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Characterizations of propositional temporal logic (PTL) in model theory,
formal language theory and semigroup theory are reviewed. It is shown that
suitable restrictions of these results yield characterizations of safety- and
liveness-properties expressed in PTL. As a consequence one obtains that it
can be decided effectively whether a given PTL-formula represents such a
property.

Introduction

In recent years several systems of temporal logic have been applied success-
fully in the construction and analysis of parallel programs or hardware (see
eg. [4], [14], [17]); at the same time, the mathematical investigation of
temporal logics has gained considerable interest. The present paper is concern-
ed with the most basic system in this context: propositional temporal logic of
linear time (“PTL”), proposed in {23] and [12] as a formalism for the
specification and verification of programs. We deal here with language
theoretical aspects of PTL, and the aim of the paper is twofold: First we
collect in a uniform framework several results which until now are somewhat
scattered over the literature but which provide interesting and useful connec-
tions between temporal logic, formal language theory, and semigroup theory.
Secondly, 1t 1s shown how these connections can be applied to clanfy the role
of safety- and liveness-properties in propositional temporal logic. Following
a recent suggestion of [11], we consider these properties as represented by
certain PTL-formulas in which the usual future operators are supplemented
by operators for the past. We obtain characterization of safety- and liveness-
properties which in particular imply that it can be decided effectively whether
a given PTL-formula represents such a property or nol.
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The connection between PTL and formal language theory depends on
the fact that PTL-formulas express properties of “execution sequences” of
programs (i.c., sequences over some appropriale state space). If the state
space is finite (as can be assumed in most practical applications), then a set
of execution sequences can be considered as an w-language in the usual sense
of formal language theory. It turned out that the sequence sets which are
definable in PTL constitute a fundamental class of w-languages that has
many characterizations and appealing mathematical properties.

Characterizations of PTL-definability have been found in several areas:

— in model theory, by first-order definability over the ordering of the
natural numbers,

~ in formal language theory, in terms of w-star-free sequence sets,

— 1n automata theory, by counter-free w-automata,

— in semigroup theory, in terms of group-free monoids.

The following diagram summarizes the connections between the definability
notions of sets of w-sequences and points to literature covering the equiva-
lence proofs:

PTL-definable « [8).13] » first-order definable

[19],[21]1 [29]1 LS)]

recognized by finite «

(1).120] w-star-free

1[30]

recognized by counter-free
w-automaton

group-free monoid

These equivalences not only show the mathematical relevance of prop-
ositional temporal logic, but (as illustrated in the present paper) make it also
possible to apply the powerful methods of automata theory in the study of
linear time temporal logic. At the present time, however, there seem to be
only few relerences in which further applications of this kind appear (e.g.,
[28], [21]).

The paper is organized as follows: In Section 1 we present the defini-
tions that are needed to formulate the first two equivalences in the list above
(involving PTL, first-order logic, and w-star-free w-languages). Section 2
introduces safety- and liveness-properties and shows how the characteriza-
tions of full PTL can be specialized to capture these more restricted cases. In
Section 3 we prove the mentioned decidability results. As a preparation, we
give a simple proof of the characterization of w-star-free w-languages in
terms of group-free monoids; this proof avoids semigroup-theoretical con-
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structions like the Schiitzenberger product of monoids (appearing in [20])
and might make the results more easily accessible for readers not acquainted

with semigroup theory.

1. PTL and w-star-free w-languages

Let X be a finite alphabet. The PTL-formulas over X are built up [rom the
propositional variables p, (for ae X) using the boolean connectives 7, A, v,
—, <, the unary temporal operators O (next), { (eventually), (] (always), the
binary temporal operator U (until), and brackets. Examples of PTL-formulas
over X = la, b} are

o1 =0 O(pa A O Ppy)s

(PZ =" O(pa A O(jprpa))-
A PTL-formula is interpreted either over a finite nonempty sequence o
=a(0)a(l)...a{n—1) (n > 1) or over an infinite sequence a = a(Q)a(1)...
with a(i)e X. The length of a, denoted by ||, is thus either a positive natural

number or . The satisfaction relation |= between pairs («, i) (where 0 < i
< la)) and PTL-formulas ¢ is defined inductively as follows:

