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1. Introduction

This paper has two purposes. The first one (§§2-3) is to give a brief account
of the origins and development of the Steenrod homology theories. We
discuss only ordinary homologies with constant coelficients and do not
consider the extraordinary theories like the Steenrod K-theory (for this topic
see [EH], [KKS] and [KS]). Moreover, we have in mind only homologies of
the “first kind” and disregard the ones of the *“second kind” (which
belong to proper homotopy theory). This means that for complexes we
always consider homologies based on finite chains and not the ones based on
infinite chains.

The second and main purpose of the paper (§§ 4-10) 1s to outline a new
approach to Steenrod homology, developed by the authors in a series of
recent papers [LM3-8], [MI1-3] and announced in [LMI1-2]. The special
feature of our homology is that it applies to arbitrary spaces and is invariant
with respect to strong shape. For pairs (X, 4), where X is paracompact and
A 1s closed, it satisfies all the Eilenberg—Steenrod axioms. Furthermore, on
polyhedra it agrees with the singular theory and on metric compacta it
agrees with the classical Steenrod theory [St].

We wish to express our thanks to several colleagues [rom whom we
obtained valuable information. In particular, this applies to N. A. Berikashsvili,
L. D. Mdzinarishvili, Z. R. Miminoshvili, S. V. Petkova, E. G. Sklyarenko and
T. Watanabe. Our thanks also go to the Banach Center, where (during the
Topology Semester 1984) many of our discusstons took place.

* This paper is in fina! form and no version of it will be submitted for publication
elsewhere.
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2. Motivation and the various constructions

Singular homology and cohomology are well-established theories, which
satisfy the seven Eilenberg-Steenrod axioms [ES]. However, they have
serious defects, when applied to spaces, which are not locally nice. In
particular, singular theory does not behave properly with respect to dimen-
sion, extension of maps (obstruction theory) and duality. To demostrate this,
it suffices to recall the well-known examples of metric compacta X, which
admit nontrivial singular homology groups in dimensions greater than
dim X [BM].

In order to correct these defects, Cech homology and cohomology were
introduced. The Cech homology group H,(X:G) (cohomology group
H?(X; G)) is defined as the inverse (direct) limit of singular homology groups
H,(N; G) (cohomology groups H?(N: G)) of the nerves N of normal open
coverings of the space X. An equivalent approach (sometimes called the
functional approach), instead of the nerves, uses the Vietoris complexes
associated with the coverings [Do]. For locally nice spaces, e.g., polyhedra or
ANR’s, Cech and singular theories coincide.

The Cech cohomology is also well-established. It satisfies the Eilenberg-
Steenrod axioms and does not have the above mentioned defects. In particu-
lar, concerning duality, one has the well-known Alexander—Pontryagin theo-
rem: For a compact subset X < §”,

(1) H?(X;G)~H, , (5"X;G), 0<p<n

(the groups H® and H, are reduced).

In distinction to cohomology, Cech homology does not satisfy the
exactness axiom [ES] and therefore is not a genuine homology theory.
Furthermore, using Cech homology (and singular cohomology), one cannot
dualize (1). For example, for the dyadic solenoid D = S* the (reduced) Cech
group Hy(D; Z) = 0. However, one can show that H*(S*\D; Z) is an un-
countable group and therefore H,(D: Z) # H*(S*\D: Z).

These were the reasons why N. E. Steenrod [St] introduced in 1940 a
new kind of homology group for metric compacta, here denoted by
H3(X: G) and called the Steenrod group. Instead of using the true cycles of
L. Vietoris, Steenrod used a modified version, called regular cycles. He then
proved his duality theorem for compacta X < §™:

(2) H3(X:G)~ H" » '(§"X;G), 0<p<n.

