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1. Introduction. Let ¥ denote the collection to which a compac-
Hausdorff continuum M belongs only if, for each compact Hausdorft
continuum XN, the Cartesian product M XN is finite-set-mutually apof
syndetic. The simple closed curve and certain other n-mutually aposyndetic
continua are known to be members of the collection ¥ ([9], p. 250). Also,
since the product of any three regular Hausdorff continua is finite-set-
-mutually aposyndetic ([9], p. 245), it follows that the product of any two
compact Hausdorff continua is a member of #. In this paper we show that
each finite-set-aposyndetic compact metric continuum except an arc
is an element of ¥, thus obtaining the above-mentioned results as corol-
laries (in the compact metric case). This is a natural extension of the known
result for » = 2 (mutual aposyndesis), that if M is any aposyndetic
compact metric continuum except an arc, then M x N is mutually aposyn-
detic for each continuum N ([9], p. 249).

The concepts of nm-aposyndesis [11], mutual a,posyndesm [3] and
n-mutual aposyndesis [9] have originated in an attempt to fill the gap
between aposyndesis and local connectedness in the spectrum of continua
([6], p. 144). Finite-set-mutual aposyndesis (n-mutual aposyndesis for
each n > 2) is the strongest of these, yet still weaker than local con-
nectedness, since the product of any three regular Hausdorff continua
(e.g., three copies of the pseudo-arc (see [1], p. 43) is finite-set-mutually
aposyndetic ([9], p. 245), but, clear]y, not locally connected.

The study of the various forms of aposyndesis in products of con-
tinua began when Jones ([5], p. 406) proved that the product of any two
regular Hausdorff continua is aposyndetic. Two decades later the study
of n-aposyndesis in products ([11], [2], and [9], p. 246) led to the result
that the product of any two regular Hausdorff continua is finite-set-apo-
syndetic. The investigation of mutual aposyndesis in products was begun
by Hagopian ([3], p. 616) and extended to m-mutual aposyndesis by the
author [9].
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2. Definitions. A continuum is a non-degenerate closed connected
set. The closure, interior and boundary of a set 4 will be denoted by
ClA,; A° and Bd 4, respectively. Given points # and y in the continuum
M, M is aposyndetic at ® with respect to y (a set A) if there exists a sub-
continuum H of M such that xe H° and y¢ H (respectively, HNA = O).
I, for each pair of distinct points z, ye M, M is aposyndetic at # with
respect to y, then we say that M is aposyndetic. For n > 1, M is n-apo-
syndetic if M is aposyndetic at each point x with respect to each n-point
set which does not contain x. If M is n-aposyndetic for each n > 1, then
we say that M is finite-set-aposyndetic. Given n > 2, if for each n-point
set A there exist n disjoint subcontinua each containing a point of A4 in
its interior, then M is n-mutually aposyndetic. If M is n-mutually aposyn-
detic for each » > 2, then M is finite-set-mutually aposyndetic.

‘The set D is said to separate a point  from a set Y if M — D = AUB
separated, (i. e., A and B being separated sets), with e A and Y < B.
The set D is said to cut  from Y if every subcontinuum of M intersecting
both {x} and Y intersects D also.

3. Results. The main tool in the proof of the theorem is an interesting
method for constructing subcontinua in products:

LeEMMA 1. Let n > 1 and suppose that

(1) Dyy ..., D, are disjoint closed subsets of a compact Hausdorff
continuum N ;

(2) Ayy ...y A,y are separated sets in N such that

n+1

_N—'LIJD,:Li)Ai;

(3) Bd4; < D,,BdA, ., < D, and, for 2<i<n,BdA; < D;,_,UD;;

4) T,,...,T, are subcontinua of a compact Hausdorff continuum M,

(B) @4y ..., Bpy, are points of M (not necessarily distinct) such that
{®;y ;1) = T; for each i;

(6) L denotes the set

[L:J (T; X-Di)] u[t:j({“’i} XAi)] .

Then

(i) L is a continuum, and

(ii) for k < m, if ze Ay and U is an open set such that x,eU < T, then
Lu(ClU x A,) is a continuum which contains the point (x,, 2) in ils interior.

Proof. It is clear that L is closed. To show that L is connected,
let f: L - N denote the projection map =, (from M XN to N) restricted
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to L. Since f~!(y) is connected for each y, the map f is monotone. Thus
L = f~Y(N) is a continuum.

Part (ii) of the conclusion easily follows, since the set in question
is, simply, a union (over Cl U) of continua similar to L.

LeEMMA 2. Suppose that n>1. Let M be an n-aposyndetic compact
Hawusdorff continuum and let D be an n-point subset of M. Then D cuts
a point x from a set Y if and only if D separates x from Y.