(a, i) = pa it a() =a,
(@, ) 7o iff  not (a, )E ¢,
similarly for the other boolean connectives,
(@, )E O ff i+1 <la] and (o, i+ 1) o,
a, o iff for some j with i <j <|of: (a, JIE @,
(0, DE O iff  for all j with i <j <lal: (a, )| o,
(o, )E Uy iff for some j with i <j <|a| we have:
(o, )= ¢ and for all & with
i<k <j, (2, kF o.
A PTL-formula ¢ defines a set K(¢) of finite sequences and a set L(¢)
of infinite sequences:
K(¢):= (aeZ”| (¢, O)F o],
L(g):= laeZ¥ (a, 0k o}
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ExampLE. Considering the PTL-formulas ¢, and ¢, from atove, we
have, for ae2?,

aecL(p,) iff o contains infinitely many segments ab,

aeL(gp,) iff between any two a’s in a there is some b
(1.e,, there is no occurrence ol an a such that
up to the following a there is no b).

Note that by the semantics of the next-operator (strong next) we have
K(p,) = Q.

Remark. Usually, the semantics of PTL is introduced in a slightly more
general form: Instead ol X, a (finite or infinite) set S of states is considered,
and a map 1 from the set of propositional variables into 2° is given,
stipulating for any variable p those states in which p is assumed true.
Restricting to finitely many propositional variables only (which is sufficient
for any concrete applications), t induces a finite partition of S {where two
states s, s" belong to the same class provided for any propositional variable p
we have set(p) il s'et(p)). Hence our terminology is no essential restriction
of the usual definitions, on the other hand it simplifies the transition to other
frameworks like automata or formal languages.

Let us turn to characterizations of PTL-definable sequence sets. For a
model theoretic description we view a sequence a = a(0)...a(n—1), resp. «
=a(0)a(l)a(?)..., over ¥ as a finite, resp. infinite linear ordering with
additional unary predicates. The domain of the ordering is the set |0, ...,
n—1}, resp. w, ordered in the usual way by < and equipped for any ael
with a unary predicate P, containing the numbers i with a(i) = g. A sentence
¢ in the corresponding first-order language (with nonlogical symbols < and
P, for aeX) defines again a set K(¢) of finite sequences and a set L(¢) of
infinite sequences (namely those sequences which satisfy ¢ under the indic-
ated standard interpretation). For example, the sentences

¥y = Vx3dy(x <y A Py Andz(z=succ(y) A Pyz)),
Vs =VxVy(x <y APx A Py—3z(x<zAaz<ynP,:z)

(where z = succ(y) abbreviates y <z A 132z’ (y <z’ A 2’ < z)) define the same
sets of w-sequences as the PTL-formulas ¢, and ¢, above. Call a set
K < X% (resp. L < X°) first-order definable if for some sentence ¢ of the first-
order language appropriate for X, we have K = K{(¢) (resp. L= L(¢)).
Clearly, PTL-formulas can be translated into first-order sentences by formal-
izing the semantics of the temporal operators in the first-order language over
the structure (w, <). The fact that also a converse translation is possible is
much less obvious.
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1.1. THeoReM ([8], [5]). (a) A language K = X7 is PTL-definable iff K is
first-order definable.

(b) An w-language L < X is PTL-definable iff L is first-order definable.

As a consequence one notes that PTL-definable sequence sets are
regular (either regular sets of finite words or w-regular sets of w-sequences),
sincé by Biichi’s characterization results [2], [3] a set of sequences is regular
(resp. w-regular) iff it is defined in the monadic second-order extension of the
first-order language considered above. Conversely, however, not every (w-)
regular sequence set is first-order definable: For example, as observed by
Ladner in [9], the property of sequences which requires that between any
two letters a an even number of letters b occurs is not expressible in the first-
order language. This was also shown in [32] and taken there as a motivation
to set up an extended temporal logic ETL in which precisely the w-regular
w-languages are definable (see also [33]).

For sets of finite words, it has been known since the early seventies that
first-order definability can be characterized elegantly in terms of “star-free”
languages. A set K — X* is called star-free if it is in the closure of the finite
word-sets under concatenation and boolean operations. A comprehensive
treatment of star-free languages is given in the monograph [16]. In [9] an
extension of the above definition to w-languages was suggested: A set L < Z¢
is called w-star-free if it belongs to the closure of the empty set of w-
sequences over X under boolean operations and concatenation with star-free
sets of finite words on the left.

1.2. Tueorem (a) ([16]). A language K = X7 is first-order definable iff it is
star-free.

(b) ([9], [29]). An w-language L < XZ* is first-order definable iff it is w-star-
Sree.

