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First of all, I thank you for the honour of inviting me to the International
Centre. My lectures will be based mainly on a paper presented to the Royal
Statistical Society in London, earlier this year, entitled: Randomised allocation
of treatments in sequential experiments. However, since 1 will be giving five
lectures, this gives me the opportunity to discuss related work more fully and
to extend the paper in several directions.

1. Introduction

1.1. The multi-armed bandit problem. The multi-armed bandit prob-
lem derives its name from a gambling situation in which there are k > 2
different machines or “bandits”, each capable of producing a reward 1 or 0
in a single trial. The probabilities p;, 1 —p;, i =1, 2, ..., k, of these events are
unknown and the gambler seeks to maximise his total reward over a sequence
of T trials, using any combination of the machines. More formally, let
P1s P2, --., P be the unknown probabilities of success in k different sequences
of independent Bernoulli trials. It is required to maximise the expected num-
ber of successes in T trials.

The association with gambling is perhaps unfortunate, since the problem
is equivalent to one concerned with clinical trials and it is worth noting that
“bandits” did not appear in the original formulation by Robbins (1952). We
can think of a single sequence of patients and k possible treatments for any
one of them. The aim is to specify a rule for allocating a treatment to each
patient depending, at each stage, only on previously observed successes and
failures. The only difference in this alternative view of the problem is that it
seems unrealistic to assume that T is known in advance, when it is inter-
preted as the total number of patients, both inside and outside the period of
the experiment. For the moment, let us assume that Tis given, but we must
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bear in mind the question of sensitivity to the choice of T in any compari-
sons between allocation rules.

A recent paper by Gittins (1979) discussed a wide range of allocation
problems, including multi-armed bandits, using an optimality criterion based
on a discount factor a, 0 <a < |, and an infinite sequence of decisions.
There is a close, but rather deceptive relationship between the present
formulation (a=1) when T is large and the discounted version of the
problem (T = o) as a1 1. The main advantage of using a discount factor is
that, for any choice of independent prior distributions on the parameters
Pis P2y ---» Dx» the optimal policy can be expressed in terms of dynamic
allocation indices. In effect, the Gittins index can be constructed separately
for each of the unknown probabilities p;, by computing the solution of a
one-armed bandit problem. General results of this type have given us a more
penetrating view through the complexities of sequential analysis and a
powerful stimulus to further research: see the references in Gittins (1979)
and also the more recent paper by Whittle (1980). Strictly speaking, the
simplification of allocation rules by using a separate index for each unknown
probability is not justified by exact optimality when T is finite, but as we
shall see the principle can still be effective.

Bayesian models are attractive from the mathematical point of view
because they provide a clear specification of the optimisation problem and
there has been a great deal of work on the form of optimal policies under
various special conditions: see, for example, Berry and Fristedt (1979).

On the other hand, such policies are often compilicated to construct and
apply. The Bayesian approach also leads to dependence on prior distrib-
utions and the effect of parameters like the discount factor may be even more
important. In particular, it can be shown that the limiting form of the
dynamic allocation index as a1l does not determine a good policy. The
reasons for this will be explained in Section 2, in the case of the one-armed
bandit problem: k = 2, but p, i1s given, and the limiting form of the general
policy has been established recently by Kelly (1980). Roughly speaking, it will
be argued that the best is the enemy of the good and the main purpose in
this paper will be to suggest pelicies that perform reasonably well for any
values of p,, p,, ..., p, and all except small values of T

Let us introduce some notation and a criterion for the comparison of
decision rules. Suppose that, after a total of ¢ trials, using a sequential rule 4
to allocate the k treatments, we have observed r; = r;(t) successes in 1; = n,(r)
trials with treatment i. The proportion of successes achieved so far is r/t,
where r =) r, and t =) n;. At the end of a sequence of T trials, we are
mainly interested in the total number of successes, which will be denoted by
R =r(T). Similarly, let us distinguish the final values R, =r;(T) and N,
=n(T), i=1,2,..., k. We seek to maximise the expected number of
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successes or, equivalently, to minimise the expected successes lost (e.s.l.):

L..I(pls Pz2s ---s Pis T) = Tmax(ph Pas oy pk)_El(-R)

This is a convenient form for the loss function, since it represents the effective
cost of ignorance about which treatment is best. For any given integer T > 0,
a useful measure of performance is

M4(T) = SupLA(pl’ Pas -y Pi» T),

where the supremum is taken over all possible values of the unknown
probabilities: 0 < p, <1, i=1,2,..., k.

On the other hand, if T 1s unknown and thought to be large, it is
reasonable to consider the long-term behaviour of decision rules. In this case,
an obvious requirement is that the proportion of successes R/T should
converge to max(py, ps, ..., p,) as T — . However, most of the policies
investigated previously do not satisfy this condition, The difficulty can be
illustrated by considering a naive “play the favounte” rule. Suppose we start
the procedure by using each treatment once and then, for all t > k, allocate
treatment i in the next trial il and only if i is the smallest integer such that

r: r
- = max -*+. (1.1)
' S A A

This is clearly a bad policy, because it might reject the best treatment
permanently after its first trial. Even if we start with m > 1 applications of
each treatment and always use the current favourite for ¢t = km, there is a
positive probability of eventually settling on an inferior treatment.

1.2. Asymptotic optimality. A decision rule is said to be asymptorically
optimal (a.0.) if it leads to the result that, with probability 1, as T — oc,

R/T'_’max(pls P2s ---» pk) (12)

This definition was introduced in the fundamental paper by Robbins (1952).
He described a simple, but artificial policy for the two-armed bandit prob-
lem. Let a, =1 <a, <a,... and b, =2 <b, <b,... be two disjoint se-
quences of positive integers with a,/s — oo and b/s - co as s — co. Suppose that
k = 2 and consider the situation after ¢ tnals: if t+1=a, or t+1 = b, for
some s > 1, then the next trial must use p, or p,, if r+1 is not a member of
either sequence, the next trial 1s assigned to p, or p, according as r /n,
= ry/n, or r/n; <r,/n,. In other words, most of the trials are allocated
sequentially to the favourite, but certain trials are reserved in advance for
each of the treatments. The asymptotic optimality of the procedure can be
verified easily, by using the strong law of large numbers.

The investigation of a.0. policies has not received much attention in the
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literature, perhaps because the example given by Robbins involves an
artificial distinction between neighbouring trials. Another possible disadvan-
tage is that the property (1.2) can only be achieved by ensuring that an
infinite sequence of trials is associated with each of the unknown prob-
abilities. However, it is not necessary to prescribe the sequences in advance:
in fact, more sensitive procedures can be defined by generating them from
the data as it develops.

We now introduce another class of policies based on a simple modifi-
cation of the “play the favourite” rule. Roughly speaking, the idea is to add
small random perturbations to the observed proportions r;/n;, at each stage,
obtaining a set of indices which can be used as in (1.1). Let {i(n),n> 1} be a
sequence of strictly positive constants such that A(n) -0 as n—> o and let
X;(1),j=1,2,...,k, t =k, be i.i.d. random variables which are positive and
unbounded. The common distribution function will be denoted by F and we
suppose that F(0) =0 and F(x) < 1, for all x > (. The allocation procedure
uses k of these random variables at each stage and it will be assumed that all
of them and the results of all the Bernoulli trials are independent of one
another. Initially, each treatment 1s used once and then, for ¢t >k, the
allocations depend on the record of successes and failures according to the
following rule.

Use treatment i in the (t+ 1)th trial if and only if i is the smallest integer
such that Q,(t) = max Q;(t), where

1<j<k

0,(1) =%+A(nj)xj(t), i=1,2, ...k (13)
i)

The effectiveness of these randomised allocation procedures is not easy
to evaluate, because of the complicated mechanism generating the total
number of successes after T trials: R(T) =) R;(T), where R;=r,(T), j
=1, 2, ..., k. However, the assumption that the perturbations A(n;) X;(r) are
positive and unbounded guarantees that (1.3) determines a policy which is

a.0.. we note the asymptotic properties established in an earlier paper
(Bather (1980)).