In 1951 K. A. Sitnikov [Sil, 2] defined the same groups in a somewhat
different way (for the equivalence of the two definitions see [Sk1]). Sitnikov
proved that (2) holds for arbitrary subsets X = S”, provided one uses on the
right side of (2) Cech cohomology and on the left side the group

(3) H%(X; G) = colim {H3(C; G)},
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where C ranges over all compact subsets of X. The groups H3 are often
called the Steenrod-Sitnikov groups.

Already in 1936 A. N. Kolmogorov [Ko] proposed a definition of a
Vietoris-type homology group (for locally compact spaces and compact
coefficients). His definition used (finite) partitions instead of coverings of the
space. Since partitions are disjoint coverings, they have the advantage that
projections from a finer to a coarser partition are unique. This fact has been
used later by many authors. In 1940 a Cech-type version of the Kolmogorov
group was defined by G. S. Cogoshvili [C1, 2]. In 1972 L. D. Mdzinarishvili
[Md2, 3] showed that the groups of Steenrod, Kolmogorov and Cogoshvili
(with arbitrary coefficients) coincide.

In the years that followed many different constructions of Steenrod-type
homology groups were produced. All yield exact homology theories on
various categories of spaces including metric compacta. In particular, we
mention here the constructions of A. Borel and J. C. Moore (locally compact
Hausdorfl spaces) [BoM], J. Milnor (compact Hausdorff spaces) [Mil], R.
Deheuvels (topological spaces) [D], L. D. Mdzinarishvili (compact HausdorfT
spaces) [Mdl1], E. G. Sklyarenko (metric spaces) [Skl], H. N. Inasaridze
(topological spaces) [1], V. I. Kuz’minov and 1. A. Svedov (topological
spaces) [KS1, 2]. For a detailed analysis of these constructions and their
comparison, we refer to [Sk1, 3]. On metric compacta all these constructions
yield theories, which are equivalent to the Steenrod theory. The only
exception i1s the Borel-Moore theory, which differs from the Steenrod theory
unless one assumes that G is finitely generated (see [Sk3] and [K]).

A more recent approach to Steenrod homology (for locally compact
Hausdorll spaces) is due to W. S. Massey [ Ma]. His construction depends on
an algebraic result of G. Nobeling [N]. In a special case this result asserts
that the group of all bounded integer valued functions on an arbitrary set is
a free Abelian group.

The appearance of shape theory gave a new impulse to Steenrod
homology. Here we mention the papers of D. A. Edwards and H. M.
Hastings [EH], F. W. Bauer [B1, 2], Z. R. Miminoshvili [Miml, 3], Yu. T.
Lisitsa [L1, 2], Yu. T. Lisitsa and S. Mardesi¢ [LM1, 6, 7, 8] and A. Koyama
[Koyl, 2]. Homology groups defined in all these papers agree with the
Steenrod groups on metric compacta. The only exceptions are the groups of
Bauer and Koyama, which agree with the Borel-Moore groups for pointed
1-movable compacta [K]. The authors’ construction is described in details in
8§ 4-7.

3. Axiomatic characterizations

In 1960 J. Milnor [Mil] gave the first axiomatic characterization of the
Steenrod groups. His theorem asserts that on compact metric pairs (for a
given group of coefficients G) there is a unique homology theory H, which
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satisfies the Eilenberg-Steenrod axioms and the two additional axioms:

(RH) If f:(X,A)—-(Y,B) is a vrelative homeomorphism, rhen
Je: H (X, A)— H_,(Y, B) is an isomorphism for all p.

(W) Ler (X;, *);ie N, be u sequence of metric compactu and let V(X;, *)
denote the wedge (cluster) of this sequence. Then the inclusions (X;, )
— V (X;, *), je N, induce an isomorphism Hp(V(X,-, *)) — [TH (X, %) for all p.

Another prool of Milnor’s uniqueness theorem was given by S. V.
Petkova [P].

Note that (RH) is equivalent to the requirement that the quotiént map
f: (X, A) = (X/A, %) induces an isomorphism of homologies. Also note that
(RH) implies the usual excision axiom.

