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We define and study a particular kind of generalization strategy for deriving
efficient functional programs. It is called higher order generalization, because
it consists in generalizing variables or expressions into functions. This
strategy allows the derivation of efficient one-pass algorithms which save
time and space resources.

Introduction

A major problem in the derivation of programs by transformation is the lack
of a general theory which guarantees the improvement of program perform-
ances when applying the basic transformation rules. In some cases, how-
ever, it is possible to achieve that improvement by using particular strategies.

Some of them have been defined and studied in the past, as for instance
the composition strategy, the tupling and the generalization strategy [9]. In
this paper we will define a particular kind of generalization strategy and we
will study its properties through afl extended example.

That strategy, together with the composition and the tupling strategies,
avoids the multiple traversals of data structures and it saves time and space
resources.

We consider recursive equations programs like the ones used in the
classical work by Burstall and Darlington [6]. We will not give their formal
definition here, because it is not relevant to the higher order generalization
strategy we will present. Indeed that generalization ¢an be applied also when
one derives programs using other programming languages and other form-
alisms. In the programs we will write we adopt a Hope-like syntax [4].

As basic transformation rules we will use the fold/unfold rules, i.e., the
replacement of a right-hand side of a recursive equation by its corresponding
left-hand side (for folding) or vice versa (for unfolding) [6].
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Our generalization strategy will be presented in relation to a problem

due to Swierstra [13]. It is a more complicated version of the tree transform-
ation problem presented in [3].

The higher order generalization strategy:
an extended example

The example we consider is related to a compilation problem for transforming
a list of letters denoting declarations and uses of identifiers in a block
structured language, into a new list, where for each use of an identifier we
indicate the corresponding declaration.

Let us consider the following data structure [4]:

data atom = = use(letter) + + decl(letter),
data clem = = list atom,
where letter = la, b, ¢, ...), and use, decl, and list are type constructors.

Here we assume that list a is the type of the nested lists of elements of type a.
For simplicity we adopt the convention of writing x instead of use{x),
and X instead of decl(x).
An instance of elem (short for program element) is:

pl =[A4,a,b,[a,c, A,b,C], B,b].

In pl the occurrence of the atom A denotes the declaration of the identifier a
while the occurrence of the atom a denotes the use of the same identifier a.
(The ambiguity of writing x both for the letter x and the atom use(x) is
resolved by the context.)

Notice that for any letter x the declaration X may occur after its use.
We assume that active declarations satisfy the familiar block discipline. For
instance, if we have the following program element:

[ — 1 7
[... 4 [ ... a A ... b ] 8 a ...]

with no other occurrence of A’s or B's, the correspondence use-declaration
has been indicated by arcs.

We also assume that given a program element p, each use of a letter
has at most one corresponding declaration in the same block, ie,
OKdecl (p, ¢) = true, where

dec OKdecl: elem xset letter —bool,
-—— OKdecl (nil, v) = true,
——— OKdecl (e: :le, v) =if e = use(a) then OKdecl(le, v)
elseif ¢ = decl(aJ then  if acv then false
else OKdecl(le, vu {a))
else OKdecl] (e, ¢) and OKdecl(le, v).
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For instance, OKdecl([ 4, g, a, b, [a, A], B], ¢) = true and OKdecl([4, 4, a], ¢)
= false, because there are two declarations for the letter @ within the
same block.

We would like to write a program which given a nested list of atoms,
produces a nested list of pairs of numbers, where each pair corresponds to a
use occurrence. The first number of each pair gives us the level of nesting of
the block where the corresponding declaration occurs, the second number
gives us the sequence order of that declaration within the block where it
occurs. For instance, given the above list pl we want to derive the list:

1=[0,0 (0,1 [(L, 0 (1, 1) (0, 1] (0, 1],

which encodes the use-declaration correspondence shown by the following
arcs:

) 10,11
|
Iy 1

(0.0} {1.0] [0,1) [0,1)

The pair (0, 0) for the first a from the left tells us that the corresponding
declaration A is at level of nesting 0 and it is the first declaration from the
left in that level. Analogously the pair (1, 1) related to ¢ tells us that the
corresponding declaration C is at level of nesting 1 and it is the second
declaration in it.