THeOREM 1. Consider the randomised allocation procedure defined by
(1.3) and suppose that max(p, p, ..., p) = p; > p; for j#i. Then, with
probability 1, the random variables R;(T), N;(T) have the following properties
as T — ao:

N;(T) » «, R,(T)/N;(T)—>p;, j=1,2,..,k,

Ni(T)/T =1 and R(T)/T - p;.

1.3. An empirical decision rule. It is clear that a great many a.o.
policies can be devised. Indeed, Theorem 1 has already been extended by
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Glazebrook (1980) to show that policies based on dynamic allocation indices
can be modified, by adding random perturbations, to produce similar
asymptotic properties. Another method of ensuring good performance over
long sequences of trials was suggested by Poloniecki (1978). However, a more
important question is whether we can select from the large class of a.o.
procedures a decision rule that performs well over finite sequences of trials:
this will be the main objective in what follows.

The randomised allocation procedures we have introduced depend on an
arbitrary sequence {i(n)} and a distribution function F. This allows a wide
range of possibilities and it must be admitted that no single procedure will
emerge which is uniquely preferable to all the others. The particular decision
rule suggested here is a result of many comparisons and minor adjustments,
using trial and error methods. The empirical evidence will be reported in
Sections 2,3 and 5, and this is restricted to the case k = 2. However, the form
of the policy and the close relation between one-armed and multi-armed
bandit problems established by Gittins, for discounted models, permits some
anticipation of its general behaviour when k > 3. There are strong indi-
cations that the following policy, or one similar to it, is preferable to other
methods of allocating the treatments, at least when T = 50.

Policy (i). Define A(n) =(4+n*?)f15n),n=1, 2, ...,and let X;(1) =2+
+ Y;(f), where the independent random variables Y;(f) have the common
probability density e™?, y > 0.

As a preliminary to the detailed comparison of performance between
this and other policies, it may be helpful to look at the conditional
probabilities in various situations with k =2. Let mn; =m;(ry, ny, ry, ny)
denote the conditional probability associated with p; in the next trial and let
hy=am) j=1,2,

4= "_2_"_1_’_2(&2_11)‘
n, m

It is easily verified that, for policy (i),

) d
= - 14
n=nine (o) 9

This formula holds only if g = 0 but, otherwise, we ¢an rely on the symmetry
of the policy: in general, =, (r,, ny, r3, n;) = 75 (ry, n3, r;, n;). Table 1 shows
that randomisation has little effect on preference for the “favourite” in the
next trial, except in situations where the data would be regarded as incon-
clusive by most statisticians.

The next section of the paper is concerned with a special case of the
one-armed bandit problem in which the optimal Bayes procedures are easy
to compute and compare with simple randomised allocation procedures.
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Table 1
Policy (i): conditional probabilities x, associated with p,, k =2
r 0 0 0 0 0 1 0 1 3 4 11 12
ny 1 1 2 1 2 2 2 5 10 10 25 25
ry 1 1 ! 3 3 3 50 50 50 50 50 50
n, 1 2 2 5 5 5 100 100 100 100 100 100
T, 0.025 0362 0031 0594 0072 0899 0397 0.144 0063 0515 0.201 0.897

Section 3 discusses the two-armed bandit problem and compares the per-
formance of policy (1) with several others, including the well-known “play the
winner” rule. Unfortunately, most of the evaluations of our criterion, es.l,
are based on simulations. However, the asymptotic results can be strength-
ened and, as will be seen in Section 4, there are mathematical reasons for
choosing the sequence {A(n)} so that A(n) is of order n~ /% as n — oo. Section
5 contains a summary of the properties of policy (i), showing that its
maximum loss M, (T) is about 0.36 T'/2 for all T> 50. Such results will
enable us to draw some conclusions about the effective cost of using decision
procedures with equal allocations of the treatments under comparison. The
final section includes some remarks on the possible theoretical and practical
implications of the work.

Consider the case k = 2 and compare the fact that M, (T) is of order
T!? with the corresponding result for any finite expermient which relies on
equal samples. Suppose we take S observations on each of p, and p,:S might
be fixed in advance or determined by a sequential stopping rule. Let P, be
the probability that § =»n and the terminal decision chooses p; for all
remaining T—2n patients. We assume that

E(S) :zn(Pl,,+ P,) < .
Then, for a total of T patients, the es.l is
Lo(py, p2s TY =(p1—p2) z \nP,+(T—n) PZn}'

2nsT
Thas holds when p, > p,, otherwise, there is a similar formula. It follows that
Lo(py» P2, T)/T = |py — pal o, T — w0

where g =) P,, if py > p,, & =) Py, if p, < p,. In other words ¢, is the
error probability of the decision procedure, Hence, the corresponding maxi-
mum es.). My(T) is of order T.

2. One-armed bandits

2.1. Bayes procedures. The case when k = 2 and p, is known was first
studied by Bellman (1956), using a discount factor, and by Bradt, Johnson
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and Karlin (1956), for finite sequences of trials. Both papers established the
form of the optimal policies for any given prior distribution on p,, leaving
substantial computations to produce explicit solutions. We shall concentrate
on a special formulation of the one-armed bandit problem in order to
simplfy and extend some of the results obtained in the paper by Bradt et al.

Suppose that p, =3 and let « be a prescribed constant in the range
<o < 1. We admit two simple hypotheses about p,:

H:p =a, Hy: py =1-a,
each with prior probability 1. Thus, H, means that p, > p,. Under these
conditions, it is clear the posterior probabilities associated with H;, i =1, 2,
after any sequence of trials, depend only on r, and n,. In fact, the posterior
probability of H, is

J
Hj = j;tbf.,
4+ (1 —ay

We now have a convenient state variable j which changes by +1 whenever a
trial is allocated to p,, but remains constant when p, is used. The Bayes
procedure can be determined by investigating a Markov decision process in
which the essential variables are j and s, the number of trials that remain to
be allocated.

Consider starting from an arbitrary state j =0, +1, +2,..., with s
trials remaining, and let s; be the number allocated to p;, i = 1, 2, according
to a decision rule A. Under H,. s, represents the number of “mistakes” and
the es.l. is (@ —3) E 4(sy} H;). Similarly, under H,, the es.l. is (@ —3) E ,(s, | H,).
The average loss with respect to the initial state j is

(=316, E(s2| Hy)+(1=6) E ,(s, | H)}.

Jj=2r —n,. (2.1

Clearly, we can omit the factor (x —3) and define an optimal policy as one
that attains the minimum expected number of mistakes. Let B;(s) denote this
minimum expectation so that, in general, the minimum es.l. is (x—13) B;(s).

We now obtain the dynamic programming equation for the function
B;(s) by considering the effect of the next trial, given the information
represented by the pair (j,s). If p, is used next, followed by an optimal
sequence of decisions, the expected number of mistakes is

On the other hand, if p, is used, the total expectation must be replaced by

8;+ B;(s—1). We consider a randomised choice between the two alternatives

and associate conditional probabilities ¢ and (1 —¢) with p, and p,, respect-

ively. Then B;(s) must be determined by minimising with respect to ¢:
Lo

+@{0,(1—0)+(1—0)a)} B, , (s—)+(1—@) B;s—1)]. (2.2)



14 J. A. BATHER

The first conclusion to be drawn from this relation is that randomisation is
never strictly needed. This follows from the fact that the expression on the
right is linear in ¢. In general, the minimum can be attained by setting ¢ = 0
or 1 and, where there 1s no difference, we may choose ¢ = 0 for definiteness.
It 1s worth remarking that randomised allocation procedures cannot be
justified by exact optimality for any choice of prior distribution on the
unknown probabilities.

In principle, any desired value of the function B;(s) can be computed by
successive applications of (2.2). By definition, B;(0) = 0 for all j, so we can
use the relation with s =1 to determine B;(1); then set s =2 and so on.
Notice that, having computed B;(1) for j =0, +1, ..., +(T—1), the values of
B;(2) can be found for j =0, +1, ..., £(T—-2) and hence, after T iterations,
By(T) can be determined. Table 2 below gives some examples of the
minimum es.l., (@ —3)}By(T), obtained in this way. Policy (ii) in the table
refers to the corresponding Bayes procedures: it is not a single policy because
of its dependence on the parameters T and a.