Another axiomatic characterization of the Steenrod homology on com-
pact metric pairs is due to Sklyarenko [Sk 2]. He also has a characterization
theorem for the Steenrod-Sitnikov groups H3 on spaces whose compact
subsets are metrizable [Sk 2].

In 1980 N. A. Berikasvili [Bel, 2] obtained the first uniqueness theo-
rems for an exact homology theory H, on compact Hausdorff pairs (also see
[S1]). These theorems establish uniqueness of homology under the assump-
tion of the Eilenberg-Steenrod axioms and of some additional axioms.
Especially easy to state is Berikashvili’s theorem, which requires only one
additional axiom. This is the existence of a functorial exact sequence

4 0—Ext(HP*'(X, A); G)— H,(X, A)—» Hom(H?(X, 4); G) - 0.

The sequence (4) relates H, to the Cech cohomology groups. The
homologies of Cogoshvili [C2], Mdzinarishvili [Md1, 3], Inasaridze [I],
Kuz'minov-Svedov [KS1, 2], Massey [Ma] and the authors [LM6-8] satisfy
(4) on Hausdorfl compact pairs (for the last case see § 10).

Recently, S. A. Saneblidze [S2] has extended the uniqueness theorem of
Berika3vili to pairs (X, A), where X is paracompact and 4 < X is closed.

Inasaridze and Mdzinarishvili [IM], | Md4] have proved another umque-
ness theorem for compact Hausdorfl pairs. Their only additional axiom is the
axiom of partial continuity. It requires the existence of a functorial exact

sequence
(5) 0—lim' {H,,((K;, L,); G)} - H (X, A)— H,(X, A; G) -0,

where |(K;, L;)} 1s any inverse system of finite polyhedral pairs with limit
(X, A). The sequence (5) relates H, to the Cech homology. For many of the
constructions mentioned above, (5) 1s known to hold.

4. Outline of the authors’ construction of H;

In this section we describe the main steps of our construction of the Steenrod
homology groups H5 for arbitrary spaces. Some of the needed tools are
discussed in more details in § 5-8.



STEENROD HOMOLOGY 333

The first such tool is the coherent prohomotopy category CPHTop (and
CPHTop?), which the authors have defined and studied in [LM1-5]. The
objects of CPHTop (CPHTop?) are inverse systems of spaces X (of pairs of
spaces (X, A)). The morphisms of these categories, as well as a functor C from
pro-Top (pro-Top?) to CPHTop (CPHTop?) are described in § 5.

The second tool are homology functors H‘;’; = H3(-; G) from CPHTop
(CPHTop?) to the category of abelian groups Ab, and natural homomor-
phisms & HS, (X, A: G)— H3(A, G) (see § 7).

The next ingredient needed is the notion of an ANR-resolution of a
space X, introduced by S. Mardesic in [M1] (see § 6). It consists of an
inverse system X = (X, p,u» A) of ANR’s X, and maps p;; and of a
morphism of pro-Top p =(p;): X — X [MS], satisfying certain additional
conditions. They insure that the X’ s give a sufficiently good approximation
of X.

The crucial property of ANR-resolutions, fundamental to our construc-
tion of homology, is expressed by this factorization theorem, proved in
[LM3]:

If p: X — X is a resolution, Y is an inverse system of ANR’s and f: X
— Y is a morphism of CPHTop, then there is a unique morphism of
CPHTop ¢g: X — Y such that gC(p) = f. One has analogous notions and
results also for pairs of spaces [LMS].

The factorization theorem has as its immediate consequence the follow-
ing fact: Il p: X — X and p': X — X' are two ANR-resolutions of the same
space X, then there is a unique isomorphism of CPHTop i: X — X' such
that iC(p) = C(p). Clearly, i induces a (canonical) isomorphism i_: Hf,(-l(; G}
— H3(X': G). Since every space X admits an ANR-resolution p: X
— X [M1], one can define the Steenrod homology group H3(X: G) of the
space X as the group X3(X; G).