As an illustration for (b) we present w-star-free representations of the w-

languages L(¢,) and L(¢,) considered above as examples:

L((Pl) — ~(z*. ~ (Z*.a.b.zw))’
L(gy) = ~(Z*-a-(Z—b)*-a-X9).

(Note that X* = ~@ and that (X —b)* = X*—(2*-b-Z*))

Referring to some given alphabet X, wc denotc in the sequel by REG
(resp. SF) the class of regular (resp. star-free) languages over Z, and by w-
REG (resp. w-SF) the class of w-regular (resp. w-star-free) w-languages over
z.

The simple inductive structure of the classes of star-free and w-star-free
sets can provide, via the characterization results above, a valuable tool in
investigations concerning PTL. An example is Theorem 3.4 below. The w-
star-free sequence sets also consitute a natural intermediate step in the
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difficult proof that first-order definability implies PTL-definability. Indeed,
the normal form for first-order formulas called “special formulas” in [5] is
very similar to w-star-free representations of sequence sets.

2. Safety- and liveness-properties

In many practical applications, the specification of parallel programs involves
only temporal formulas of a special form: For instance, the specification may
just require that for the resulting execution sequences a certain condition on
states should hold at any time, or that such a condition should hold again
and again. Properties of execution sequences of this kind are called safety-
and liveness-properties, respectively. Papers [12], [13], { 18] show by several
examples how these properties arise naturally in specifications, and they
present elegant methods for their verification.

Recently, [11] proposed a general and precise definition of the notions
“safety-property” and “liveness-property”. For this purpose, the PTL-formal-
ism is extended by the unary past operators & (strong previous), &
(sometime in the past) [x] (always in the past), and the binary operator S
(since). Their semantics is defined (for a sequence a and 0 < i <|a]) by the
clauses

(o, JE ®o¢ iff i>0and (a,i—-1)E o,
(@, i) @ iff for some j with 0<j <i: (o, )FE o,
(o, ) [x]e iff for all j with 0 <j<i: (o, )F o,

(o, ) @SY iff  for some j with 0<j<i: (a0, DEVY
and for all k with j <k <i, (2, k) E o.

Since the semantics of these operators can be described in the first-order
language over (w, <) in the same way as for the “future operators” O, ¢, [J
and U, it follows that in the extended system, denoted here by PTL", no
more properties can be expressed than in the original system PTL. A PTL*-
formula is called a past formula if all temporal operators occurring in it are
past operators. Dualizing the case of the PTL-formulas, such a past formula
¢ defines a language K, (¢) of finite words by setting

K (p)=l{aeZ™ a=a(0)...a(n=1), (a, n—1)F o}.

By the symmetry between O, ¢, [, U and ®, &), [x], S it is obvious
that a set K = X" is defined in this sense by a past formula iff K is PTL-
definable. Let us now say that a PTL- (or PTL"-} formula represents a
safety-property (resp. eventuality-property, liveness-property) il ¢ is equivalent
over all w-sequences to a formula [y (resp. O, IO W), where i is a past
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formula. (It is easy to give corresponding definitions for the extended
temporal logic ETL of [32], [33] instead of PTL. We do not pursue this case
in further detail here; it turns out that the characterization results below
extend in a straightforward way to ETL, referring to monadic second-order
logic instead of first-order logic and to regular languages instead of star-free
languages.)

It should be noted that one finds several variants of the notions “salety-
property” and “liveness-property” in the literature. In [11], for example,
liveness-properties are defined not only in terms of formulas (J Oy with past
formula ¥, but also in terms of formulas Oy (i.e., eventuality formulas) and
formulas [y ; even any positive boolean combination of such formulas is
allowed. As will be clear from Theorem 2.6 below, this proposal means that
any PTL-formula not defining a safety-property will represent a liveness
property. Thus we are led to restrict liveness formulas to the form which is
most typical in applications (namely, [JO ). As a more special definition of
safety and liveness properties we mention that of [18}: There safety-proper-
ties are represented by formulas ¢ — [Jy and liveness-properties by formulas
(¢ — O ¢); in both cases ¢ and ¥ are “immediate assertions”, i.e., formulas
without temporal operators. Still a different approach is taken by Sistla in
[27]; there ¢ represents a safety-property if (x, O)f= ¢ is equivalent to the
condition that any prefix u of « can be extended by some f with (uf, 0)= ¢;
and ¢ represents a liveness-property if for any finite u there is an extension f
such that (uff, 0) = ¢. For safety-properties this definition is equivalent to our
definition, but for liveness-properties a notion results that is incomparable to
the one introduced above. Sistla characterizes safety and liveness properties
in his sense syntactically by fragments of PTL; this allows then to set up
axiom systems which yield effective enumerations of the PTL-formulas
representing such safety, resp. liveness properties.

