46
9. Appendice IV: Expression des "pré-régulateurs" comme combinaisons linéaires de fonctions de Clifford d'argument t₁x²/2..........48
10. Appendice V: Comment la forme du "cut-off" lève un "paradoxe".................................................................................................50
Références.........................................................................................................................................................................................53
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 383
Liczba stron
56
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCCLXXXIII
Daty
wydano
1999
otrzymano
1998-02-26
poprawiono
1999-09-06
Twórcy
  • Institut de Mathématiques, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France, echarpen@math.u-bordeaux.fr
Bibliografia
  • [1] H. Balasin, Colombeau's generalized functions on arbitrary manifolds, preprint, Univ. Alberta, Edmonton : Alberta-Thy-35-96 TUW 96-20, e-Print Archive gr-qc/9610017, 1996.
  • [2] H. Balasin and H. Nachbagauer, The energy-momentum tensor of a black hole, or what curves the Schwarzshild geometry, Class. Quantum Gravity 10 (1993), 2271-2278.
  • [3] H. Balasin and H. Nachbagauer, Distributional energy-momentum tensor of the Kerr-Newman spacetime family, Class. Quantum Gravity 11 (1994), 1453-1461.
  • [4] M. Bander and C. Itzykson, Group theory and the hydrogen atom II, Rev. Modern Phys. 38 (1996), 346-358.
  • [5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnérowicz and D. Sternheimer, Deformation theory and quantization, I-II, Ann. Phys. 111 (1978), 61-110, 111-151.
  • [6] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, 1982.
  • [7] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, 1976.
  • [8] N. Bourbaki, Éléments de mathématiques. Espaces vectoriels topologiques, chapitres 1 à 5, Hermann, Paris, 1981.
  • [9] K. Bresser, G. Pinter and D. Prange, Lorentz invariant renormalization in causal perturbation theory, e-Print Archive hep-th/9903266, 1999.
  • [10] L. Brink and H. B. Nielsen, A simple physical interpretation of the critical dimension of space-time in dual models, Phys. Lett. B 45 (1973), 332-336.
  • [11] R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, e-Print Archive math-ph/9903028, 1999.
  • [12] R. Brunetti and K. Fredenhagen, Interacting quantum fields in curved space: renormalizability of φ⁴, e-Print Archive gr-qc/9701048, 1997, à paraître dans : Proc. Conf. Operator Algebras and Quantum Field Theory, Acad. Naz. Lincei, Rome, 1996.
  • [13] R. Brunetti, K. Fredenhagen and M. Köhler, The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes, Comm. Math. Phys. 180 (1996), 633-652.
  • [14] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. Konink. Nederl. Akad. Wetensch. (Sec. Sci.) 51 (1948), 793-795.
  • [15] S. M. Christensen, Vacuum expectation value of the stress tensor in a arbitrary curved background: the covariant point-separation method, Phys. Rev. D 14 (1976), 2490-2501.
  • [16] S. M. Christensen, Regularization, renormalization, and covariant geodesic point separation, Phys. Rev. D 17 (1978), 946-963.
  • [17] C. J. S. Clarke, J. A. Vickers and J. P. Wilson, Generalized functions and distributional curvature of cosmic strings, Class. Quantum Gravity 13 (1996), 2485-2498.
  • [18] J.-F. Colombeau, Differential Calculus and Holomorphy, North-Holland Math. Stud. 64, North-Holland, 1982.
  • [19] J.-F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Math. Stud. 84, North-Holland, 1984.
  • [20] J.-F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland Math. Stud. 113, North-Holland, 1985.[21] J.-F. Colombeau and A. Méril, Generalized functions and multiplication of distributions on $C^∞$ manifolds, J. Math. Anal. Appl. 186 (1994), 357-364.
  • [22] P. C. W. Davies, S. A. Fulling, S. M. Christensen and T. S. Bunch, Energy-momentum tensor of a massless scalar quantum field in a Robertson-Walker universe, Ann. Phys. 109 (1997), 108-142.
  • [23] J. Dito, Star product approach to quantum field theory: the free scalar field, Lett. Math. Phys. 20 (1990), 125-134.
  • [24] J. Dito, Star-products and nonstandard quantization for Klein-Gordon equation, J. Math. Phys. 33 (1992), 791-801.
  • [25] J. Dito, An example of cancellation of infinities in the star-quantization of fields, Lett. Math. Phys. 27 (1993), 73-80.
  • [26] H. G. Dosch and V. F. Müller, Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field, Fortschr. Phys. 23 (1975), 661-689.