Moreover, every map f: X — Y induces a homomorphism f,,: H3(X; G)
- Hf,(Y: G), given by the homomorphism g, : H,s,(X; G) — H3(Y; G), where
p. X — X, ¢q: Y=Y are ANR-resolutions and g: X — Y is the only mor-
phism of CPHTop lor which gC (p) = C{gf). It is readily seen that one obtains
in this way a functor H5(': G): Top— Ab. All this, repeated for pairs of
spaces, yields a functor Hj('; G): Top®> — Ab [M2, LMg].

One also obtains natural homomorphisms & H).,(X, 4; G)
— H}(A: G), whenever A = X is normally embedded in X (i.e, when every
normal covering ¥~ of A admits a normal covering # of X such that #|A4
refines ¥ ). The condition of A being normally embedded in X is necessary
and sufficient in order that the restriction p,: A — A of an ANR-resoiution
p: (X, A)— (X, A) be itself an ANR-resolution [M2]. Note that in a para-
compact space X every closed subset A is normally embedded.

Our definition of homology groups is not canonical, because it involves
a choice of ANR-resolutions. We think that this i1s not a drawback, but
rather an advantage, because in every case one can choose a suitable
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resolution. E.g., il (X, A) is an ANR-pair (i.e, X and 4 are ANR’s and A4 is
closed), then the rudimentary system and the identity map 1 4, define a
resolution of (X, A). Using this resolution, it is easy to see that H3(X, 4; G)
coincides with the singular group H,(X, 4; G) [LM6].

We have proved for rather general categories of pairs of spaces (X, A)
(in particular, for X paracompact and A closed) that the functors Hj and the
boundary homomorphisms give a homology theory, which satisfies all the
Eilenberg-Steenrod axioms and has additional desirable properties men-
tioned in § 1. This is discussed in §§ 8-10.

5. Coherent prohomotopy CPHTop

We consider only inverse systems X = (X, pii, 4) in Top indexed by
directed cofinite sets A4 (i.e, every element has finitely many predecessors). In
order to describe morphisms X — Y=(Y,, q,,-, M), we consider [or each
n>=0 the set M" of all increasing sequences in M, p =iy, ..., iy
o <...< u,. A coherent map f: X — Y consists of an increasing function
@: M — A and of maps f,: A" xX — Y,, such that

elup)
q#oul ‘/‘"l""‘n(t’ x)a j = 03
(6) fg((};ta x) = qu""‘j—l“j'f‘l"'un(t, x)! 0 <j < n!

-/1‘10---#"— 1 (t, Poiuy, - 1oty (x), Jj=n,
(7) Ju03 00 = fugoyong > ¥), O <ms

here 7. 4" ! A", ¢} A""! — A" are the usual face and degeneracy oper-
ators. Two coherent maps f, /' are coherently homotopic provided there exists
a coherent map F: I xX — Y, given by @ and F,, such that & > ¢, ¢" and

(8) Fy(rv 01 x) = j;l(t’ ptp(,un)ﬂll")(x))‘
(9) FLA (t’ 1, x) = fur(r’ pw’(u,,)d?(u,,)(x))'

Coherent homotopy is an equivalence relation.
In order to define the composition h=gf of f* X - Y and g: Y- 2
=(Z,, uyvy N), one decomposes 4" into subpolyhedra P!=x A" xA""",

0<i<n where r =(ty, ..., t,)e P; provided
1

One also considers maps a: P"— A"~ B P! — A', given by

(11) al () =(#, 2604, ..., 2t,),  Br) =20, ..., 2ti_y, #),
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where # stands for 1 minus the sum of the remaining terms. We now put
¥=oy: N—A and define h,: 4" x X, = Z,,. v=1(vo,.... v, JeN", by

(12) h}'(ta X) = g"O""'i (ﬁ?(”af\b(vi)...np(v") (ai"(t)a X)), e Pln

The identity chain map X — X is given by ¢ =1, and by f,,., (1, x)
= Pjgi, (X} The morphisms of CPHTop are defined as coherent homotopy
classes of coherent maps and their composition is defined by composing
representatives [LM3]. In an analogous way we defined CPHTop? [LMS5].

