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Let X,, X,, .. be a sequence of ii.d. integer-valued random variables with a

distribution depending on a parameter 0e @, let N be the corresponding

stopping time of an SPRT for H,. 6 = 0, against H;: 6 =0, and let S be
N

the randomly stopped sum Z X;. Under the condition that the slope of the
i=1

straight line of acceptance of this test is a rational number we reduce the

problem of computation of expectation values E,w(N, S) to that of solving

of a system of simultaneous linear equations. As special cases we obtain a

system of simultaneous linear equations for the OC and the moments of the

sample number.

1. Introduction

Direct methods of the computation of the operating characteristic function
(OC) and the average sample number function of a sequential probability
ratio test (SPRT) in the case of discrete random variables were investigated
in [17, [2], [3], [4], 191, [12], [157, [16], [17], [18] and [19]. As a rule these
direct methods are characterized by very special assumptions — e.g., about
the underlying distribution — and the amount of numerical calculations can
be very large in practical situations. For a survey of these methods, see [8],
[10], [11], [13], and [14]. In [5] a method was developed which allows us
to compute the OC, the average sample number function and moreover the
higher moments of the sample number by solving systems of simultaneous
linear equations which only differ in their right-hand sides. Besides the
comparatively small amount of numerical calculations, this method has the
additional advantage that we can also compute the above characteristics for
truncated SPRTs.
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Here we consider the more general problem of the computation of those
characteristics of SPRTs which may be represented by expectation values of

certain functions of the sample number N and the randomly stopped sum
N

Y X;. As a generalization of [5] we reduce also this problem to that of
i=1

solving a system ol simultaneous linear equations under the assumption that
the slope of the straight line of acceptance is rational.

2. Preliminary considerations

Let X,, X,,... be a sequence of independent and identically distributed
random variables with density f(x, 0) with respect to some measure on the
set of integer numbers I" and let & be a parameter with values in a parameter
space ©. We consider an SPRT for discriminating between the hypotheses
Hy: 0 =6,and H: 6 =0,,0 #0,, 8y, 0,e@. Then, by the definition of the
SPRT we have the test variable

- (Xn 01) .
=Z (m) for n—l, 2,

and to given stopping bounds b and g, — w0 < b <0 <a < + ¢, the stopp-
ing time

N=min{n>1: Z,¢(b, a)}. (2.1)

We accept the hypothesis H, iff Zy < b and reject Hy iff Zy > a

For the lollowing investigations we assume that the critical inequalities
of our test, which are defined by b<Zy <a for n=1,2,..., may be
written as

b+gn<y X, <d+gn for n=1,2, ... (2.2)

where b, @ and g denote real numbers such that —o0 <b <0 <d < +
and 0 <g < + o holds. Other cases can be treated in an analogous
manner.

We now investigate the computation of those characteristics of our test
which are representable as expectation values in the following manner. Let
I'" be the set of positive integer numbers and I'y = 0] UT'*. Let w be a
measurable function defined on I'J.-xI'. Then, supposing that the cor-

responding expectation value exists, we consider the computation of the
N

expectation value Egw(N, Y X;). For this reason we introduce the following
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notation: Let A“(m) and W (m) be, for me 'y, integer numbers defined by
h*(m):=min (hel': h>b+g-m

and
W(m):=maxlhel: h<d+g-m}.

Let M be a set of lattice points, characterizing the continuation region of our
test, defined by

M:=m, kyel'g xI': *(m) <k < h(m).
Then we obtain for the stopping time (2.1)

N=min{n>1: (n. } X,)¢ M}
i=1

and we may say that the test starts at the lattice point (0, 0).