Results about the form of the Bayes procedures can be inferred directly
from relation (2.2), but all the properties we shall need are special cases of
results obtained previously. The prior distribution on p, is represented here
by the initial state j = 0 and the optimal policy, given a total of T tnals, is
determined by assigning the appropriate value ¢ = ¢;(s) to every pair (j, s)
that is accessible from the position (0, T). When the properties established in
Section 4 of the paper by Bradt et al. are expressed in this notation, they can
be summarised as follows.

LeMMA 1. There is a sequence {o(s)} witha(1)=0,06(2) = —1, a(s+1)
=a(s)ora(s+1)=a(s)—1, in general, and o (s) > — oo as s = c0. The Bayes
procedure, policy (ii), is specified by the rule:

@;(s)=1 if j>als), (=0 i j<o(s).

Thus, whenever T > 2, the policy involves a sequence of trials using the
unknown probability p,, followed by a switch to the known probability p,
= % for all remaining trials if the random process {j(t),t > 0} reaches the
boundary where j(t) =a(T—t), for some t < T In practice, the sequence
{a(s)} is best determined by finding the integers s(v) = min {s: o(s) = —v}
for v=1,2,... For example, when o = 0.6, computations based on (2.2)
show that s(1) =2, s(2) =6, s(3) = 17, s(4) = 34, s(5) = 60, s(6) = 99. The
fact that a(s) » —oo as s — oo implies that the limiting form of the optimal
policy as T— oo corresponds to the rule: allocate all the trials to p,.

Similar results hold when the model includes a discount factor a < 1
and T = oo. In this case, the Bayes procedure is stationary and the sequence
{o(s)! is replaced by a negative integer o, depending on a, with the general
rule: use p; in the next trial if and only if the current state j(f) > o. However,
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the same difficulty occurs when the discount factor is near 1: ¢ - — 0 as
all.

These results do not mean that there are no stationary policies with
good long-term behaviour, but it is no use relying on the hmiting form of
relation (2.2). We know that the long-term average es.l. of an a.o. policy
must be zero, so the theory of Markov decision processes indicates a
stationary form of the dynamic programming equation. Unfortunately, this
has no solution.

LEMMA 2. The equation
B; = min (¢(1-0)+(1—-¢)0;+¢ {6;a+(1-0)(1—)} B;, 1+

0<g<1
+¢{0,(1—a)+(1—-0))a} B,_, +(1 — ¢} B;] (2.3)
has no finite solution with B; > 0 for all j.

Proof. Suppose that {B;, j =0, +1, ...} is a non-negative solution. The
expression on the right of (2.3) is linear in ¢ and, when ¢ =0, it reduces to
6;+ B; > B;. It follows that the minimum must be attained when ¢ = 1 and
we have

Hence, B; > 1—0; always and we can strengthen this inequality by substitut-
ing the corresponding lower bounds for B;,; and B;_; on the right of (2.4).
But equation (2.1) shows that

{0ja+(1-0)(1—a)} (1 —0;, )+ 10,1 —)+(1-0)a}(1-0,_;) =1-0,

and we now have B; > 2(1—6,). Then, by repeating the argument, it follows
that B; > m(1—80)) for any positive integer m and, since §; < 1, B; cannot be
finite.

2.2. Stationary policies. A stationary allocation rule for the one-
armed bandit problem with simple hypotheses H, and H, is defined by a
sequence {¢;} where ¢, is the conditional probability of using p; in the next
trial, given j=2r,—n,. It is easily shown that randomisation plays an
essential part in the conditions for such a policy to be a.o.

LEmMMA 3. (a) No deterministic stationary policy can be a.o.

(b) A stationary policy {¢,} is a.o. provided that ¢; > 0 for all j and that
$;i—~1 as j— o, ¢; >0 as j—> —o0.

Proof. (a) The policy defined by setting ¢; = 1 for all j cannot be a.o.
because its proportion of successes is 1—a <3, under H,. On the other
hand, a stationary policy with ¢; = 0 for some j has at-least one absorbing
state, which means that the proportion of successes converges to 3 with
positive probability, under H,.
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(b) Strictly speaking, the proof of Theorem 1 given in Bather (1980)
does not apply here, but it only needs minor modifications. Consider the
random vanables n, (r) and j(r) = 2r, (1) —n, (t) as t — oc. Since ¢; is bounded
away from zero on every bounded set of states, it is easily shown that
n, ()3 oo as t — oo, under either hypothesis. Then the strong law of large
numbers guarantees that r, (t)/n, (1) p, and it follows that j(£)>5 co, when
py =a >3 and j(1)35 — oo, when p, = 1—a. Hence, the conditional prob-
ability n, (1) = qu(,)a—'si 1, under H,, and =, ()23 0, under H,, because of the
asymptotic behaviour of the sequence {¢;}. Finally, it can be established by
considering a suitable martingale, as in the proof of Theorem 1, that
n,(1)/t 351, under H,, and n, (t)/t 33 0, under H,. This leads to the required
result.

The class of randomised allocation procedures described in Section 1.2 is
easily adapted to the one-armed bandit problem: we simply define Q, (1) = p,
for all ¢, when p, is known. Thus, when p, = 3, the general rule allocates the
next trial to p, whenever 2r,—n,+2n, A(n;) X, (1) 2 0. In particular. by
setting A(n) = n~! for each n > 1, we obtain a stationary policy with ¢; = 1,
j>0,and ¢, = P(X,(t) = —j/2), j < 0. The stationary policies arising in this
way have two properties, both of which are intuitively sensible: |¢;} is non-
decreasing in j and ¢; = 1 when j is positive. The first of these is not easy to
justify precisely, but the second is enough to guarantee admissibility within
the class of stationary policies. This will be made clear in Lemma 4.

Let us consider the es.l. for an arbitrary stationary policy .¢;,. It is
convenient to work with the expected number of mistakes. denoted by C;(s),
under H,, and by D;(s), under H,. These functions satisly recurrence
relations similar to (2.2), except that ¢ = ¢, 1s prescribed [or every state j,
and it is a straightforward matter to compute values of the es.l., L(p,, p,, T),
by using the equations:

L(a, 3, T) =(x—3) Co(T), L(1—xa, 5. Ty =(x—3) Do(T).
We have C;(0) = D,;(0) =0 for all j and. in general:
Ci(s) =¢;laCi  (s—D+(1=2)C;_ 1 (s—1)] +(1 =) 11+ C;(s— 1)}, (2.5)
Di(s)y=¢;{1+(1 -} D, (s—D+aD;_(s—1); +(1 —¢,) D;(s—1). (2.6)

In what follows, the total number of trials will be treated as an
unknown parameter and we need an appropriate definition of admissibility.
An allocation procedure is said to be admissible for the one-armed bandit
problem with p, given, if its risk function L(p,, p,. T) cannot be reduced
uniformly in p; [0, 1] and T > 1. In general, the property is difficult to
establish because of the wide range of possible decision rules, but weaker
results can be obtained, for example, in the case p, =3, by restricting to
comparisons between stationary policies.
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LEMMA 4. Let |¢;] be a stationary policy with 0 < ¢; < 1, for all j, and
¢; =1, for j = 1. Let |¢;} be another stationary policy and suppose that the
corresponding risk functions satisfy L (p,, 5, T) < L(p,, 3, T), for p, =a, p,
=1—a and T = 1, where « is a constant in the range 5 < a < 1. Then the two
policies must be identical.

Proof. In the notation of (2.5) and (2.6), we have C,(T) < Co(T) and
Dy(T) < Dyo(T),for all T. When T = 1, these inequalities reduce to 1 —¢py < 1 —
— ¢ and ¢p < ¢o, so that ¢y = ¢o. Let us assume, inductively, that ¢; = ¢;
for |jl < T—1. Relation (2.5) shows that Co(T+ 1) and Cy(7T+ 1) depend only
on ¢; and ¢}, for |j| € T, and their difference is completely determined by
contributions associated with changes of state leading to j = + T'in exactly T
steps. It follows that

Co(T+1)—Co(T+1) =aT ¢po ¢y ... ¢r_ 1 (pT— 1)+
+(1-0)" Ppod_1... 01 7(d_1—d-7)-
Similarly, (2.6) shows that
Do(T+1)—Do(T+ 1) =(1—a) do by ... ¢7_ 1 (pr— 1) +
+a' pod-y... 1 r(d-r—B7).