Note that ¢ represents a safety-property iff 71 represents an eventual-
ity-property. In the context of language theory, eventuality-properties arise
more naturally. Thus in the sequel we will often refer to eventuality-
properties and not primarily to safety-properties.

Using the results of Section 1, one obtains a characterization of these
properties in first-order logic. It is convenient for this purpose to consider
the notion of a “bounded formula™ (as in [29], [30]): Cail a first-order
formula (x) with one free variable x bounded if all quantifiers in y are
relativized to the elements < x, ie., all quantifiers are of the form
dzz<xA..)or Vz(z < x—..). Then from Theorem 1.1 we infer

2.1. ProrosiTiON. A PTL-formula ¢ represents an eventuality-property
(resp. safety-property, liveness-property) iff ¢ is equivalent over all w-sequences
to a first-order formula of the form I xy(x) (resp. Vxy(x), Vydx(y <x
A Y (x)), where Wy (x) is bounded.
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Note that it is easy to write the example formula ¢, = O O(p, A Op,) of
Section 1 in the form ¥y x(y < x A ¥ (X)) and @, = 1 O(p. A O(1p, U p,))
in the form V xy (x), where ¥ (x) is bounded. Hence ¢, represents a liveness-
property and ¢, represents a safety-property.

A characterization in language theoretical terms uses two operations
that transform a set K < X% of finite words into a set of w-words:

ext K = lae X®| some initial segment of « is in K
(“a extends a word in K7},
lim K = {xeX® infinitely many initial segments of «

are in K (“a is a limit of words in K”)}

Given the alphabet X, let ext(REG) and ext(SF) denote the classes of w-
languages of the form ext K with K = X'* regular, resp. star-free. Similarly we
define lim(REG) and lim(SF). Then we have, by Theorem 1.2.

2.2, ProposiTioN. A PTL-formula ¢ represents an eventuality-property
(resp. liveness-property) iff L{p)eext(SF) (resp. L(¢)elim(SF)).

It is interesting to note that the classes ext(REG) and lim (REG) have
been investigated by Landweber [10] in an automata theoretic context. The
objective of this work was to compare different acceptance modes of de-
terministic w-automata: Given an w-automaton .7/ = (X, Q, qo, 0, F) with
state set Q, initial state g,, transition function 4: Q xZ — Q (extended in the
natural way to 4: Q xZ* — (), and a set F of final states, Landweber defined,
for a sequence a€X®: '

o/ l-accepts a iff (g, «(0)...a(n—1))eF for some n,
o/ 2-accepts a iff  &(go, a(0)...a(n—1))eF for infinitely many n.

An w-language L < X“ is called 1- (resp. 2-) definable if for some finite
automaton ¥,

ael iff & 1- (resp. 2-) accepts a.

Recall that L is w-regular iff it is definable by a nondeterministic finite
automaton using 2-acceptance {Biichi automaton). From the above definitions
we have immediately

2.3. Remark. Leext(REG) iff L is 1-definable; Lelim(REG) iff L is
2-definable.

The main result of [10] can now be stated as follows (referring to an
alphabet with at least two letters):

2.4. TueoreM ([10]). (a) ext(REQG) g lim (REG) ;Ea)-REG.

(b) For w-languages in w-REG (given e.g. by Biichi automata) membership
in ext(REG) and in lim(REQG) is decidable.
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The w-languages needed to prove (a), ie, lim(REG)—ext(REG) # @
and (w-REG)—1im(REG) # @, can simply be taken as the set of w-
séquences having infinitely many, resp. only finitely many letters a. Since
these sets clearly belong to lim(SF), resp. w-SF, we have

2.5. CoroLLARY. ext(SF) § lim (SF) ;_g w-SF.

In the following section it will be seen that also part (b) of Theorem 2.4
extends to the case of star-free sets.