  • [27] M. Dütsch, T. Hurth, F. Krahe and G. Scharf, Causal construction of Yang-Mills theories I, Nuovo Cimento A 106 (1994), 1029-1041.
  • [28] M. Dütsch, T. Hurth, F. Krahe and G. Scharf, Causal construction of Yang-Mills theories II, Nuovo Cimento A 107 (1994), 375-406.
  • [29] M. Dütsch, T. Hurth, F. Krahe and G. Scharf, Causal construction of Yang-Mills theories III, Nuovo Cimento A 108 (1995), 679-708.
  • [30] M. Dütsch, T. Hurth and G. Scharf, Causal construction of Yang-Mills theories IV: unitarity, Nuovo Cimento A 108 (1995), 737-774.
  • [31] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko and S. Zerbini, Zeta Regularization Techniques with Applications, World Sci., 1994.
  • [32] H. Epstein and V. Glaser, Renormalization of non polynomial Lagrangian in Jaffe's class, Comm. Math. Phys. 27 (1972), 181-194.
  • [33] H. Epstein and V. Glaser, The rôle of locality in perturbation theory, Ann. Inst. H. Poincaré Sér. A 19 (1973), 211-295.
  • [34] H. Epstein and V. Glaser, Adiabatic limit in perturbation theory, in: G. Velo and A. S. Wightman (eds.), Renormalization Theory, NATO Adv. Stud. Inst. Ser. C Math. Phys. Sci. 23, Reidel, 1976, 193-254.
  • [35] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi (et al.), Higher Transcendental Functions, McGraw-Hill, 1953.
  • [36] M. Flato and D. Sternheimer, Deformations of Poisson brackets, separate and joint analyticity in group representations, nonlinear group representations and physical applications, in: J. A. Wolf, M. Cahen and M. De Wilde (eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, NATO Adv. Stud. Inst. Ser. B Math. Phys. Appl. Math. 5, Reidel, 1980, 385-448.
  • [37] L. H. Ford, Quantum vacuum energy in general relativity, Phys. Rev. D 11 (1975), 3370-3377.
  • [38] H. Ghafarnejad and H. Salehi, Hadamard renormalization, conformal anomaly and cosmological event horizons, Phys. Rev. D 56 (1997), 4633-4639; Erratum, Phys. Rev. D 57 (1988), 5311.
  • [39] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. 1, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, 1987.
  • [40] W. Güttinger, Products of improper operators and the renormalization problem of Quantum Field Theory, Progr. Theor. Phys. 13 (1955), 612-626.
  • [41] H. Hogbé-Nlend, Bornologies and Functional Analysis, North-Holland Math. Stud. 26, North-Holland, 1977.
  • [42] S. Jain, Absence of initial singularities in superstring cosmology, e-Print Archive gr-qc/9708018, 1997.
  • [43] W. Junker, Hadamard states, adiabatic vacua and the construction of physical states for scalar quantum fields on curved spacetimes, Rev. Math. Phys. 8 (1996), 1091-1159.
  • [44] B. S. Kay, Casimir effect in quantum field theory, Phys. Rev. D 20 (1979), 3052-3062.
  • [45] B. S. Kay and R. M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon, Phys. Rep. 207, no. 2, (1991), 49-136.
  • [46] T. H. Koornwinder and J. J. Lodder, Generalized functions as linear functionals on generalized functions, in: Approximation Theory and Functional Analysis (Oberwolfach, 1983), Birkhäuser, 1984, 151-163.
  • [47] A. N. Kuznetsov and F. V. Tkachov, Techniques of distributions in perturbative quantum field theory (II). Applications to theory of multiloop diagrams, e-Print Archive hep-th/9612038, 1996.
  • [48] A. N. Kuznetsov, F. V. Tkachov and V. V. Vlasov, Techniques of distributions in perturbative quantum field theory (I) Euclidean asymptotic operation for products of singular functions, e-Print Archive hep-th/9612037, 1996.
  • [49] S. K. Lamoreaux, Experimental verifications of the Casimir attractive force between solid bodies, e-Print Archive quant-ph/9907076, 1999.
  • [50] E. Lindelöf, Le calcul des résidus et ses applications à la théorie des fonctions, Gauthier-Villars, 1905.
  • [51] J. J. Lodder, A simple model for a symmetrical theory of generalized functions I-V, Phys. A 116 (1982), 45-58, 59-73, 380-391, 392-403, 404-410.
  • [52] J. J. Lodder, Quantum electrodynamics without renormalization I-IV, Phys. A 120 (1983), 1-29, 30-42, 566-578, 579-586.