Proof. The sufficiency is trivial. To prove the necessity, suppose
that D cuts « from Y, where 2¢ Y and DN ({z}VY) = @. Let A denote
the set of all points ze¢ M such that there exists a subcontinuum 7' of M
for which {#,2} =T and TnD = @. Let B = M —(AuUD). These are
non-empty sets, since ze A and ¥ <« B. We shall show that 4 and B are
separated sets. Suppose that ze(ClA)NnB. Since M is n-aposyndetic,
there exists a subcontinuum H such that z¢ H° and HND = @. Since
2 is a limit point of A, there is a point ae A NH°. By the definition of A,
there is a subcontinuum 7' which contains {x, a} and is disjoint from D.
Then TUH is a subcontinuum which contains {z,2} and is disjoint
from D. Thus z must pe an element of A. But this contradicts the fact
that ze¢ B, and so (ClA)nB = @.

Now suppose that ze A NClB. There is a subcontinuum H such that
ze¢ H° and HND = @. Since 2z is a limit point of B, there exists a point
be H°NB. Since ze¢ A, there is a subcontinuum 7 containing {z, 2} and
disjoint from D. But then, since the continuum HUT contains {z, b}
and is disjoint from D, we infer that be A, contrary to the fact that
be B. Thus ANCIB = @.

Consequently, M — D is the union of the two separated sets 4 and B,
so D separates x from Y.

LeMmA 3. Suppose that n =1, M i8 an n-aposyndetic compact melric
continuum, D i8 a subcontinuum of M, and z,,...,x,e M —D such that,
Jor each j < m, {w; | © > j} does not cut x; from D. Let k be a positive integer
less than n, and let U be an open set containing {w; | ¢ > k}. Then there
ewists & point ze U such that {x; | ¢+ > k} does not cut z from D and, for
each j <k, {2}V {x; | i > j} does mot cut x; from D.

Proof. Let C be the component of M —{x; | ¢ > k} which contains
Dy {z,;}. By Lemma 2, no point of C is cut from D by {x; | ¢ > k}. Since
the boundary of M —{w; | ¢+ > k} is simply {#; | ¢ > k}, there is an integer
J > k such that x; is a limit point of C. Let 2, 2,, ... be a sequence of
points in CNU converging to x;. Suppose that, for each positive integer
m, 2, V{w; | © > k} cuts some point of {z; | ¢+ < k} from D. We can assume
that (choosing a subsequence, if necessary) there exists an integer v < k&
such that, for each m, z,U{z; | > k} cuts x, from D. But since
= lim z,,, we infer that {z; | i > k} cuts x, from D. Since » < k, we have
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a contradiction. Thus there exists an integer q such that z, U {x; | ¢ > &k}
cuts no point of {»; | i <k} from D. Finally, since z,¢ C, 2, is not cut
from D by {z; | ¢ > k}.

THEOREM. Let M be a finile-set-aposyndetic compact metric continuum.
Then M XN 148 finite-set-mutually aposyndetic for each compact Hausdorff
continuum N if and only if M is not an arc.

Proof. The necessity is clear, since the product of an arc with the
curve 8in(1/z) is not mutually aposyndetic ([8], p. 808). Thus we consider
the sufficiency.

Assume M is not an arc and let N be a compact Hausdorff continuum.
Suppose n > 2, k > 1, and let {z,, ..., 2,} be an n-point subset of M and
{¥1y -++» Yz} @ k-point subset of N. We shall exhibit nk disjoint continua,
each containing an («;, ¥;) in its interior.

In case M is a simple closed curve, the conclusion follows ([9],
P. 250). Thus we .assume that M is not a simple closed curve. By [10],
p. 455, M is either locally connected or a triod. In order to define the
sets @, P,, P,, P,, H,, ..., H,, we consider two cases.

Case 1. M is locally connected. ®

By [4], p. 429, M contains a simple triod T, = T'UT*UT? such
that each 7" is an arc and T'nT* = T'nT* = T*NT* = {g}. Let Q,, 8,
and TG (for ¢ =1, 2, 3) denote {g}, ¥ and T, respectively. For j>1,
assuming 7T, Q.,T,, and S, have already been defined for m < j, we
define T;, @;, Tj (¢ = 1,2, 3) and 8, as follows:

(1) let §; be an arc irreducible from x; to T;_, (if ;¢ T;_,, simply let
8; = {x;}),

(2) let T; =T;_,V8;,

(3) let @; be the g-component of @;_,US;,

(4) let T be the g-component of Tj_,u8;u@; for i =1, 2, 3.

By the local connectedness of M, there exist subcontinua H,, ..., H,
such that, for each j < n,

wjeH; c ‘Hj c M—UH‘
i
and, if #;¢ Q,, then H;nQ, = @. Finally, let T = T,u (U H}), @ be the
g-component of Q,u (U H,) and, for j =1,2,3, let P; be the g-com-
ponent of T{,u( \U H,). Then T is a triod, since

T=P1UP2UP3 and P10P2=P10P,=P20P3=P1ﬁP2f\P3 =Q.

Since each x;e T°, it suffices to prove that in 7 x N there exist:nk
disjoint subcontinua each containing an (w;, y;) in its interior. Thus we
can assume that M = T.
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Case 2. M is a triod.
There are subcontinua P,, P,, P, and @ such that

M =P,uP,UP, and P,nP, = P,nP, = P,nP, = P,AP,nP,= Q.