Statements 2.4(a) and 2.5 suggest the question “how far” the classes
Iim(REG) and w-REG (resp. lim(SF) and w-SF) are apart. An answer is
provided by McNaughton’s fundamental theorem on determinization of Biichi
automata for the regular case and by the normal form theorem of [30] for
the star-free case:

2.6. THEOREM ([15], [30]. An w-language Le w-REG (resp. Le w-SF) can
be represented in the form

(imK; n ~limK}),
i=1

where K;, K.e REG (resp. K;, K;eSF) for i=1,..., n
Translating this normal form back to temporal logic, we obtain in

particular that any PTL-formula is equivalent (over all w-sequences) to a
boolean combination of PTL-formulas that represent liveness properties.

3. Decidability results

The aim of this section is to show that the classes w-SF, lim(SF) and ext(SF)
are decidable relative to w-REG. For the proofs we rely on Schiitzenberger’s
Theorem [26] characterizing the star-free sets of finite words and some
elementary facts on a syntactic congruence for w-languages that appear in
Arnold’s paper [1].

Let us state these preliminaries more precisely. Given a language
K < 2*, the syntactic congruence of K is defined by '

x~xy WMl for all u, ve&* (uxve K iff uyveK)

for x, yeZ*. The syntactic monoid M (K) is the structure X*/~;, where
multiplication is defined by concatenation of representatives of the ~ -
classes. If K is regular, then M (K) is finite and can be constructed effectively
from a description of K (say in terms of automata or regular expressions). A
monoid M is called group-free (or aperiodic) if there is no set G < M with at
least two elements which forms a group under the multiplication of M. Note
that for finite M this property is effectively decidable.
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3.1. Remark ([16], p. 52-53). Let K be a regular language. Then the
following are equivalent:

(1) M(K) is group-free,

(2 An,Vnz=n, Vge M(K): g"=g"*",

(3) K is noncounting, ie, In, Vn=n,Vx,y, zeZ*: xy"zeK ilf
xy"tlzek.

3.2. ScHUTZENBERGER'S THEOREM ([26], [16], [22]). A regular language
K < X* is star-free iff M(K) is group-free. (Hence for regular lunguages the
property “star-free” is decidable.)

Recently, Arnold [1] has suggested a modified congruence relation =~
on X* which refers to an w-language L (instead of the language K above)
and is appropriate for an extension Schiitzenberger's Theorem to sets of
infinite words. Given L c X, define for x, yeZ*

x=x,y iff for all u, v, wel*:
(uxow” e L iff uyvw”e L) and (u(vxw)*e L iff u(vyw)”e L).

Remark. Note that the straightforward extension of ~y would just
require that uxae L iff uyae L for any ue X* ae X This congruence has
been considered previously by [6] but is too coarse for the present purpose:
For example it is not possible to distinguish whether some given word occurs
infinitely often or only finitely often in an w-word.

33. LemMa ([1]). If L © 2° is w-regular, then = is a congruence relation
on X* of finite index having regular equivalence classes. Moreover, L is a union
of sets of the form K,-K®, where Ky, K are equivalence classes of =~,.

For L < X, the syntactic monoid M (L) is the structure 2*/x,. Now we
can state the analogue of Theorem 3.2 for w-languages:

3.4. TueoreM ([20]). An w-regular w-language L — X is w-star-free iff
M(L) is group-free. (Hence for w-regular w-languages the property “w-star-
free” is decidable.))

For our proof we need the following equivalences, obtained as Remark
3.1 above:

35. Remark. Let Lc X be w-regular. Then the following are
equivalent:

(1) M(L) is group-free,

(2) 3ng Ynzny VgeM(L), g"=g""",

(3)An, Vnzn, Vy, u, v, weI*:

o) (uyvw?eL iff uy"*'vw”el) and
*

(uy"w)®eL ff u(@y"t'w)®el).

Proof of 3.4. For the direction from left to right we use induction over
the construction of w-star-free sequence sets. It suffices to verify condition (3) of
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3.5. For L = @ this is clear; also if (3) holds for L it obviously holds for the
complement ~ L. Assuming (%) for L, (with n = n,) and for L, (similarly
with n > n,) then (%) holds for L, u L, provided n > max(n,, n,). Thus it
remains to treat the concatenation step: Suppose L — X“ is given s.t. (%)
holds for n = n,, and assume K < 2° is star-free, 1.e., we have n; with

(o) xy"zeK iff  xy"tlzekK

for n > n,. Set ng =n,+1+n,; we claim that (x) holds for K-Lif n = n,.
First_suppose we have uy”"vw”e K- L and hence an initial segment s, of
this w-word in K and the corresponding final part s, in L. Since n > ny =

n+1+n,, we have s, = uy" v’ for some u’, or s, = u” y"2vw* for some u". In
the first case we apply (o), and in the second we apply (*) to obtain

'll+

uy" T weK, resp. u”y" ' ow“e L. Hence uy"*'ow?e K - L as desired. The
step from n+1 back to n is similar.