A morphism of pro-Top f: X — Y is given by an increasing function
@: M — A and by maps f,: X —Y,, such that

o(ug)
(13) j;uo Powgretuy = Quon, ful* Ho < My
(see [MS]). One obtains a coherent map X — Y by putting
(14} fu (r! x) = fuo Pw(uo)w(un)(x)’ HeE M.

This defines the functor C: pro-Top— CPHTop mentioned in §4 (see
[LM 4)).

A construction of coherent prohomotopy similar to our construction
was considered by T. Porter [Po2], who based his work on [V]. Z. R.
Miminoshvili has discovered independently the category CPHTop [Mim3].
An approximation to CPHTop, involving only sequences (uq, ..., g,} with
0 < n <1, appeared in [B1], [Mim2] and [Lil]. We also mention an entirely
different construction, which however serves the same purpose. This is the
construction of Ho(pro-Top), introduced by Edwards and Hastings [EH].
We believe that the categories Ho(pro-Top) and CPHTop are isomorphic.

6. Homology H; on CPHTop

Following [LM6-8], we now describe the homology functors HS (-, G) on
CPHTop and CPHTop?. We first associate with every inverse system
X =(X,, pss» A) of topological spaces a chain complex C, (X ; G). By defini-
tion, C,(X;G)=0 for p <0. For p>=0 a strong p-chain x is a function
which assigns to every 4 =(4q, ..., 4,)e A", 4, < ... < 4,, =0, a singular
(p+n)-chain x; of X with coefficients in G. By definition, (x+ x), = x; +x].
The boundary operator d: C,.;(X:G)— C,(X:G), p=0, is defined by -

(15) (— D)*(dx); = 8(x;) —(5x);,
where oxeC,(X; G) 1s given by

n—1
(16)  (0X)ag..a, = Piga, # Xayoa, T 2 (= W Xaga; iy ety T (=D X000,
j=1
(if n =0, then (15) has only the first term). By definition, Hf;(X; G) 1s the
homology (in the algebraic sense) of the chain complex C,(X; G).
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In the case of pairs (X, A), C.(A; G) is a subcomplex of C ,(X; G) and
we define C,(X, A: G) as the quotient C,(X; G)/C ,(A4; G). By definition,
HS(X, A: G) is the homology of the chain complex C,(X, A; G). Clearly,
there is a long exact sequence

(17) ... = HS, ((4; G) = H3, [ (X: G)— HS, (X, A; G) > H3(A: G) > ...

o 1n formula (16} 1s the coboundary operator, which was used by J. E.
Roos in [R] to give explicit formulas for the higher derived limits lim’ (also
see [D]). In [Po 1], T. Porter has associated with every inverse system C of
chain complexes a chain complex holimC. If one takes for C the inverse
system (C(X;; G), pys, A) of singular chain complexes of X, then holim C is
isomorphic with our chain complex C, (X G). The only apparent dilference
consists in the different choice of the signs. In order to obtain the same signs,

one must replace our boundary operator d by a new boundary operator d’,
given by d: C,, (H:G)— C,(H: G)

(15) (d"x); = C(x)+(= 1?11 (dx),.

However, the new chain complex C’,, which one then obtains, is isomorphic
to our complex C, = C,(X; G). Indeed, an isomorphism h: C,— C'y is
obtained by putting

(18) (hx), =(=D"x;, xeC,(X;G), ieA".

This i1s so because d'/i = dh. Miminoshvili in his recent work [Mim 3] also
uses the complex C',.