By the m-aposyndesis, for each j < n, there exists a subcontinuum
H; of M such that je H; and H; < M —{w;|% #j}. We can assume
that if ;¢ P;—@, then H; = P; for j <mand 7 < 3.

Thus in either of these two cases M is a triod. We shall show that
the z;’s can be relabelled so that, for each j < n, {z; | ¢ > j} does not cut
2; from @, and so that if ;¢ @ and x;¢ @, then ¢ < j. The latter is obvious.
To prove the former, let j be the smallest positive integer m for which
{#; | i > m} cuts z, from @, and suppose the x;’s have been relabelled
so that j is as large as possible, yet less than n. By Lemma 2, {x; | ¢ > j}
separates x; from @, and hence M —{wx;|%>j} = AUB, separated,
with 2;¢ A and @ < B. Since {r; | ¢ > j}U B has at most n —j components,
there exists a j' > j such that @; is a limit point of the component of B
containing @. Then, by interchanging x; and z;,, we have a relabelling
of the z;’s in which, for each m < j, {x; | + > m} does not cut z,, from Q.
This contradicts the original choice of j, and hence establishes the claim.
We can also assume that if x;¢Q, then {z; |7 > j and ;¢ Q} does not
cut ; from P, —@ in the continuum P, (this can be seen using an argument
similar to the preceding one).

From Lemma 3 it follows that there exist points 2;;, subcontinua T';
of P; (for 1 <4< 3 and 1 < j < nk) and subcontinua H,, of P, (for x,,¢ Q)
such that '

(1) if »,e P;—@Q, then x,¢ {2; | ) < nk};

(2) if »,, =2, and v > j, then z,¢ H,;

(3) Ty is irreducible about QU {z;} and Tyn {z;, | m > j} = O;

(4) for x,¢Q, H,, is irreducible about H,u{z;} for some j< nk,
and H, Nn({z, | v> j}u{z,|v>m and z,¢Q}) = O.

Let Uy, ..., U, be open sets in M such that, for j < n,

(i) @ U < Hy;

(ii) H;nCl1U; = O for ¢ +# j;

(iii) if ;¢ Q, then QNCIU; = O;

(iv) CLU;N {2 | v < 1y T # 24} = O

(v) it »; = 2;,, then C1U;NT,, = @ for each v< m;

(vi) if @;¢Q, then ClU;NnH,, =@ for each m < j such thatz, Q.

For », = 2y, H,, = H UT;. Thus, for &, = z;, we have

H,vQcH,, H,cP; and H,n{z,|v>j} =0.
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For j<k and 6 <n(k+1)—mny, let Ay, By, C; and E;,, be sub-
sets of N such that

(1) y;¢€ By,

(2) Dy, and Ej are closed sets,

(8) N—Dyy = A;V (B EyyL Cy), separated,

(4) N —E;, = C;U(4;Y DU By), separated,

(5) Ajo41 = Ajp and Oy, = Cyy,

(6) DyV By Ejpp = By g,

(7) (DyeV By Ey) N (DygL By Ey) = B for ¢ #3j.

For positive integers m,j, 0 and sequences a, f such that m <=
j<k,and 6, a, B, <n(k+1l)—n, (for v <k), let G(m,j, 0, a, B) denote
the set

[OL U,, X By Hy, X (DL Eyp) JU.
j-1
v [U Top, X (Dyi1,app Y Bra,) Y {225, } X (Ayi1,ah,,N Ova,,)] v

v [ ij-rlT” X (Dva,,UEv—l,av_l)u {zap,,} X (Avavn Cv—l.a,,_l)] v
V=

U [Tap, X Do) U {235, } X A1q 10 [T, X B, U {235} X O, 1.

Then there are nk disjoint subconrtmua. of M xN of the following
forms, each containing a point (=, y;) in its interior (they are sub-
continua by Lemma 1, and can be made disjoint by careful choices of
the z,’s and H,, (for x,¢Q) above, and of 6, « and # depending upon m
and j):

(a) for x,eP,—Q, G(m,j, a;, a, p);

(b) for ¢ = 2,3 and x,¢P;—Q,

G(m, j, 6, a, )V Ty, X(Dy, Y Dy By U By, ) U {2y,} X (Bjo;— Byo)

where 0 < g; and y < nk;
(c) for »,€Q,

G(m, j, 0, a, p)U T, X(DjajUE YU {21} X (B jaj —Bje)s

where 0 < a; and y <nk.

The existence of these nk disjoint continua completes the proof.
Fig. 1 illustrates the case where ¥ =2, » =6, with 2,2,1 and 1 s
in @, P,—@Q, P;—Q and P,—Q, respectively.

- COROLLARY. If L, M, N are compact metric continua, then L X M X N
18 finite-set-mutually aposyndetic.
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Proof. The 2-product L x M is finite-set-aposyndetic [2] yet, clearly,
not an arc. Hence the conclusion follows directly from the theorem.

QUESTION. In the hypothesis of the theorem, can “finite-set-apo-
syndetic” be replaced with “aposyndetic”? (P 926)
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