In particular,
2T (Co(T+ 1) = Co(T+ 1)} +(1 —o)T {Do (T+ 1) —Du(T+ 1)} = 0

and, since a?7 > (1 —a)?T, we must have ¢} > ¢r. But ¢, = 1, so that ¢F
= 1 also. Then the fact that both C,(T+ 1)— Co(T+1) and Do (T+ 1)— Dy (T+
+ 1) are non-negative implies that ¢ = ¢ _ 1. This completes the induction.

23. Some comparisons. Tables 2 and 3 illustrate the effects of vari-
ous policies for the one-armed bandit probiem with p; unknown and p, =4,
given. Table 2 gives the Bayes risk for the optimal policy (i), when the prior
distribution assigns equal probabilities to H,: p, =a and H,: p, = 1—a.
The entries in this column were based on equation (2.2). The other entries
give the corresponding average es.. obtained from computations using
equations (2.5) and (2.6). The policies (iti),...,(vi} are all stationary and they
can be regarded as special cases of the general allocation procedure described
in Section 1.2, with the same sequence {A(n)}. In each case, the randomis-
ation is defined by setting X;(t) = bY;(t)+c, where b, c are constants and the
independent random variables Y;(z) all have the probability density e™*, y > 0.

Policies (iii) and (iv). A(n)=n"' n>1, and b = 0. Both policies are
determunistic, with ¢ = 1.25 in case (iii) and ¢ = 1.75 in case (iv). For the one-
armed bandit problem, the corresponding rules are of the form: allocate the
next trial to p; so long as j(t) > o, but switch to p, for all the remaining
trials if the state o is reached. The swjteb~qccurs at ¢ = — 3 in policy (ii1) and
6 = —4 in policy (iv).

2 — Banach Center 1. 16



18 J. A. BATHER

Policy (v). A(m=n"t, n=1, b=1/logl00=02171, and c=1—
—log 2/10g 100 = 0.8495. This defines a sequence of conditional probabilities
for the one-armed bandit problem with ¢; =1, for j=> -1, ¢_, =1/2,
¢_3=1/20, ¢_, = 1/200, etc.

Policy (vi). A(n)=n"', n>1, b= 1/log4 = 0.7213, c = 1. Thus, ¢;=1
for j=> =2 ¢_3=1/2, ¢_,=1/4, ¢_5 = 1/8, etc.

Both policies (v) and (vi) ar¢e a.o.

The final column in Table 2 represents the best that can be done by
prescribing a fixed sample of n, trials with p,, followed by a simple test to
decide whether to switch to p, for the remaining T—n, trials. The sample
size (n,) 1s shown in each case, next to the minimum average es.l.

Policy (vii). Il j = 2r;, —n, < 0 after n, trials with p,, switch to p, for
the other T—n, trials; otherwise, use p, throughout.

Table 2

Policies (i1),..., (vii): es.l. for symmetric prior,
pp=wxor l—« p,=3%

a (in) (iii) (iv) (v) (vi) (vii)

0.55 0.408 0412 0427 0417 0.441 0.430 (7
0.6 0.645 0.660 0.714 0.680 0.768 0.726 {5)
T=20 0.7 0.760 0.814 0967 0.876 1.15 0.989 (5
08 0.655 0.783 1.00 0.885 1.33 0980 (3)
09 0.543 0.754 1.00 0.882 1.43 0.790 3)
0.55 0.889 0.900 0.894 0.909 0.946 0.981 (15)
0.6 1.19 1.22 r.21 1.25 1.39 1.50 (15)
T =50 0.7 1.08 1.08 113 119 1.61 L7 (1)
0.8 0.855 0.855 1.03 1.04 1.69 1.48 N
0.9 0.617 0.763 1.00 1.00 1.77 1.13 3)
0.55 1.51 1.64 1.55 1.61 1.60 1.76 (3D
0.6 1.71 2.00 1.77 1.92 1.96 2.40 (25)
T =100 0.7 1.30 1.48 1.30 1.47 1.90 235 (15)
0.8 0.973 0.973 1.05 1.15 1.95 1.89 9
09 0.741 0.776 1.00 1.08 2.02 1.33 )]

We note that policies (ii) and (vii) depend on both the parameters o and
T, whereas the other policies do not. Table 2 shows that policies (iit) and (iv)
are quite effective over the range of parameters considered, except when a is
near 1, and the randomised procedure (v) is almost as good. Policy (vi) is not
so effective, but even this is comparable with the best fixed sample procedure
(vii). However, the advantage of the extra randomisation used in policy (vi)
becomes much clearer when the range of T is extended.
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Table 3 gives a rough idea of the performance of the stationary policies
(iii),...,(vi), for values of T up to 500. For these policies, the es.]l. was
estimated from only 100 simulations, so the standard errors are of order
10%/,. Nevertheless, the pattern is reasonably clear. Policy (i) is the empirical
rule described in Section 1.3 and, in this case, the es.l. is based on 1000
simulations. It is not so surprising that such a rule can be more effective than
the others, when the range of parameter values is considered as a whole: the
state variable j 1s sufficient when « 1s known, but not otherwise.

Table 3
Policies (i), (iii),..., (vi): es.l. from simulations, p, =}
P (1) (iii) (iv) v) (vi)
0.2 2.59 14 17 2.2 35
0.4 2.18 1.1 19 1.4 23
T=50 0.45 145 09 0.9 1.0 14
0.55 045 1.1 0.8 0.8 0.5
0.6 0.50 1.3 0.7 1.1 0.5
0.2 2.99 15 18 23 41
04 294 13 23 18 29
T =100 0.45 2.29 13 11 13 19
0.55 0.96 2.5 19 19 1.0
0.6 0.88 29 1.5 23 08
0.2 338 15 19 24 46
04 3.72 1.5 2.5 2.1 37
T =200 045 3.36 1.6 13 18 2.6
055 187 5.4 42 39 22
0.6 1.47 6.1 3.2 45 13
0.2 392 15 1.9 2.6 53
04 467 15 25 23 44
T =500 0.45 5.09 17 1.5 22 37
0.55 407 142 11.8 9.6 5.5
0.6 2.64 15.4 8.3 10.6 25

2.4. Minimax policy for a diffusion model. Explicit results are hard to
find, even for the one-armed bandit problem, but I have recently discovered
the minimax allocation rule for a discounted, continuous version of the
problem. For comparison with the discrete case, suppose that p, =3 and p,
is unknown, but not too far from i: this is the important case in the long run.
We write s = n; and x =j = 2r, —n,, treating these as continuous variables.
Then x(s) 1s approximately N(us,s), where u =2p, —1. Now introduce a
discount factor a4, 0 < a < 1, and write « = —loga, not to be confused with



20 1. A. BATHER

the previous notation in which o was a fixed probability. It will be shown
later that the minimax policy, given a, for sharing the time sequentially
between the process

x(s) = us+w(s) (2.7)

with u unknown and the zero process is to continue observing process (2.7)
as long as
1 L
x(s) > —ba *—ca’s

and stop whenever this linear boundary is reached. Here {w(s)} is standard
Brownian motion and b, ¢ are constants which turn out to be: b = 0.320, ¢
= 0.584.

This policy suggests that, for the discrete model, we should continue
observations on p,; so long as '

N
Jj> —b(log—) —c(log—) n,. (2.8)
a , al

Unfortunately the result does not help much when a1, since the limiting
policy is degenerate. One interesting feature is that the expression on the
right of (2.8) has an upper bound with respect to the dlscount factor a < 1. It

is easily shown that the least upper bound is —2(bcn1)2 = —0865nl Thus,
the poth indicates that we should certainly continue observing p, il j >

—0.865n?. Note that policy (i) means: continue with p, as long as

1
j> —1—25(4+n?)(2+ Y, (1)).

This is very roughly comparable if we think of the random perturbation here
as an attempt to smooth over ignorance of the discount factor a in (2.8).