Iff: X— Yis a coherent map, given by ¢: M — A and f,: A" % X )
— Y,,, then we associate with f a chain mapping f,: C,(X; G)— C,(Y: G),
given by

(19) (f « x),u = Z .I;zo..‘,u,-#(dl XX¢(,L¢,-)...¢(#"))-

i=0
It was proved in [LM 7] that coherently homotopic coherent maps induce
chain homotopic chain maps. Therefore, morphisms of CPHTopf: X - Y
induce homomorphisms f,: H3(X; G)— H)(Y; G). Similarly, [: (X, A)
— (Y, B) induces a chain mapping f,: C.(X, A; G)— C, (Y, B; G) and one
obtains homomorphisms f,: H3(X, A; G)— H3(Y, B; G).

7. Resolutions of spaces

A morphism p: X — X =(X,, p;,-, A) of pro-Top consists of maps p,: X
— X; such that p;; p,  =p;, A <A Such a morphism p is a resolution
provided the following two conditions hold for any ANR P and any open
covering ¥ of P [M1], [MS]:
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(R1) Every map f: X — P admits a Ae A and a map g: X; — P such that
the maps [ and gp, are ¥ -near.

(R2) There exists an open covering 1" of P such that whenever ic A and
maps ¢, g': X, — P have the property that gp, and ¢'p, are ¥"-near maps,
then there exists a A' = A such that gp,;. and ¢'p,, are ¥ -near maps.

These conditions modify the well-known conditions of K. Morita (see
[MS]). If X and all X, are compact, then p is a resolution if and only if p is
the inverse hmit of X. If X is paracompact and p: X — X is an ANR-
resolution, then p is an inverse limit [ MS]. Therefore, one can view resolu-
tions as special types of inverse limits. The notion of resolution makes sense
and its basic properties remain valid also in the case of pairs of spaces [MS],
[M2). For further information on resolutions also see [M3], [WI1] and
[Mo].

8. Strong shape invariance

The strong shape category SSh was defined and studied by the authors in
[LM1-5]. The objects of SSh are all topological spaces. A morphism X — Y
is a class of equivalent triples (p, q, g), where p: X - X and q: Y- Y are
ANR-resolutions and g: X — Y is a morphism of CPHTop. Another such
triple (¢, ¢', ') is considered equivalent to (p, ¢, g) provided g'i = jg, where
i: X—= X, j: Y=Y, are the canonical isomorphisms described in § 4.

We now define the strong shape functor §,: HTop — SSh from the
homotopy category of spaces to the strong shape category. If f: X > Y 1sa
map and p: X —» X, q: Y— Y are ANR-resolutions, then the factorization
theorem (§ 4) yields a unique morphism of CPHTop g: X — Y such that
gC(p) = C(qf). We then associate with the homotopy class of f the strong
shape morphism, given by the triple (p, q, g) (see [LM3]).

The construction can be repeated for pairs and one obtains a category
SSh? and a functor §,: HTop? — SSh? [LMS5]. For other work on strong
shape see [MS] and [LM3]. We mention here only the approach of F. W.
Cathey and J. Segal [CS], who have defined a strong shape category using
resolutions and Ho(pro-Top).

We now generalize the definition of the homology functor H3: Top
— Ab, given in § 4, to obtain a functor Hj: SSh— Ab. If a strong shape
morphism X — Y is given by a triple (p, g, g), where g: X — Y, then the
induced homomorphisin: Hy(X; G)— Hﬁ(Y; G) is defined as the homomor-
phism g,: H3(X; G)— H3(Y; G).

If one composes the homotopy functor H: Top— HTop with
S,: HTop— SSh and then with H;: SSh— Ab, one obtains the functor
Hj: Top— Ab of §4. This shows that our homology is an invariant of
strong shape and a fortiori satisfies the homotopy axiom.

22 — Banach Center Publications
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All this also holds for the strong shape category of pairs SSh%. In
particular, il a pair (X, 4) has the homotopy type of an ANR-pair (eg., if
(X, A) is a pair of CW-complexes), then Hf,(X, A; G) coincides with the
singular group.