More generally, we may use every other lattice point of M as a starting
point for an SPRT for H, against H,. With respect to this interpretation we
introduce the following notation: Let N(m, k) be for (m, k)e M a stopping
time which is defined by

N(m, k):=min{n>1: (m+n, k+ ) X, )¢ M}
i=1

and let S(m, k) be a randomly stopped sum defined by

N(m,k)
Smk):i=k+ Y Xpiy.
i=1
DEeriniTION 2.1.  We shall say that an SPRT for H, against H, starts at
the lattice point (m, k)e M if we use the stopping time N (m, k) and accept or
reject Hy if

S{m, k) < h*(m+ N(m, k)) or S(m, k) > i (m+ N(m, k))
respectively. We denote such a test by T{m, k).

Remark 2.1. It is also possible to interpret the test T(m, k) as a
conditional SPRT for H,: 0 =6, against H,: 6 = 6, under the condition
that we have reached the point (m, )e M after the m"™ observation.

In preparation for the computation of the characteristics of the given test
T(0, 0) we now consider the more general problem of computation of the
characteristics of the test T(m, k) for (m, k)e M. To solve this problem we
need some geometrical properties of the set M.

DeriniTion 2.2, The lattice points (m, k)e M and (m’, k'ye M are said to
be equivaleat (write: (m, k) ~(m', k') iff k—g-m =k'—g-m’ holds.
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It follows from this definition that equivalent lattice points of M have
the same distance to the straight line of acceptance taken in the direction of
the ordinate. Furthermore, it is not difficult to see that the following lemma
holds ([5]).

Lemma 2.1. Different’ equivalent lattice points of M exist iff g is a
rational number.

The meaning of the existence of equivalent lattice points will become
clear in the following, where we shall see that, under certain assumptions,
tests which are started at equivalent lattice points will have the same
characteristics. Especially the [ollowing theorem holds:

THEOREM 2.1. Suppose that D} X, > 0. Let g be a rational number with
g =9/91, 91.9:€1". Let (m, k)eM and (m', k)e M be equivalent lattice
points such that

m =m+rg, and k' =k+rg, for relyg

holds. Then the random vectors (N(m', k'), S(m', k')—rg,) and (N(m, k),
S(m, k) are identically distributed.

Proof. We consider the probabilities Py(N(m, k) =n, S(m, k) = s),
(n,s)eI’'t xI. Since D} X, > 0, we have

Py(N(m, k) < a0) = Po((N(m, k), S(m, k)¢ M) =1

and therefore

Po(N(m, ky=n, S(m,k)=s)=0  for (n,s)eM.

For (n, s)¢ M we obtain the following: Since g is a rational number we get
h*(m'+D) =h(m+1)+rg, for lelg

and
Hm+l)=hm+h+rg, for lelyg.

Thus, since the X,, X,, ... are assumed to be 1.i.d. random variables, we have
for (n, s)¢ M

I
Py(N(m, k) =n, S(m, k) =s) = Po(F*(m+D) < k+ Y Xpyi < W (m+])

i=1

for I=1,...,n—1 and k+ ) X,.;=5)
i=1

i
= Py(h*(m+D+rg, <k+rgs+ Y XpriShH(m+h+rg, for l=1,...,n-1
i=1
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and k+rg,+ Y Xpsi =S+793)

=Pl (m+) <K+ Y Xpos <H M +D for [=1,..., 11

||M...

and K+ Y Xpwrs = 5+1g5)

i=1
= Po(N(m', k) =n, S(m', k')—rg, = s),
which completes the proof.

Some remarks:

Remark 2.2. The assertion of Theorem 2.1 may be formulated also in
the following manner: Let w be a measurable function, defined on I'y xT.
Suppose that Eqw(N (m, k), S(m, k)) exists. Then we have under the assum-
ptions of this theorem

Egw(N(m, k), S(m, k)) = Eqw(N (m', k), S(m', k') —rg,)

and especially
Eqw(N(m, k)) = Eqw(N(n', k).

Remark 2.3 It was supposed above that relation (2.2) holds, which is a
comparatively weak assumption. For instance, we may write the critical
inequalities in this form if In(f (X, 6,)/f (X, 0o)) = uX, —v holds, where u,
u >0, and v denote given real numbers. Therefore, the class of probability
distributions characterized by (2.2) contains, e.g., the binomial, Poisson,

geometric and negative binomial distributions.