We can write the program for producing the list /1 by first obtaining an
intermediate “decorated list”

pl =[A00, a, b, [a, ¢, A10, b, C11], BOL, b},

where we attached to each declaration the corresponding {level of nesting,
sequence order ) pair. Having the list p1 it will be much easier to derive the
required list /1, because we have already available the necessary information
attached to each declaration. We pay that advantage by requiring multiple
traversals of data structures. However, the application of the tupling strategy
and the higher order generalization strategy will avoid that drawback, and
it will allow us to derive an efficient one-pass algorithm, as we will see
later.

For representing the list pl we need the following “decorated data
structure”:

data decoratom = = use (letter) + + decl(letter) x level x order,

data decorelem = = list decoratom.

The program which produces pl from pl can be written as follows:

dec decor: elem xlevel x order — decorelem
——— decor(nil, n, 0) = ml
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——— decor(e: : le, n, 0) = if e = use(a) then use (a): : decor(le, n, o)
elseif ¢ = decl(a) then (decl(a), n, 0): : decor (le, n, 0+1)
else decor (e, n+1, 0): : decor (le, n, 0).
The 1nitial call is decor(pl, 0, 0).

We can compute the new active declarations at each point in the given
list of atoms by the function nad:

dec nad: (decorelem x(letter — level x order)) —(letter — level x order)
———nad(nil,d) =d
———nad(e: : le,d) =if e = use(a) then nad (le, d)
elseif e = (decl(a), n, o) then update ((decl(a), n, 0), nad (le, d))
else nad(le, d)

where as usual, update ({x, n, 0), f) defines the function g s.t.

gx)y=<,0> and g=f() for y#x.

The inital call is nad(pl, emptyfunction).

The code for nad expresses the fact that when entering a list of atoms
(denoting a new block), the new active declarations are computed by
updating the old active declarations by the ones occurring within that list,
but not within its nested lists. (see Fig. 1).

Entering a new block. The new active declarations for updating the old
ones, occur here:

[ =——= [ subbloek1 ] ———— [ subblock 2] ————]

Fig. 1. Computing the new active declarations

The following function comp (short for compile) computes the desired
list 11 from pl. ’

dec comp: (decorelem x(letter — level x order)) — list level x order
——~ comp (nil, d) = nil
——— comp (e: : le,d) =if e =use(a) then d(a): : comp(le, d)
elseif ¢ = (decl(a), n, 0> then comp(le, d)
else comp (e, nad(e, d)): : comp(le, d).

The initial call of comp is comp(pl, nad(p1, emptyfunction)), where pl
= decor{(pl, 0, 0).

Obviously the program we have constructed makes multiple traversals
of the data structures involved. It seems very difficult to produce in our case
a one-pass algorithm, because the declaration of an identifier may occur in
a given list after its use. However, we will show that the higher order
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generalization strategy, together with the tupling strategy, is powerful enough

to solve that problem. We do not present here a formal characterization of
the power of that kind of generalization. Nevertheless we hope that the
reader may convince himself that the proposed strategy does work in a large
class of programs which occur in practice.

A first step towards the derivation of the one-pass algorithm is the
application of the composition strategy for the expression comp(pl, nad
(p1, emptyfunction)), because both comp and nad visit pl. The incorporation
of the step for obtaining pl from pl into the one-pass algorithm will be done
later on. |

We define the function f(/, d) = comp{/, nad (l, d)) whose explicit defini-
tion can be obtained, after some simple folding/unfolding steps:

dec  f:(decorelem x(letter — level x order)) — list level x order
——— f(nil, d) = nil
——— f(e::le,d) = if e =use(a) then nad (le, d)(a)::f (le, d)
elseif e = (decl(a), n, 0) .
then comp (le, update(<decl{a), n, o), nad (le, d)))
else (e, nad (le, d))::f (le, d).
From the above definition of / we notice that:
(1) the function nad(le, d) and f(le, d) both wisit the structure le:
(1) it is impossible to fold into a recursive call of f both the expressions
comp(le, nad (le, d)) = f(le, d) and
comp/(le, update(<decl(a), n, o), nad(le, d))).

As suggested in [12] we need to apply the tupling strategy (because of (i)).
We also need to apply the higher order generalization strategy (because of
(ii)) to make the folding possible. Therefore we define the function

H(b, |, d, g) = (nad(l, d), compile(l, g (b, |, d))>
where
compile(l, g(b, !, d)) = comp(/, update (b, nad(/, d))) if g =gl
= comp (!, nad(l, d)) if g=g2
where gl = Axyz.update(x, nad(y, z)) and g2 = Axyz.nad(y, z2).