I will now sketch the proof of the minimax policy for process (2.7).
Consider the stopping time 7 determined by the line x = —B—Cs, where
B > 0. Thus,

T =1inf {s: w(s) < —B—(C+p)s}.
A standard result from the theory of Brownian motion shows that

E{e ™} =exp{—B[C+u+./2a+(C+u)?]}. (2.9)

The stopping time 1 determines an allocation rule: the zero process is used
for all s > 1. To find the corresponding discounted es.. note that if u is
known and u > 0 the maximum discounted reward is

E{fe ™dx(s)} =pn[e *ds= il
0 0 a
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Hence, the discounted es.l. associated with 7 1s
L' (u, x) = ——_uE ‘fe'“ds EE e,
Similarly, when u < 0 the corresponding formula is

L (na)=—LE{1-e™)

Hence, the loss function can be evaluated by using (2.9).

It is convenient to transform the parameters so that a is eliminated.
1 1

erte B = ba ] , C = ca? and g =(v—c)a?. Then it turns out that L' (u, «)
=qa 2K W), L (u, ) =« 2K (v), where

K*()=(@-oexp{—-bv+./2+v?)}, (v>o),
K- () =(c—v)[l—exp{—b(v+/2+?)], (v<o.
In effect, we can take a = 1 and use these as the loss functions, with y =v—c.
Now consider two simple hypotheses.
1 1
H*: u=Mn-c)a?, H : p=—(n+ca?
It will turn out that the constants b, ¢ and # can be chosen with b and ¢
posmve n > ¢. The likelihood ratio for H* versus H™, given observations in
the interval [0,s] is easily shown to be
1 1
exp {2na? (x+ca’ s)].
Hence, the posterior probabilities of H* and H~ depend only on the
correlsponding prior probabilities II™ and 17~ and the sufficient statistic x(s)

+cals. Then it can be verified that the Bayes solution has the form:
continue process (2.7) so long as x(s)+ca'?s > —B. Here, B is a suitable

constant; we shall take B=ha 2 and then determine b.

We demand that b, ¢ and # satisfy the following conditions:
supK*(v)=K*(n), supK (=K (-9, K" (=K (-n).
(2.10)

It is an awkward matter to verify that suitable values can be found but, in
fact, they are as follows: b = 0.320, ¢ = 0.584, n = 2.275. Further, it can be
shown that, for these values, the stopping rule is Bayes when the prior
probabilities. on H* and H~ are I1* =0372 and II" = 0.628. In other

words, the Bayes risk IT* K* (9)+ T~ K~ (—#) is a minimum with respect to
the choice of b.
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The allocation rule we have chosen has loss function L(u, a) = L (u, a)
or L (u, a) according as u 2> 0 or u < 0. This has the properties sup L(u, «)
i@

1
=a 2K, where
K =K* ()= K~ (—n) = 0.3465.

Further, there 1s a priorldistribution on u for which the mimimum value of

the Bayes risk is also « 2 K. It follows that any other allocation rule 4 must
have
1

supL,(u, 0) > a ZK.
i

Otherwise. it produces a Bayes risk
1 1 1

M LaX(n—c), &)+ 11~ Ly(—a2(n40),a) <a 2K.

This contradicts the fact that the above policy is Bayes for this prior
distribution. Hence, the policy 1s minimax.

3. Two-armed bandits

3.1. Feldman’s rule. We now turn to the case kK = 2 when both p, and
p, are unknown. The aim here is to compare some of the policies derived
from our study of the one-armed bandit with several others. Most Bayes
procedures are difficult to evaluate, but there is a special class of prior
distributions for which an optimal policy is determined by the following
simple rule: always maximise the probability of success in the next trial. The
rule is known to be optimal whenever the prior distribution is restricted to a
pair of related hypotheses:

H: p, =a,p,=§, H,: py =§,p;, =,

where a and f are given probabilities. This result is due to Feldman (1962).
In fact, the same rule produces policies which are optimal for the multi-
armed bandit problem with k > 3, when there are k hypotheses of the form
H;: p;=a, p;=p for j # i, (see Rodman (1978)). Of course, Feldman’s rule
leads to different policies, depending on the values of o and f and the prior
probabilities, and, unfortunately, they do not perform well if their special
assumptions are violated.

In order to illustrate the rule, let us assume that f =1—a, with § <a
< 1, and assign equal probabilities to H, and H,. Then it is easy to see that
the posterior probability of H, after r trials is at least § if and only if 2r, —n,
> 2r, —n,, Hence, Feldman’s rule is equivalent to
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Policy (vin). Use p, in the next trial if 2r, —n, > 2r, —n, and p, if the
reverse inequality holds; choose p, or p, at random in case of equality.

This procedure does not depend on the parameters o and T and,
provided that p,+p, =1, its performance cannot be improved by any
symmetric policy. The optimality property is, in this case, a simple conse-
quence of the fact that information about p, and p, derived from any sequence
of trials does not depend on the allocation rule: since p, = 1 —p,, a success
observed in a trial with p; i1s equivalent to a failure with p,, and vice-versa.
If the prior distribution on the line p, +p, = I is symmetric about its mid-
point, policy (vii) maximises the probability of success at each stage and,
hence, it produces the maximum expected number of successes in a sequence
of T trials. In other words, the common value of its es.l. evaluated for
(p1, p2) =(a, 1 —a) and (p,, p2) =(1—a, a) is also the Bayes risk for the
corresponding symmetric prior distribution. This value sets a lower bound
on the es.l. for every decision rule 4 with L,(a, | —a, T)=L,(1—a, a, T),
which includes all symmetric rules.

The special case of Feldman’s result, with p, + p, = 1, was first obtained
by Bradt et al. (1956) and they also established that the rule is a.o. under the
same condition. The asymptotic property can be extended, but it does not
hold in general, contrary to the claim in Section 5 of the paper by Berry
(1978). Table 4 below shows that the performance of policy (viii) depends
critically on whether the condition p, +p, =1 is satisfied or not. Its long-
term behaviour can be explained by considering the Markov chain with
states j = (2r; —n,)—(2r, —n,). This has transitions from j to j+ 1 or j—1 and
the corresponding probabilities are: p, and 1—p, if j=>1, 1—p, and p, if
j< -1, $(1+p,—p,) and 4(1—p,+p,) if j=0. We may suppose that
p1 > py. If py >3 = p,, the stochastic process [j(r)} has the property that
j()S a0 as t — oo, which is enough to guarantee that the policy is a.0. On
the other hand, if p, > p, >3, j(t) = —oc with probability

pi(1—py+p2)(2p,—1)
(P +pa)(pr+p—1)

For example, this probability is 0.3 when p, =09 and p, = 0.7, which
suggests that policy (viii) has an es.l. of order 0.06 T when T is large: see
Table 4. Finally, if p, < p, <4, the process {j(t)} converges and a calculation
of the limiting distribution shows that the long-term proportion of successes is

P1 (%—P2)+P2(%_P1) <

py.
1—p;—p, :

Hence, the policy is not a.o. if (p, —3)(p; —3) > 0, except in the trivial case
when p; = p,.
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3.2. Other policies. Table 4 includes two other policies, both of which
have the virtue of simplicity, but neither of them is very good. The first of
these is the well-known “play the winner” rule introduced by Robbins (1952)
and since investigated by several authors: see, for example, Zelen (1969) and
Hoel, Sobel and Weiss (1972).

Policy (1x). If a success is observed in a trial with p;, use the same p; in
the next trial, but switch to the other one whenever a failure occurs.

This rule determines a simple Markov chain whose state always cor-
responds to the current choice of p;, i = 1,2. It is easily shown that, in the
long run, it yields a proportion of successes

pi(1—pa)+p,(1—py)
(1—p2)+(1—py)

< max(p,, p2)

so the policy is not a.o., except when p, = p,. The entries in the table were
obtained, in this case, by assuming that the chain is stationary throughout.

A slight modification of policy (ix) is the “least failures” rule: use p; in
the next trial if it has produced the smallest number of failures in the past. In
Section 1, we referred to optimal procedures determined by dynamic allo-
cation indices and their dependence on the choice of a discount factor a. It
has been established by Kelly that, when a1 1, the limiting form of any such
policy for the multi-armed bandit problem is the least failures rule. This 1s in
some respects a surprising result, since the limiting operation might be
expected to produce a policy with good asymptotic properties.

The final policy in Table 4 illustrates the effect of using fixed samples of
equal size, in order to test whether p, > p, or not.