3. The computation of the characteristics

In this section we shall reduce the problem of the computation of
Eyw(N(m, k), S(m, k)} for (m, k)e M and €€ @ to that of solving a system of
simultaneous linear equations which only differ in their right-hand sides. We
introduce the following notation:

K(m):=tkel I"(m)<k<h(m)}, mely:

K(m):=T'-K(m), meTly;

wi(m):= Eyw(N(m, k), S(m, k)), (m, k)eM, e @;

w?(m) 1= {wg (M)} cex(ms

!
Cy-(m, m):={Pm+h<k+ ) X, <H(m+l) for I=1,...m—-m-
i=1

mfm

—1 and k+ Z Xn.; =k} — the event of reaching the lattice point
(m', k)e]’*xF by the test T(m, k), (m, k)\e M, m < m’;



78 K.-H. EGER

b (m, m) 1= Py(Cpy (m, m));

CO(m, m'): = Qe (m, )] yogom bcekom) |

cp.(m, m’) 1= {cye (m, M) }yexom for k'e K(m);

E — a unit matrix of the same type as C%(m, m+g,)

For g,, g,eI'" let d be a function defined on I'; xI” by

d(n, s):=w(n+g,, s)—w(n, s—g,),

dy(m):= Eqd(N{(m, k), S(m, k)), (m, k)ye M;

d®(m): = {d,‘f(m)}-kex(m)-

Then we obtain the following assertion:

Tueorem 3.1. Let g be a rational number such that ' =g,/y,,

g,,g€I'", holds. Suppose that the corresponding expecratioi values exist.
Then we have for mel'§ and 0@

g1
(E=C%(m, m+g,)) wl(m)= Y vd(m+C°(m, m+g,)-d’(n+g,), (3.1)
n=1
where vi(m) is defined by
vimy= Y  w(m+n, k)-cp(m, m+n). (3.2)

k'eK(m+nm

Proof. We consider for (m, k)e M and ke K(m) the sysiem «: events
HCu (M, m+ 1)}y ckem+ 1y -+ -> 1 Cie (1, m+91)}k'ei(m+gl,a

| ) ]
lek‘(m‘ m+.ql)lk'el((m+_ql)j .

This system forms a complete system of pairwise mutually exclusive events.
Then, by the formula of total probability, it follows for ke K (m) that

91
wim) =Y Y Eg(w(N(m, k), S(m, k)| Cyu (m, m+n)) x
n=1keKim+nm
xch.(m, m+n)+s, (3.3)
where s’ is defined by

si= ) Ea(w(N(m, k), S(m, k)| C (m, m+g,)) chi (m, m+g,).
k'eK(m+g1)
(34)

According to the definition of the events Cg.(m, m+g,) we have for
n=1,...,g, and ke K(m+n)

Eo(w(N(m, k), S(m, k)| Coye- (m, m+n)) = w(im+n, k). (3.9

For the conditional expectation values in the sum s° we obtain the following:
By the definition of d, by Theorem 2.1 and because the X, . X,.... are
assumed to be a sequence of ii.d. random variables we have for k' = h+
+g,e K(m+g,)



COMPUTATION OF THE CHARACTERISTICS FOR SPRTs 79

Eo(w(N(m, k), S(m, K))| - (m, m+g,))
= Eqw(g, + N(m+g,, h+g,), S(m+g,, h+g,))
= Eqw(N(m-+gy, h+g,), S(m+gy, h+g3)—g,)
+Egd{(N(m+g,, h+g,), Sim+g,, h+g,))
= wh(m)+dy.,,(m+g,). (3.6)

Putting together relations (3.3), (3.4), (3.5) and (3.6), we get for ke K(m)

g1
wimy= 3> Y w(m+n, k) g (m, m+n)+

n=1kecKim+m

+ Z Cgh+gz(m,m+yl)hz(m)+ Z th'i-gz(mam+gl)d2+gz(m+gl)s
heK(m) heK(m

and the proof is complete. .