The. functionality of H can be derived [rom the one of the function
compile:

(decorelcm x ((atom x level x order) x decorelem x (letter — (level x order))

— (letter — level x order))) — list level x order.

Using the higher order function compile, we are able to make the
necessary folding steps to allow the recursion to work. The suggestion for the
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suitable generalization comes from the need of folding the two expressions of
point (ii) above.
This idea is related to the one in [8] where the author uses for a
generalization step the mismatch information coming from a forced folding.
It is not difficult to derive the explicit expression of the function H and
we get:

H(b, nil, d, g) = {, nil)
H(b,e: : le,d, g) =if e =use(a) then
if g =gl then <u, update(b, u)(a): : v) where {u, v> = H(b, le, d, gl)
else (u, u(a): : v) where (u, v) = H(b, le, d, g2)}
elseif ¢ = (decl(a), n, 0> then
\if g =gl then <update(<decl(a), n, 0), u), v}
where (u, v)> = H(b: (decl(a), n, 0), le, d, g)
else (update(<{decl(a), n, 0), u), v)
where (u, v) = H({decl(a), n, 0), le, d, g1}
else
if g =gl then (u, a::v) where a = n2H (b, ¢, update (b, u), g2)
where u,v>=H(b, le, d, gl)
else (u,a::v) where a = n2H (b, e, u, g2)
where (u,v)=H(b, le, d, g2)}.

We used the following notations:

H(b:c, I, d, g1) = {nad(l, d), comp(l, update (b, update (c, nad(l, @)

and ni al, ..., an) = ai.

The initial call for producing [1 from pl is #n2H(O, pl, d, g2)
= comp (pl, nad (p1, emptyfunction)) where update ({3, y) = y.

Notice that the function H visits the list e::le (which is its second
argument) only once. By using the tupling strategy and the higher order
generalization strategy we avoided the multiple traversals of e::le, which
are necessary if we use the functions nad and comp. Indeed
H(...,e:le,..) is computed only in terms of the calls H(...,e,...) and
H(..., le, ...). Testing the equality of functions when computing the function
H is not difficult, because it amounts to check a syntactic identity.

A final transformation step remains to be done because we need to
avoid the visit of the given list of atoms for producing the corresponding
decorated list.

In order to do so, we basically have to redo the steps we have presented
above when deriving the function H. This time, however, we need to consider
as a starting point suitable variants of the functions nad and comp, which we
call Nad and Comp, whose input is a list of atoms (not decorated atoms).
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We leave to the reader the task of completing the necessary transformation
steps in detail.

We have;

dec Nad: elem x(letter — level x order) x level x order
— (letter — level x order)
--- Nad(nil, d, n,0)=d
~—— Nad(e::le, d, n, 0) = if e = use(a) then Nad(le, d, n, 0)
elseif e = decl(a) then update ({(decl(a), n, 0D, Nad(le, d, n, 0+1))
else Nad(le, d, n, 0).

The initial call 1s Nad(pl, emptyfunction, 0, 0).

dec Comp: elem x(letter — level x order) x level —(list level x order)
——— Comp(nil, d, n) = nil
~—— Comp(e::le, d, n) =if e =use(a) then d(a)::Comp(le, d, n)
elseif ¢ = decl(a) then Comp(le, d, n)
else Comp(e, Nad(e, d, n+1, 0), n+1)::Comp(le, d, n).

The nitial call 1s Comp(pl, emptyfunction, 0).
The tupling and the generalization strategies suggest us the definition of
the following function L (analogous to H):

L(b,1,d, g, n, 0) = <Nad(l, d, n, 0), Compile(l, g(b, [, d, n, 0), n))

where b: atom xlevel xorder, . elem, d: letter — level x order,

g: ((atom x level x order) x elem x (letter — level x order) x level x order)

— (letter — level x order)), n: level,
and the functionality of the output of L is: (letter — level x order) x(list
level x order).
Compile (I, g(b, I, d, n, 0), n) = Comp(l, update(b, Nad(l, d, n, 0)), n)
if g =gl. It is equal to Comp(/l, Nad(l, d, n, 0), n) il g =g2.