  • [53] J. J. Lodder, Towards a Symmetrical Theory of Generalized Functions, CWI Tracts 79, Amsterdam Centrum voor Wiskunde en Informatica, 1991.
  • [54] V. Moretti and D. Iellici, ζ-function regularization and one-loop renormalization of field fluctuations in curved space-times, Phys. Lett. B 425 (1998), 33-40.
  • [55] C. Müller, Spherical Harmonics, Lecture Notes in Math. 17, Springer, 1966.
  • [56] V. V. Nesterenko and I. G. Pirozhenko, Justification of the zeta function renormalization in rigid string model, J. Math. Phys. 38 (1997), 6265-6280.
  • [57] V. V. Nesterenko and I. G. Pirozhenko, Simple method for calculating the Casimir energy for sphere, Phys. Rev. D 57 (1998), 1284-1290.
  • [58] L. Nottale, Fractal Space-Time and Microphysics (Towards a Theory of Scale Relativity), World Sci., 1993.
  • [59] G. N. Ord, Fractal space-time: a geometric analogue of relativistic quantum mechanics, J. Phys. A 16 (1983), 1869-1884.
  • [60] G. B. Pivovarov and F. V. Tkachov, Euclidean asymptotic expansions of Green functions of quantum fields (II). Combinatorics of the asymptotic operation, Internat. J. Modern Phys. A 8 (1993), 2241-2284 (version corrigée : hep-th/9612287).
  • [61] D. Prange, Causal perturbation theory and differential renormalization, J. Phys. A 32 (1999), 2225-2238.
  • [62] M. Radzikowski, Microlocal approach to the Hadamard condition in quantum field theory on curved spacetime, Comm. Math. Phys. 179 (1996), 529-553.
  • [63] G. Scharf, Finite Quantum Electrodynamics, 2nd ed., Springer, 1995.
  • [64] I. Schorn, Gauge invariance of quantum gravity in the causal approach, Class. Quantum Gravity 14 (1997), 653-669.
  • [65] I. Schorn, Ghost couplings in causal quantum gravity, Class. Quantum Gravity 14 (1997), 671-686.
  • [66] M. J. Sparnaay, Measurements of attractive forces between flat plates, Phys. 24 (1958), 751-764.
  • [67] O. Steinmann, Zur Definition der retardierten und zeitgeordneten Produkte, Helv. Phys. Acta 36 (1963), 90-112.
  • [68] L. Susskind, Structure of hadrons implied by duality, Phys. Rev. D 1 (1970), 1182-1186.
  • [69] L. Susskind, Strings, black holes and Lorentz contraction, Phys. Rev. D 49 (1994), 6606-6611.
  • [70] J. G. Taylor, The renormalization constants in perturbation theory, Nuovo Cimento 17 (1960), 695-702.
  • [71] F. V. Tkachov, Euclidean asymptotic expansions of Green functions of quantum fields (I). Expansions of products of singular functions, Internat. J. Modern Phys. A 8 (1993), 2047-2117 (version corrigée : hep-th/9612284).
  • [72] J. A. Vickers and J. P. Wilson, A nonlinear theory of tensor distributions, e-Print Archive gr-qc/9807068, 1998.
  • [73] J. A. Vickers and J. P. Wilson, Invariance of the distributional curvature of the cone under smooth diffeomorphisms, Class. Quantum Gravity 16 (1999), 579-588.
  • [74] V. S. Vladimirov, Les fonctions de plusieurs variables complexes et leur application à la théorie quantique des champs, Dunod, Paris, 1967.
  • [75] R. M. Wald, The back reaction effect in particle creation in curved spacetime, Comm. Math. Phys. 54 (1977), 1-19.
  • [76] R. M. Wald, On the trace anomaly of a conformally invariant quantum field on curved spacetime, Phys. Rev. D 17 (1978), 1477-1484.
  • [77] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1965.
Języki publikacji
EN, FR
Uwagi
2000 Mathematics Subject Classification (version of July 31, 1998):
46F10 Operations with distributions (generalized functions),
46F30 Generalized functions for nonlinear analysis [Colombeau's generalized functions],
40G99 [Zeta-function (Ramanujan) method of summability],
81S05 Commutation relations [canonical quantization],
81T20 Quantum field theory on curved space backgrounds,
81T30 String and superstring theories,
also 33C55, 81Q10.
Identyfikator YADDA
bwmeta1.element.zamlynska-88d82162-8c37-4afd-9d68-637e73614c0b
Identyfikatory
ISSN
0012-3862
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.