Secondly, suppose u(vy"w)®e K - L; we have to verify u(vy"*'w)*e K- L.
Let s,, s, be the segments in K, resp. L as above such that s, s, = n(vy"w)®,
say

s; =u(y"whu', s;=u'(vy"w”, uwu' =vy"w.

Since n > n, we can apply (o) k times to s, (for the different occurrences
of the segements y™ and obtain u(vy"*!w)*u’e K. Moreover, by n > n, and
(*) we have u”(vy"* ! w)” € L. Finally, by n = n, + 1 +n,, we can add as before
one y-segment either to u’ or to u”, without leaving the set K, resp. L; so u'u”
can be replaced by vy"*'w. Hence u(vy"*'w)® €K L. Again the step from
n+1 to n is analogous.

Let us now prove the converse direction of the theorem assuming that
M (L) is group-free. In the sequel, [x] denotes the element of M (L) (i.e., the
x~,-class) that contains x. Note that for = classes K,, K,, K,
K"K,nK # @ implies K, K, =K. By 3.3, L is a finite union of sets
K, K*“; where K4, K are =, -classes. We shall show that any of these sets
Ko K is first-order definable (and hence, by 1.2, w-star-free). First we see
that any =,-class C is noncounting since M (L) is group-free: Indeed, we
have uv"we C iff uv"*'weC for n large enough, since in M (L) the equality
[v]" = [v]"** holds (by 3.5(2)) and hence [uv"w] = [uv"*'w]. Thus any =x,-
class is first-order definable by Theorems 1.2 and 3.2. Furthermore, when
considering K, K we may restrict to the case that K-K < K since K- K¢
=Ko (K")“ and for n large enough we have K"*! < K" (by the noncounting
property) and hence K"- K" < K". We claim that in this case (K- K < K), for
any aeX®;

(+) aeKqy K® iff
Jko(x(0, ko)e Ko A VKkIK', k" > k(x(ko, k) eK nalk', k")e K)).
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(Here « (i, j) indicates for i < j the segment x(i)...2(j— 1).) Since (+) is clearly
first-order formalizable over (w, <) assuming first-order definability of K,
and K, it remains to show that the above equivalence holds. The direction
from ae K- K® to (+) is obvious (by K-K < K). For the converse, first note
that the last conjunction implies a(ky, k”)e K. We shall find a sequence
ko, ky, ... such that «(0, ko}e K, and lor each i

(1) a(ko, ky), ..., alk; 1, k)eK,

(2) there is | > k; with a(kq, D), a(k;, e K.

Pick k, as guaranteed by (+4). Then «(0, k;)e K, and (2) is satisfied for
ko. Assume kg, ..., k; have been found such that a(k,, k,), ..., a(k,_,. k)e K
and (2) holds for k;. Choose ! as in (2} and find k', k" > [ as given by (+). Set
k;+1 =k’ and use k” to check that (2) is satisfied {for k. On the other hand
we have a(k;, k')e K: Namely, a(ko, /) and a(k;, ) are in the same = ,-class
K and hence clearly «(ky, n) and a(k;, n) will be in the same = ,-class for any
n>=1! (since =, is a congruence). By k' >/ and a(ky, k')e K we thus have
a(k;, k')e K as required.

Remark. It 1s a somewhat tedious task to transform the first-order
formula (+) directly into an w-star-free representation of K, K®, assuming
that K, and K are star-free. This would make it unnecessary to refer to
Theorem 1.2 in the proof above.

In order to combine Landweber’s Theorem 2.4 and the preceding
Theorem 3.4 we show the following equalities:

3.5. ProrosiTion. (a) ext(SF) = ext(REG) n w-SF,

(b) lim(SF) = lim(REG) nw-SF.

Clearly this yields, by 24 and 3.4:

3.6. CoroLLARY. For w-regular w-languages, membership in ext(SF) and in
lim (SF) is decidable. Hence for a PTL- (or ETL-) formula it can be decided
effectively whether it represents a safety-, eventuality- or liveness-property.

Proof of 3.5.(%). It suffices to show the inclusions “>". For (a), assume that
L c X is w-star-free and L = K-2° for some regular K — 2*. Let

K, = \yeZ* all w-sequences with prefix y have some prefix in K].