After some folding and unfolding steps, we can derive the following
explicit definition of L: '

Lb, nil, d, g, n,0) =, ml)
Lb,e: : le,d, g, n, 0) =if e =use(a) then
iif g =gl then (u, update(b, u)(a): : v) where u,v) = L(b, le, d, gl, n, 0)
else <u,u(a): : v> where (u, v> = L(b, le, d, g2, n, 0)]
elseif ¢ = decl(a) then
if g =gl then <{update(<(decl(a), n, 0>, u), v)
where <u, v) = L(b: (decl(a), n, 0), le, d, gl, n, 0+1)
else (update(<(decl(a), n, 0>, u), v>
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where (u, v) = L((decl(a), n, 0), le, d, g1, n, 0+ 1)}
else
if g =gl then C(u, a: : v) where a = n2L(b, e, update(b, u), g2, n+1, 0)
where (u,v)> = L(b,le, d, gl, n, 0)
else (u,a: : v) where a = n2L(b, e, u, g2, n+1, 0)
where (u, v) = L(b, le, d, g2, n, 0)}.

The initial call is =2L([J, pl, emptyfunction, g2, 0, 0) = Comp(pl,
emptyfunction, 0) where update ([J, a) = a.
By L(b:c,...,gl,...) we mean

(..., Comp(..., update (b, update(c, .. ), ...)>.

The derivation process is now completed and we derived a one-pass
algorithm as required.

Notice the power of the synergism between the tupling strategy and the
generalization strategy. By tupling we collect the necessary information in the
individual components of the tuple, so that multiple traversals are avoided,
and by generalizing we make the folding step possible, so that recursive
programs can be derived.

A second example and some comments on the
generalization strategy

Let us consider as a second example of application of the higher order
generalization strategy, the following problem [3]. We are asked to change in
a given tree the values of all the leaves by replacing them by their minimal
value. The obvious solution to the problem requires two traversals of the
tree: the first one for computing the minimum leaf value, and the second
one for replacing the leaf values.

The corresponding program is as follows.

data tree(num) = = niltree + + tip(num) + + tree(num) A tree(num)
dec transform: tree(num) — free(num),

——— transform (t) = replace(r, minv(t))

dec minv: tree(num)— num

——~ minv (niltree) = + ©

——— minv{tip(n)) = n

——— minv(t]l A t2) = min(minv(t1), minv(t2))

dec replace: tree(num) x num — tree(num)

——— replace(niltree, m) = niltree

——— replace(tip(n), m) = tip(m)

——— replace(tl A t2, m) = replace(tl, m) A replace(t2, m).
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A way of avoiding the second traversal of the given tree is to remember
its structure when visiting it for computing the minimum leaf value. If one
does so, a second visit for replacing the leaf values is not necessary.

Remembering the tree structure can be done by defining a higher order
function as follows.

dec gmin: tree(num) —*((num — tree (num)) xnum).

Given a tree(num), gmin produces a pair whose first component is the
tree structure, i.e., a “tree without leaf values”, and whose second component
is the minimum leaf value. The required tree is obtained by applying the first
component of the value of gmin to the second one.

——— gmin(niltree) = (Ax.niltree, + o0 )
——— gmin(tip(n)) = ixtip(x), n)
——— gmin (t1 At2) = (Axcl Ac2, min(ml, m2)>
where (ix.cl, ml) =gmin(tl)
{Ax.c2, m2> = gmin(t2).

The initial call for a given tree 1 is:
al (a2) where (al, a2) = gmin(r).

Looking at the above program one may object that the given tree has
been copied when constructing the first component of the result, and
therefore the program is not space efficient. However, since the function gmin
visits the tree only once, one may discard the leaves of the tree after their
visit. Thus, given a tree ¢, for constructing the first component of gmin(r) we
can reuse the memory cells which are needed for storing ¢.

Notice that the use of a higher order structure, like the first component
of gmin, allows us to achieve in this case the same program performances
which can be obtained by circular programs and lazy evaluation [3].

For lack of space we do not present here more examples of the higher
order generalization strategy, but we hope that we succeeded in illustrating
the important role that such generahization play when deriving programs.
That role has already been recognized in the area of automated deduction
and theorem proving for the generation of suitable lemmas [2], [5], [7].

Another point we want to stress is the role of the mismatch information
for a forced folding in suggesting us the generalization steps. That idea goes
back to [8], [2]. Related work has been done by [1], [10], [11] for program
synthesis and for proving properties of recursively defined functions.

A fina! point to be underlined is the synergism among the generalization
strategy we proposed, and the tupling strategy [12]: neither of them, if used
separately, could have been powerful enough to solve with the required
efficiency, the transformation problems we considered in this paper. Their
joint use was essential for our derivations.
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