9. Exactness and excision of H}

If (X, A) is a pair of spaces such that 4 < X is normally embedded in X
(e.g., if X is paracompact and A is closed), then the following sequence is
well-defined and exact

(20) ...~ HS,1(4; G)— H34, (X; G)— H3. (X, 4; G) 5 H3(4;G)— ...

This is an immediate consequence of our definitions, (17) and of the facts
that (X, A) admits an ANR-resolution p: (X, A)— (X, A) and that the
restriction p,: A— A is also an ANR-resolution (because 4 i1s normally
embedded) [M2].

We will now show that for arbitrary pairs (X, A) one cannot have an
exact sequence like (20). We first note that the inclusion i: (X, A) — (X, A) is
always a strong shape equivalence. Indeed, if p: (X, 4) = (X, A) is an ANR-
resolution, then it is an immediate consequence of (R1), (R2) that also
p: (X, A)— (X, A) is a resolution. Here p consists of the same maps p,,
JeA, as p. The only difference is that we now view p, as maps (X, A)
—(X,;. A,) (recall that A4, is closed). It follows from [LM5], Lemma 3, that
C(p)C (i) = x4 C(p). Therefore, S;(i) 1s given by the triple (p, p, 1y, 4)-
Clearly, the triple (p, p, 1,4, 4) represents a strong shape morphism (X, A)
— (X, A), which is inverse to the morphism §,(i). Since H3(-; G) is an
invariant of strong shape (§ 8), we conclude that the inclusion i: (X, A)
— (X, A) always induces an isomorphism H3(X, 4; G)— H3(X, 4, G).

In order to obtain a specific counter-example to (20) we put X = B"*1,
nz1, A=S"{x!, where §"=BdB"*' and « is a point of $”. Then A = R"
and 4 = S". Note that

Hi (X, A)x Ho (X, A) 2 Ho (B, S = Z.

Since H3,,(X) =0, H3(A) =0, this contradicts (20).

(X. A) and (X, A) also have the same ordinary shape [LM3, 5] and thus
pro-H, (X, A; G) = pro-H,(X, A; G) (see [MS]). Therefore, in the above ex-
ample pro-H,, (X, A~ Z, pro-H,.,(X) =0, pro-H,(A) =0. This shows
that for arbitrary pairs (X, A) one cannot have an exact sequence of
homology pro-groups.

Our homology H3 satisfies the excision axiom in the following form.

Let (X, A) be a pair consisting of a normal space X and of a closed
subset A € X. Let U € X be an open set such that U < 4 and let X\U be
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normally embedded in X. Then the inclusion i: (X\U, A\U) — (X, A) induces
an isomorphism of groups

(21) i,: HS(X\U, A\U; G)— H3(X, 4; G).

In particular, (21) is an isomorphism if X is paracompact, A < X 1s
closed, U € X is open and U < A.

In order to prove this excision theorem, we put A" = X\U and we
choose an ANR-resolution of triads p: (X, 4, A) — (X, A, A’), such that X,
=IntA,ulnt A}, AeA [M3]. The inclusions i,: (A}, A, A}))—(X;, A})
define a morphism of CPHTop? j: (X, A)— (A, An A’), where (4, An A"
=((A}, A, A}, pi;» A). The morphisms py 4 (X, A) = (X, A) Py ana’
(A", AnA)— (A", An A’) of pro-Top? satisfy C(px. 4i) =JC (P4’ . a~a)> because
p;i = p,i;. We now conclude (by [M3], Corollaries 1, 2) that py , and p4y 4.4’
are  ANR-resolutions. Therefore, i,: H3(A', AnA’;G)— H3(X, A; G)
is given by j,: H3(4, AnA’; G)— H}(X, A: G). However, by [LM8], j, is an
isomorphism.