We claim that L = K,-2“ and that K, is star-free (which proves L eext(SF)).
To prove L =K, 2 note that K < K, and hence L < Ky, ' X”. On the
other hand, given ae K, -2, by definition of K, some prefix of a belongs to
K, ie, ae K-Z° To prove that K, is star-free we show that K, is regular
and satisfies the noncounting property of 3.1(3): First note that a finite
automaton ./ recognizing K, say with initial state yo, can be transformed

() A preliminary version of this proof was obtained jointly with F. Rancke, cf. [25].
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into a finite automaton recognizing K, by taking as final states all states ¢
such that any infinite path from g, through g hits some final state of .«/.
Next we state two facts on K,:

(1) yeKo=V ), weZ*: ypweK,y 2v,
(2) y¢Ky=3y, wel*: yyw?é¢ Ky 2.

(1) is obvious from the definitions. For (2) assume that y¢ K,, ie., some
sequence in y-2* does not belong to K-2“. Then the w-language y-X“ N
~(K-X®) 1s nonempty, and since it is w-regular it contains (by [3]) an
ultimately periodic sequence. This sequence is of the form' yy’'w® as required.
We now show (by contradiction} that K, is noncounting: Assume that for
arbitrary large n there are x, y, ze Z* such that

(3) xy"zeK, and xy"*'z¢K,.

Since L was assumed w-star-free and hence satisfies the property of 3.5(3),
we have for sufficiently large n, say with n = n,, that for all y, u, v, weZ*

(4) uy"vw?e L iff  uy"*low?elL.

Now pick some n > ny and x, y, z such that (3) holds. Since xy"*'-¢ K, we
find by (2) some y'.w with xy"*'zy'w*¢ K, -2 (= L). Hence, by (4), we
have xy"zy'w”¢ K,-Z“; but this contradicts (3), in particular xy"ze K.

The proof of {(b) is similar: Assume L is w-star-free and L = lim K for
some regular K. Let

Ko = {yeK] for some feZ®, yfelimK!.

We claim that imK, =1lim K and that K, is star-free. Since K, = K we
have lim K, c lim K. Conversely, given aelim K, we have that any a-prefix y
in K has an extension f with yfelim K and thus belongs to K, this yields
aelim K,. Again it is easy to verify that K, is regular, by taking appropriate
final states in a finite automaton recognizing K. It remains to show that K,
is noncounting; here we use

(1) yeKo=3y, weXZ*: yy'w?elimK,,
(2) yeKo=>Vy, weZ* yyw®¢limK,.

Condition (2) is obvious; and (1) is satisfied since from ye K, we have
y-Z?nlimK # @ and thus obtain in this (w-regular) set an ultimately
periodic sequence yy'w”. Assume now that for K, the noncounting condition
of 3.1(3) is violated; then for arbitrary large n we may choose x, y, z with

xy"ze K, and xy"t'z¢K,.

By (1) we find y" and w such that xy"zy'w” €lim K. However, applying
(2) to xy"*'z we know that xy"*!zyw®¢limK, (= L). But since L was
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assumed w-star-free, the noncounting Property 3.5(3) is satisfied, ie., for n
large enough xy"zy'w?e L iff xy"*!'zy'w”e L. Thus we obtain the desired
contradiction.

As a final remark we mention that a strong extension of Landweber’s
Theorem has been obtained by Wagner [31] (and recently reproved by
Kaminski [7]): For any n = 1, consider the class ¥, of w-regular sequence
sets L with a representation

L= (lmK,n~1lmK) (K;, K; regular)

i=1

as in the normal form Theorem 2.6.

An w-language in class %, is said to be of Rabin index n (reminding of
Rabin’s acceptance condition for automata on infinite trees [24]). In [31],
Sections 5, &, it is shown that these classes form a proper hierarchy
(im(REG) £ ¥, £ #,..), and that the Rabin index of an w-language is
effectively computabie. A natural generalization of the present paper would
consist in a “star-free version” of these results; in particular, we conjecture
that for each n > 1 the star-free analogue of %, coincides with the class
2, Nw-SF.

References

[1] A. Arnold, A syntactic congruence for rational w-languages, Theor. Comput. Sci. 39 (1585),
333--335.

[2] J. R. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik u. Grundlag
Math. 6 (1960), 66-92.