It follows from this theorem that we can compute w®(m) by solving a
system of linear equations il we can compute, besides the probabilities
Py(Cyi (m, m')), the vector d°(m+g,). Here are some remarks:

Remark 3.1. Since X,, X,, ... are assumed to be i.id. random varia-
bles, we can compute the matrix C®(m, m+g,) and the vectors c.(m, m+n)
for n=1,....g, and KeK(m+n) in ihe followirg manner:

() Forn=1, ..., g, we have

m+n—1

Cotm,m+m = Y C%,j+1)
j=m

where with respect to the elements of C°(j, j+1)
Coe (s j+H1) = Polk+ X, =k') = Py(X, =K —k)
for ke K(j) and k'€ K(j+1) holds.
(i) Forn=1,...,¢9, and k'e K(m+n) we have
ch(m, m+n) =C'(m, m+n—1)cl.(m+n—1, n)
where
cowm+n—1,n) = Py(X, = k'—k)

for ke K(m+n—1) and k'e K(m+n) and C®(m, n):= E holds. This means
that we can compute the vectors cf.(m, m+n) parallel to the computation of
Cl(m, m+g,).

Remark 32. The application of Theorem 3.1 may lead to a new
problem, namely the computation of the vector d°(m+g,), which we may

also interpret as a vector of the characteristics of our test. Depending on the
properties of the function w under consideration it will not always be
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possible to reduce these characteristics to known characteristics. A simple
example is the computation of negative moments of the sample number.

Remark 3.3. Assertions about the characteristics of truncated SPRTs
may be obtained if we solve the given system of linear equations by the
method of iteration, using special initial conditions. For the computation of
the OC and the moments of the sample number of truncated SPRTs we refer
to [5].

Remark 3.4. Numerical results for the Poisson distribution are con-
tained in [7].

Remark 3.5. By means of the generalized SPRTs T(m, k) considered
here it is further possible to compute directly the operating characteristic
functions and the moments of the sample number of the Sobel-Wald test for
discriminating between k hypotheses, where k > 2 ([6]).

4. Example

4.1. The operating characteristic function. In calculating the probab-
ility of acceptance of H, by the test T(m, k) by means of a system of linear
equations we introduce the following notation:

gi(m) — the probability of acceptance of H, by the test T(m, k),
(m, k)eM, 6c@;

a®(m) : = gk (M)} ekom>

al(m, m+n) — the probability of acceptance of H, by the test T(m, k)
at the n'™ sampling stage, n=1,...,g,, ke K(m); a®(m, m+n):= {al(m,
m+ 1)} kekom -

Then the following theorem holds:

THroreM 4.1. Under the conditions of Theorem 3.1 we have for meI'g

91
(E—C°(m, m+g,))q°(m)= ) a®(m, m+n) (4.1)
' n=1
- with
a®(m, m+n) =C(m, m+n—1)a®(m+n—1, m+n) (4.2)
and
al(m+n—1, m+n) = Po(X, < h(m+n)—k) (4.3)

for n=1,...,g9; and ke K(m+n—1).
Proof. By the definition of ¢f(m) we have
gy (m) : = Pg(acceptance of H, by T(m, k))

= Eg Xis(mk) <h8(m + Nim.kn)
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and
W(n, 8) 1= X<+ n)
for (n, s)e'g xI'. Under the conditions of Theorem 3.1 we have
h'(m+n+g,)=h"(m+n)+g, for n=1,2,...,

so that we obtain
d("’ S) = W(n+gl! S)‘—W(n, 8_92)

=X <ha(m+u+gl)]_XIs—gz <hB(m+n)) = 0
and

d®(m+g,) =0. (44)