The following example shows that excision does not hold if one only
requires that U is a subset of a closed set A. Indeed, let X be the wedge
S! v §' and let U = A be the first copy of S'. Then (X\U, A\U) = (R, @) so
that H(X\U, A\U) = 0. However, H} (X, A} = Z.

10. Additional properties of HS

On compact metric spaces our homology H% coincides with the Steenrod
homology of [St]. In order to prove this, it suffices to show that the
additional Milnor axioms (RH) and (W) are satisfied.

We first give a proof of (RH) for compact metric pairs (X, 4). Let cA4
=AxI/Ax1 denote the cone over A. The quotient map f: (X, A)
—(X/A, %) is the composition of the inclusion i: (X, 4)— (X UcA, cA) and
of the quotient map g¢g: (X ucA, cA) — (X/A, =), which collapses cA to a
point. It therefore sulfices to prove that the induced homomorphisms of
homology groups i, and g, are isomorphisms. The assertion for i, follows by
excising U = cA\(4 x0). In order to see that also g, is an isomorphism, it
suffices to show that g: X ucA — X/A is a strong shape equivalence. Indeed,
this assertion implies that g,: H3(X uc4; G)— H3(X/A, *; G) is an iso-
morphism. The analogous statement for the relative groups follows then by
exactness and naturality, using the five lemma. Now, it is well known that
the collapsing of a compact subset of trivial shape induces an isomorphism
of ordinary shape (see, e.g., [MS, III, 1.3]). Therefore, g: X ucA - X/A is a
hereditary shape equivalence. However, hereditary shape equivalences are
strong shape equivalences (see, e.g. [MS, III. 10, Theorem 4]). Note that for
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compact metric spaces strong shape in.our sense and in the sense of [MS,
1L, 10] coincide as it was shown in [LMd].

The wedge axiom for our homology has been verified directly by
T. Watanabe [W2]. He actually showed a more general result. In particular,
the wedge axiom holds for any collection of compact Hausdorfl spaces.

Alternate proofs of (RH) and (W) can be obtained by first verifying (5)
for compact metric pairs and inverse sequences of polyhedra. This is not
difficult because one can use a simplified version of homology. It is a
homology of order m = 1 in the sense that it involves only single indexes 4,
and pairs of indexes (4,, 4,) [LM6]. Now one can use the work of L. D.
Mdzinarishvili [MdS5] to derive (RH) and (W) from (95).

Z. R. Miminoshvili has informed the authors that for compact Hausdorff
pairs H3 satisfies (4) and therefore, by [Bel, S1], is the unique Steenrod
homology theory on the category of compact Hausdorff pairs. The main step
in his proof consists in showing that also for compact Hausdorfl spaces the
homology HS5 agrees with a simpler homology H) of order 1. More
generally, for every m > 0, one can define a homology H7 of order m (see
(L3], [Mi3]). It is based on p-chains, which consist of a collectlon of singular
(p+n)-chains x;eC,_ . {(X; 1 G), A=(4g, ..., A)e A", where one now has
0 < n < m. Then, for compact Hausdorff spaces,

H)(X:G)x HI{(X:G) ~...x H}(X; G).

Beyond the compact case our homology does not coincide with the
unique theory to which Saneblidze refers in [S2]. This i1s so because already
on infinite polyhedra (4) can fail. Indeed, if X is the wedge of a sequence of
projective planes endowed with the CW-topology, then H?*(X)=
H*(X)xMNZ, and H,(X,Z,) )~ ®Z,. Therefore, (4) would imply
Hom(l1Z,, Z,) ~ ® Z,. However, if one views I1Z, as a vector space over
the field Z,, then this is an infinite-dimensional vector space. Therefore, the
set of homomorphisms Hom(/1Z,, Z,) is uncountable. On the other hand,
@ Z, 1s a countable set. More work remains to be done to fully understand
the behaviour of the groups H'ﬁ(X; G) on noncompact spaces X.
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