[3] ~., On a decision method in restricted second-order arithmetic, in: Proc. Int. Congr. Logic,
Meth. and Phil. of Sci. 1960, Stanford Univ. Press, Stanford, Calif. 1962, 1-11.

[4] E. A. Emerson, E. M. Clarke, Using branching time temporal logic to synthesize
synchronization skeletons, Sci. Comput. Progr. 2 (1982), 241-266.

[5] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, 7th
ACM Symp. on Principles of Progr. Languages (1980), 163-173.

(6] H. Jirgensen, G. Thierrin, On w-lunguages whose syntactic monoid is trivial, Int. J.
Comput. Inform. Syst. 12 (1983), 359-365.

[71] M. Kaminski, A classification of w-regular languages, Theor. Comput. Sci. 36 (1985),
217-239.

[8] H. W. Kamp, Tense logic and the theory of linear order, Ph. D. Thesis, Univ. of California,
Los Angeles 1968.

[91 R. E. Ladner, Application of model-theoretic games to discrete linear orders and finite
automata, Inf, Contr. 33 (1977), 281-303.

[10] L. H. Landweber, Decision problems of w-automata, Math. Syst. Theory 4 (1969), 376
384.

[11] O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past, Logics of Programs,
Proceedings, Springer Lecture Notes in Comput. Sci. 193 (1985), 196-218.

[12] Z. Manna, A. Pnuely Verification of concurrent programs: the temporal framework, in:
The Correctness Problem in Computer Science (eds. R. S§. Boyer, J. S. Moore), Int. Lect.
Series in Comp. Sci., Academic Press, 1981.



(13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]
[26]

[27]
[28]

(29]
(30]
[31]
(32]
[33]

SAFETY- AND LIVENESS-PROPERTIES IN PROPOSITIONAL TEMPORAL LOGIC 417

—, —, Adequate proof principles for invariance and liveness properties of concurrent
programs, Science Comput. Progr. 4 (1984), 257-289.

Z Manna, P. Wolper, Synthesis of communicating processes from temporal logic specifica-
tions, ACM Trans. on Progr. Lang. 6 (1984), 68--93.

R. McNaughton, Testing and generating infinite sequences by u finite automaton, Inf.
Coantr. 9 (1966), 521-530.

—, S. Papert, Counter-free Automata, MIT-Press, Cambridge Mass. 1971,

B. C. Moszkowski, Reasoning about digital circuits, Ph. D. Thesis, Stanford Univ. 1983.
S. Owicki, L. Lamport, Proving liveness properties of concurrent programs, ACM
TOPLAS 4 (1982), 445-495.

R. Peikert, w-regular languages and propositional temporal logic, Report No. 85-0l,
Mathematik, ETH Zirich 1985,

D. Perrin, Recent results on automata and infinite words, in: Math. Found. of Comput.
Sci. 1984, LNCS 176 (1984), 134-148.

—, J. E. Pin, On the expressive power of temporal logic, Rep. 86-17, LITP, Univ.
Paris VII, 1986.

J. E. Pin, Variétés de langages formels, Masson 1984.

A. Pnueli, The temporal logic of programs, Proc. 18th IEEE Symp. Found. of Comput.
Sci. (Providence, R. 1) (1977), 46-57.

M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans.
Amer. Math. Soc. 141 (1969), 1-35.

F. Rancke, Zihlerfreie w-Automaten, Diplomarbeit, RWTH, Aachen 1985.

M. P. Schiltzenberger, On monoids having only trivial subgroups, Inf. Contr. 8 (1965),
190-194.

A. P. Sistla, On characterization of safety and livieness properties, Proc. 4th ACM Symp.
on Principles of Distributed Computing (1985), 39-48.

—, E. M. Clarke, N. Francez, A. R. Meyer, Can message buffers be axiomatized in
linear temporal logic?, Inf. Contr. 63 (1984), 88-112.

W. Thomas, Star-free regular sets of w-sequences, ibidem 42 (1979), 148-156.

—, A combinatorial approach to the theory of w-automata, ibidem 48 (1981), 261-283.
K. Wagner, On w-regular sets, ibidem 43 (1979), 123-177.

P. Wolper, Temporal logic can be more ¢xpressive, ibidem 56 (1983), 72-99.

—, M. Y. Vardi, A. P. Sistla, Reasoning about infinite computation paths, Proc. 24th
IEEE Symp. on Found. of Comput. Sci. (1983), 185-194.

Presented to the semester
Mathematical Problems in Computation Theory
September 16—December 14, 1985