Policy (x). Observe the results of 25 trials on each of p, and p,; then
use p; or p, in all the remaining 7—50 trials, according to which sample
produces the larger number ol successes. The es.l. given in the table is based
on a normal approximation ol the error probabilities for the test. The
performance cannot be much improved, even by choosing a different sample
size n, = n,, for each value of T.

Policies (1), (iv) and (vi) were defined in Sections 1 and 2. They are
special cases of the general allocation rule (1.3), but only (i) and (vi) are a.o.
The entries in Table 4 are averages of 1000 simulations for policy (i), but
only 100 were used for policies (iv) and (vi). This means that the figures
should be treated with some caution: for example, the theoretical es.l. in the
cases p, = 0.525, p, = 0475 and p, = 0.55, p, = 0.5 must be very similar, for
all the policies considered. Simulations of policy (vii)) showed that its
behaviour is highly variable as well as being sensitive to the choice of p; and
p». Because of this, the first four entries for each T were based on 200 runs.
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Table 4

Two-armed bandit problem: es.l. for various policies

2 P U (iv) (vi) (viii) (ix) (®
0.6 04 253 25 29 20 4.00 5.00
0.9 0.7 2.18 1.9 24 28 2.50 5.00
T =50 0.55 045 1.81 18 20 1.7 2.25 2.50
0.6 0.5 1.84 1.9 20 1.6 2.22 2.50
0.525 0475 1.07 11 1.1 1.0 1.19 1.25
0.55 0.5 1.08 09 1.1 09 1.18 1.25
0.6 04 3.56 33 4.0 24 8.00 5.74
09 0.7 286 2.5 32 5.5 5.00 5.34
T =100 0.55 045 307 33 33 28 4.50 3.69
0.6 0.5 313 3.1 RE: 29 444 3.69
0.525 0.475 1.97 22 1.9 1.6 2.38 2.15
0.55 0.5 201 1.6 2.1 1.7 237 2.15
0.6 04 4.59 4.8 4.6 2.5 16.00 7.23
0.9 0.7 351 30 40 10.8 10.00 6.02
T = 200 0.55 045 4.82 55 5.2 40 9.00 6.08
0.6 0.5 495 49 5.3 4.6 8.89 6.06
0.525 0.475 3.55 4.1 i3 28 4.75 3.96
0.55 05 154 27 38 30 474 3.96
0.6 0.4 5.76 84 5.2 2.7 40.00 11.70
0.9 0.7 427 37 4.8 26.7 25.00 8.06
T = 500 0.55 0.45 7.73 10.7 8.1 49 22.50 13.24
0.6 0.5 7.79 9.2 7.9 8.5 2222 13.19
0.525 0.475 7.14 9.6 6.1 5.6 11.88 9.39
0.55 0.5 7.21 5.7 1.8 59 11.84 9.38

The comparisons indicate that the empirical rule, policy (i), is effective
over a wide range of parameter values and the results are similar to those
obtained for the one-armed bandit problem. It is worth adding that a special
case of the a.o. rule devised by Robbins (see Section 1.2 of this paper) has
been investigated by Fox (1974), using simulations of T = 50, 100 and 1000
trials. Policy (i) seems to be a substantial improvement on this, especially
when T is large. It would be interesting to include further Bayes procedures,
in addition to Feldman’s rule, policy (vill). Some computational studies have
been carried out by Wahrenberger et al. (1977), using Beta priors, but their
results are limited to the case T = 50. For example, they found that the
Bayes procedure for a uniform prior distribution is comparable in perform-
ance with the rule studied by Fox.
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4. Diffusion approximations

4.1. An invariance principle. It is intuitively clear that the long term
behaviour of randomised allocation procedures can be approximated by
suitable diffusion models, but we shall not attempt a detailed investigation of
the approximations. The aim is to set up a normal version of the multiarmed
bandit problem and, by using a well-known invariance property of Brownian
motion, try to draw some tentative conclusions about the asymptotic
behaviour of randomised procedures in discrete time.

A sequence of independent Bernoulli trials, each with probability p of
success, is analogous to the stochastic process in continuous time given by

x(s) = ps+aow(s), (4.1)

where {w(s), s = 0} is a standard Brownian motion and ¢? = p(1—p). The
dependence of 6° on p here is an awkward feature because, in principle o2
can be determined without estimation error by continuous observation of
x(s) over any short period. In what follows, we shall be mainly interested in
probabilities near 4, where o2 attains its maximum, so let us assume that ¢
=1 in (4.1). For convenience, we write yt=p—3, y = x—3s5 so that the
diffusion model becomes

y(s) = ps+3w(s). (4.2)
Now consider a scale transformation

y=cy, s=¢cs, p=cly, (4.3)

where ¢ is any positive constant. It is easily verified that the process
Iw'(s"), s =2 0} defined by w'(s") = cw(c™?s’) is again a standard Brownian
motion and (4.2) is replaced by
Y'(s) = ws' +3w'(s). (4.4)
We can interpret this invariance property in the following way: data consist-
ing of the observations {y(s), 0 < s < T}, when the drift parameter is u, are
precisely equivalent to the observations [y'(s"), 0 < s’ < T'}, when the drift is
i, provided that the relations (4.3) hold and T” = ¢*T for some constant c.
Similar (1:1) mappings can be defined from one data set to another, over a
different time interval, when we have k independent processes with unknown
drift parameters.
Suppose that observation time must be shared between the processes

yi(s) = i S:‘+%Wr'(si)s (4.5)

where the drift parameters g are unknown and |w;(s),s; >0}, i=
1, 2, ..., k, are independent Brownian motions. Each variable s; records
the observation time for process i after a period of length ¢ and the control
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procedure must ensure that ) s, =t at all times. It turns out that, in
continuous time, there is no need to consider randomised allocation. The
conditional probabilities n; = n;(r,, n, ..., 1\, m) can be replaced by control
functions y; = ¥;(y;, S1, ---» Yy S such that ;> 0,i=1,2,..., k, and ) ¥,
= 1 always. Observation of the stochastic processes (4.5) is then governed by
a set of differential equations: ds; =y, dt, i =1, 2, ..., k. In order to avoid
technical difficulties, let us restrict attention to a class K of well-behaved
procedures ¥ = (Y, ¥5, ..., ¥,). In particular, it will be assumed that, for
each Y eK, the corresponding joint process [y(s),i=1,2,....,k t=Ys
> 0} 1s well-defined.

Consider the results of applying an allocation procedure € K over the
period [0,t]. We are mainly interested in the es.l

gl’l(#l’ M2y -y My, T) = Tmax(.ul, Hay ooy uk)_ElIl(Y),

where Y = Zyl-(S,-) is the sum of the final values, ZS,- = T. The' procedure
can be translated to any other period [0, T"] in the following way. Define
c>0by ¢2=T/T and let

Vilsd) = i si+3wi(s), (4.6)

’

where the {wi(s]), s; > 0} are independent Brownian motions, i =1, 2, ..., k.
The transformed procedure ' is defined by setting

Vi S o Yo S = WieT Y, TS, T e T2 s (4.7)
for all values of the variables such that ) s;< T'. Now suppose that y
=c 'y, i=1,2,..., k and compare the joint distribution of the processes
(4.5) under  with the corresponding joint distribution of the processes (4.6)
under ty’. We can set up a (1:1) correspondence between realisations
i(s), Y. s; < T} and [yi(s)), Y. si < T}, in which y; =cy; and s; =c?s;, i
=1, 2,..., k always hold. This means that, in general,

wi(s) = cwi(s) = cw;(c ™ s)),

which shows that the correspondence is consistent with the assumption that
both models are generated by Brownian paths. It follows that the joint
distributions determined by (4.5) and (4.6) differ only by changes of scale. In
particular, we may conclude that

g\lﬂ(.u’l’ nuIZ’ AR ﬂ;u T’) =C$w(.ul, Ha, o oy My T)

and the definition of ¢ shows that
1

_1 _1
T’ ? g’l"(,ulls lu’Zs ey #I,u T’) = T 2 g‘/’('ul’ #2’ Tt #k’ T) (48)
We define
My (T)= sup Ly, pa, - . TV, #(T) = inf 4, (T).