Since the X,, X,, ... are assumed to be ii.d. random variables and by the
definition of a®(m, m+n) we get for the components v, (m), ke K (m), of the
vector vS(m), defined by (3.2), for n=1, ..., g,

Ug.k(m) = Z Czk' (m, m+”)X1k' <H(m+m))
k'eK(m+n)
= . +n—1 b (m+n—1, m+n)x,
Z Cre- (M, m+-n—1) CppiMmrn—1, 1) X & <hm+ n))
k'’ eK(m+n—1) k'eK(m+n)

= D e im, m+n—1)al.-(m+n—1, m+n)
k'eK(m+n—1)

=al(m, m+n) (4.5)
with
al(min—1, men) = Po(K"+ Xpnsn < H(m+n) = Po(X, < K (m+n)—k"),

so that (4.2) and (4.3) hold. Then, assertion (4.1) follows by Theorem 3.1,
(4.4) and (4.5).

4.2. The moments of the sample number. In calculating the moments
of the sample number of T(m, k) we introduce the following notation:

e (m):=E4N (m, k) — the r'" moment of the sample number of
T(m, k), (m, k)eM, 0O, r=0,1, 2, ...;
el (m):= {ef,k (m)}kex(m);

ri(m, m+n) — the probability of acceptance of H, by the test T(m, k) at
the nth sampling stage, n=1, ..., g,, ke K(m);

r®(m, m+n):= {ri(m, m+n)} gm-

Let a®(m, m+n) be defined as in Theorem 4.1. Then the following
theorem holds.

THEOREM 4.2. Suppose that Dj Z, > 0. Under the conditions of Theorem
3.1 we have for mel'y and r =1, 2, ...

6 — Banach Center t. 16
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E—C®(m, m+g,))ed (m)

71 r—1
= Y n{a®(m, m+n+r(m, m+n)+ r_)g’ij"(m, m+g,)-ej(m  (4.6)
n=1 i=0
with
rP(m, m+n) =C(m,m+n—1)r(m+n—1, m+n) (4.7)
and
ra(n+m—1, m+n) = Py(X, > W (m+n)—k) (4.8)

for n=1,...,9, and ke K(m+n—1).

Proof. The assumption DgZ, >0 provides E,N"(m, k) < oo for r
=1, 2,... Now we have

win,s)=n" for (n,s)ely xI

and
r—1
dn, s)=(n+g,y —n" = ¥ r_)gafnf,

=0

which is independent of s. Thus, by Theorem 2.1 and Remark 2.2, we obtain
r—1

d(m+g,) = dm) = T (7)a el m). (49)
Jj=0

Since the X,, X,, ... are assumed to be 1.1.d. random variables, we obtain for
vi(m), ke K(m) and n=1, ..., g,

viym= Y nci(m mtn)
k'ek(m+n)

= z n cy-(m, m+n—1)(aj- (m+n—1, m+n)+
keK(m+n—1)

+ry-(m+n—1, m+n)
= n'(af (m, m+n)+rj(m, m+n)) (4.10)
with
re-(m+n—1, m4n) = Py(k"+ Xy, > W (m+n)) = Po(X, > W (m+n)—k"),

so that (4.7) and (4.8) hold. Assertion (4.6) follows by Theorem 3.1, (4.9)
and (4.10). u

To illustrate this result we consider the computation of the first and second
moments of the sample number.
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For r =1 we obtain

(E—C®(m, m+g,))- & (m)
91
= Y. n(a’(m, m+n)+r®(m, m+n)+g,-C*(m, m+g,)-1

n=1
with 1 = {1}, k- For r =2 we obtain

(E—C’(m, m+gy))-e5(m) = 3, n*(a®(m, m+n)+r°(m, m+n))

n=1
+93 C*(m, m+g,) 1429, C°(m, m+g,) el (m).

This means that we may compute successively, beginning with the average
sample numbers e, ,(m) for ke K(m), the moments e, ,(m), e;,(m), ... for
ke K(m). In doing this, we must solve step by step systems of linear
equations.
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