Hpeo Mg yek
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Then it follows immediately from (4.8) that
1 1

T 2 M, (T)=T 2 4,7 (4.9)

The mapping: ¥ — ' associates each allocation procedure for the interval
[0, T] with a similar one for [0, T'] and vice-versa. Hence
1 1

T 2.4(T)=T 2.4(T)

and, by setting 7' =1, we obtain

M(T)=T? .#(1), (4.10)

for all T > 0. The relation (4.9) also shows that, if we can find a minimax
procedure e K which attains the infimum .#(T), then it can be used to
determine minimax procedures for all other intervals, simply by using the
transformation (4.7). This does not mean that the same policy is optimal for
all time intervals: for example, if T° < T, we have no reason to suppose that
Yy = (Y7) coincides with the restriction of Y+ to [0, T']. In other words,
may depend on the given value of T. However, we are concerned with
sequential allocation rules which can be applied without a knowledge of the
time horizon and this indicates a study of invariant procedures.

An allocation procedure yy € K will be called invariant if it is unaffected
by the transformation (4.7). Thus, we say el if

ll’i(yla Sly RN} ykv Sk) = !llli(cyla 0251, ey cyk’ CZS,(), (4-11)
for all ¢ > q and any y;, s; =2 0,i=1, 2, ..., k. In this case, by setting T' = 1

and u = TZ i, in (4.8), we obtain
1 1

1
gw(‘ul, Ha, ooy My, T) = T2 yw(Tz His ooy TZ His 1) (4.12)

Again, for ¢ €l, relation (4.9) can be expressed in the form

i
A, (T)y = T 4, (1). (4.13)

Finally, there is an obvious analogue of (4.10) for the infimum .#'(T) with
respect to yel:

1
M(T) = T2 .#"(1). (4.14)

Since I « K, it is clear that .#'(T)> .#(T) and we know from (4.10) and
(4.14) that the ratio of these two quantities is .#7(1)/.# (1), for all T > 0. The
levels of minimax es.l denoted by .#'(1) and .#(1) are fundamental
constants of the k-armed bandit problem. If we could determine these
constants, their ratio would provide a very useful measure of the effective
cost of ignorance about the time horizon.
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4.2. Minimax decision rules. Our discussion of the normal version of
the multi-armed bandit problem suggests the possibility of designing
allocation procedures for Bernoulli trials so that the maximum es.l. is of
order T'? as T — oo. In view of relation (4.13), a decision rule 4 which is
asymptotically invariant, in some sense, should also have the property that
M, (T)/T'? has a finite limit. We shall proceed heuristically, without
attempting to prove the existence of such limits, but some explanation is due
for the choice of the sequence {i(n)} in policy (i).

Consider the class of randomised allocation procedures defined by (1.3).
Any such decision rule will be called asymptotically invariant if

1
n? i) —d as n— oo, (4.15)

for some d > 0. This definition can be explained by examining a simple
diffusion model. The conditional probabilites =;(r,, n,, ..., r, n,) are deter-
mined, at any stage, by positive iid. random variables X; through the
quantities Q;, j =1, 2, ..., k. Let us replace the integers r; and n;, as in (4.2)
and (4.5), by the continuous variables y;+1%s; and s;, respectively. This leads
to Q; =3+s; 'y;+4(s;) X; and each probability n; is replaced by a function
Wi (V15 S1s - 05 Vio Si)- Clearly, the constant 3 in every Q; may be omitted in
calculating the allocation probabilities, now to be interpreted as local pro-
portions of continuous time assigned to the k processes. The invariance
condition (4.11) means that the proportions i; should remain constant when
each Q; depends on a scale parameter ¢ > 0:

Q;=c 'sjly+Ats) X, j=1,2,.., k.

The question of which of these quantities is largest is unaffected by the value
of ¢ if and orllly if A(c*s;)=c""A(s). This is equivalent to demanding that

A(s) = A(1)s 2, for all s > 0. However, since the diffusion model could not be
justified, for short sequences of trials, as an approximation to the randomised
allocation procedure, it is more appropriate to apply the asymptotic con-
dition (4.15) to the choice of [A(n)}.

The empirical decision rule, policy (i), emerged from comparisons based
on simulations but, since 1t satisfies condition (4.15), we also have some idea
of its asymptotic behaviour. It is reasonable to conjecture that, for this
policy, the maximum es.l. M, (7T) is such that

1
im M (T)/T? =¢,, (4.16)
T—w
where the limit depends only on k. In the case k = 2, the empirical evidence
supports this (see Table 5 below) and indicates that ¢, is about 0.36. Further
simulations, not reported in detail, suggest that ¢, is about 0.22 for the one-
armed bandit with p, =1 and about 0.56 when k = 3.
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For comparison, we can refer to some results about minimax decision
rules for the two-armed bandit problem. Vogel (1960b) established that the
minimax e.s.l.

M(T) = inf M ,(T)
A
must satisfy
1
o S M(TYT? <c¢c, as T - oo, (4.17)

where ¢, = 0.187 and ¢, = 0.376. His lower bound was improved by Fabius
and van Zwet (1970) who showed that (4.17) still holds with ¢ = 0.265. They
also proved the existence of minimax policies. For each integer T > 0, there
is a mimimax decision rule which 1s admissible and symmetric:
ny(ry, Ny, F3, Ny) = T5(ry, ny, ry, #y). Such rules can be chosen as Bayes
procedures with respect to suitable prior distributions, depending on 7, and
they may involve randomised allocation. The examples given by Fabius and
van Zwet show that minimax policies are highly sensitive to the value of T
and they become very difficult to determine when T = 5.

The asymptotic bounds in (4.17) were obtained by using diffusion approxi-
mations to evaluate special policies. In each case, the approximation can be
regarded as a control procedure for the normal version of the two-armed
bandit problem and, because of this, we can infer that cy, < .4 (1) < c,,
where .# (1) is the constant in the exact relation (4.10). The point is that
there is no difficulty in justifying diffusion approximations for the special
policies concerned. Strictly speaking, a much more detailed analysis would be

required to establish whether the ratio M (T)/T? has the limit .# (1), as T
— .

Leaving aside such mathematical questions, it is worth examining what
can be achieved when T is large, by applying policies of various different
types. For example, if the procedure 1s based on a test with samples of equal
size, fixed lin advance, then the best that can be achieved i1s a maximum es.l.

~0515T2 as T —oo. The upper bound given by ¢, = 0.376 in (4.17)
represents the level attained by using a sequential probability ratio test with
equal sample sizes and a stopping rule determined by the total T. Thus,
policy (i) does slightly better than this without depending on 7. A more
detailed comparison of these two policiesls will be given in the next section.

Lower bounds on the ratio M(T)/T? have been obtained by restricting
or modifying the two-armed bandit problem in such a way that optimal
policies can be recognised. In particular, Fabius and van Zwet made use of
Feldman’s rule, policy (viit), which is optimal provided that p, +p, = 1. It is
a straightforward matter to approximate the e.s.l. over a long sequence of
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trials and find its maximum, subject to the restriction that p, + p, = 1, which
leads to the value ¢, = 0.265 in (4.17). In spite of the improvement on Vogel's
lower bound, this does not give a realistic idea of what might be achieved by
minimax policies. A further improvement can be obtained by considering a
modification of the two-armed bandit problem. This permits a more reahstic
comparison and leads, after a rather ¢ . cated argument, to the conclusion
that

1
M(T)/T>>0283 as T - . (4.18)

5. Performance of the empirical rule

5.1. Maximum losses. Table 5 gives a more comprehensive range of
values of the es.l. for policy (i), obtained by averaging the results of 1000
simulations of the two-armed bandit. The last two columns provide estimates
of the maximum loss

M (T)=supL,(p;, p2, T)
1

and the ratio M I(T)/TE. In each case, the maximum was determined by
examining the results for 15 pairs of probabilities. For example, when T = 20
and T = 50, the relevant pair, p, = 0.7, p, = 0.3, is not included in the table.

The asymptotic formula (4.16) appears to be quite effective, provided that T
= 50.

Table 5

Two-armed bandit problem: es.l. and maximum loss for policy (i)

Py 0.6 0.2 0.5 0.6 0.55 MAT) M, (l
P; 04 0.1 0.4 0.5 05 s
T =20 1.40 0.83 0.85 085 0.46 1.86 0416
T =50 2.53 1.66 1.87 1.84 1.08 2.60 0.368
T =100 3.56 2.59 3.15 3.13 201 3.56 0356
T = 200 459 373 491 495 3.54 495 0.350
T =300 5.12 438 6.18 6.16 487 6.18 0357
T = 400 5.49 4.80 7.15 7.08 6.10 715 0358
T = 500 5.76 5.09 794 1719 721 794 0.355
T = 600 5.98 531 8.59 8.36 8.19 8.59 0351
T = 700 6.15 5.49 9.17 8.85 9.10 9.17 0347
T = 800 631 5.64 9.65 9.27 995 9.95 0.352
T =900 6.45 5.77 10.10 966 1074 | 1074 0.358
T = 1000 6.58 5.87 1054 1002 1148 | 1148 0.363
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5.2. Error probabilities. So far, we have concentrated on the compari-
son of allocation procedures by using a criterion based on the number of
successes lost. The tables suggest the maximum e.s.l. as the most convenient
guide and, from this point of view, randomised allocation procedures such as
policy (i) have substantial advantages over policies which depend on pre-
scribing the total number of trials in advance. In particular, we remarked in
Section 4.2 that, when T is large, no sequential probability ratio test with
sample sizes constrained to be equal can produce a better performance for
the two-armed bandit problem. Roughly speaking, the cost of the constraint
that both treatments must be used equally often during the period of the test
is enough to eliminate the extra advantage of knowing the total number of
all the trials before the test is carried out. Since the error probabilities
associated with sequential probability ratio tests are minimal, it is also of
interest to see whether policy (i) is comparable from that point of view.

The simulations used to produce Table 5 also provided estimates of the
error probabilities for policy (i) and some ol these are reproduced in the
lower part of Table 6. For example, when p; = 0.6 and p, = 0.5, 125 out of
1000 simulations led to a position with r,/n, > r{/n, after 200 trials, but the
observed proportion of similar errors after 1000 trials was 0.029. These
estimates are not very accurate when the error probability is small, but they
will serve the present purpose. The asymptotic invariance property of the
policy could be used to obtain an idea of the general pattern of error
probabilities and more accurate estimates.

For comparison, we consider a sequential probability ratio test of the
type used by Vogel (1960b) to obtain his upper bound on the minimax es.l.
for the two-armed bandit. The test consists of using p, and p, alternately
and observing the difference r, —r, after each pair of trials. A decision is
reached as soon as r; —r, = + D, where D is a fixed positive intcgcr:'if this
occurs after 2N < T trials, all the remaining T— 2N trials are allocated to p,
or p, according to whether the upper or lower boundary is attained.

Policy (xi). The sequential probability ratio test with D = 5. This is
illustrated in Table 6.

It 1s a straightforward matter to determine the error probability of this
test, if we neglect the effects of truncation. This depends on a parameter y
which is symmetric in p, and p, and is defined, for p, = p,, by

y=pi(l=p)(1—p) ' pzt.
Thus, y > 1 except when p; = p,. The error probability is
ép(p1, P2) = (P +1)7! (5.1)
and the es.l after 2N trials is given by

Ly(pr, p) =D =P+ 171 (5.2)
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Both these formulae are based on the standard “no overshoot” approxi-
mation, which is exact here, because r; —r, = + D at the end of the test. They
were used to obtain the entries for policy (x1) in two rows of Table 6. The
sequential probability ratio test, without truncation, is comparable in per-
formance with policy (i) after T = 200 trials. In particular, (5.2) shows that
the maximum es.l. is D = 5. The comparison is slightly misleading in the
sense that the expected sample size for the sequential test is unbounded: to
see this, consider the case when both p, and p, are near zero.

Now suppose that the test is truncated after T = 1000 trials. This has
little effect on the error probabilities given in the table, but it must be taken
into account in assessing the es.l. The entries for policy (xi), T = 1000, were
obtained [rom an inequality established by Vogel (1960a):

Lop(py, P2, VS Tlpi—po P+ )71+ DGO =120 +1)7 % (5.3)

This yields a good approximation, provided that T is large in comparison
with the expected sample size of the test. The table indicates a clear
preference for policy (i), when T = 1000.

Table 6

Policies (i) and (xi): es.l. and error probabilities (lower part)

P 0.9 0.6 0.2 0.6 055 051
P2 0.7 04 0.1 0.5 0.5 0.49
(i) T =200 3.51 4.59 373 495 3.54 1.68
(xi) 499 483 483 384 232 099
(i) T = 1000 4.89 6.58 587 1002 1148 735
(xi) T = 1000 5.21 8.07 637 1458 1449 8.22
() T =200 0002 0015 0051 0125 0274 0385
(i) 0001 0017 0017  O.I16 0268 0401
(i) T =1000 0001 0003 0001 0029 0138 0301

6. General remarks

I referred in the introduction to practical implications, rather than apph-
cations, because a great deal still remains to be done. The study of asymp-
totically optimal policies involves an idealistic assumption that one can
defer, for ever, a definite choice of one from amongst the alternative
treatments. But in practice, a sequence of randomised allocations will elim-
inate treatments as they fall into disuse and this raises the question of
stopping rules, which has not been seriously considered so far.

The empirical allocation rule, policy (i), was designed to give a reason-
ably good performance for arbitrary values of the unknown probabilities and

3 — Banach Center t. 16
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for a wide range of values of T. However, it is more realistic to suppose that
a scientific experiment must reach a conclusion at some time. In this sense, T
can be prescribed in advance. Then the protection given to future patients:
those affected by the treatment it is decided to prefer at the end of the
experiment, must be measured by the error probabilities. Randomised allo-
cation offers considerable advantages over conventional experiments with
equal allocations. This is true even if the experiment has a sequential
stopping rule but, for simplicity, let us illustrate the point by considering an
experiment with fixed sample sizes.

Policy (xi1). Take samples of size S on p; and p,, then choose p, or p,
for all future patients according as R, > R, or R, <R,.

We can use a normal approximation to evaluate the error probabilities.
For p,, p, not too far from 3, the probability of choosing the inferior p; after
2§ trials is about

1
&(P1, P2) = @(—|p1 — 2l (25)%),

where @ is the standard normal distribution function.
The effectiveness of the information provided by the experiment can be
measured by
1

A, = sup |p; —pale(py, py) = s;ugécb(—c)(zsff

P1:P2
1
where ¢ = [p; — p,|(25)%. The coefficient here is easily evaluated: sup E@(—¢&)

1
= 0.170, with ¢ =0.75. Then A4, = 0.170(25) 2.

Of course, the cost of the experiment is measured by the es.l. which is
L,(p,, p2) =|p1—P,|S. This has a maximum M, =S§.

One of the results of Abdel Hamid’s thesis was concerned with finding a
reasonable approximation to the error probabilities associated with policy (i).
He showed, in effect, that the supremum corresponding to A,, above, is
approximately

1

Ar =021 T 2.

Thus, As = A; if we choose T =3S. For illustration, we take S =50, T
= 150. The fact that A = A; = 0.017 means that the information provided
by policy (xii) after 25§ = 100 trials can be matched only by using policy (i)
for 150 trials. In other words, the randomised allocation rule lakes longer to
produce on equivalent level of precision. On the other hand, there is a very
. substantial reduction in es.]. even if we restrict attention to values of p, and
p, near 3. Tables 7 and 8 below give the error probabilities and es.l. for both
policies: S = |p, —p,|. It is worth remarking that the es.l. for the last 50
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patients in the sequential allocation procedure does not exceed 1, which is
the maximum es.l. for any pair ol patients in the conventional experiment.

Table 7

Error probabilities

o 0.025 (.05 0.075 0.10 0.15 0.20
policy (i) T =150 0.389 0.298 0224 0.166 0.08* 0.04*
policy (i) § =50 0401 0.309 0.227 0.159 0.067 0.023

* not reliable estimates

Table 8

Expected successes lost

4 0.025 0.05 0.075 0.10 0.15 0.20
policy (i) T = 150 1.62 2.80 3.67 4.10 440 4.28
policy (ii) § = 50 1.25 2.50 375 5.0 1.5 10.0
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