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1. Introduction

We study the gradient method (GM) which wag first described by Cauchy
in 1847. This method belongs to the class of descent methods (DM’s)
for the determination of the solution #:= A~'b of a linear system Ax = b,
where 4 i3 symmetric and positive definite. Descent methods can be
characterized as follows. Given an objective function F(z), one starts
at an initial point, determines, according to a fixed rule, a direction of
movement and then moves in that direction to the local minimum of
the objective function. At the new point a new direction of movement
i determined and the process is repeated. The objective function #
must have the following three important properties: F(z) = 0, F(z) > 0
if # # 2z and F is convex. In the case of the GM the objective function
is F(x):= (¢ —w, A(5—x)), expressed in ferms of the Buclidean inner
product. Obviously, a good choice for moving towards @ is to move in
the (opposite) direction of the gradient vector of the objective function
since this is the direction of steepest descent of the objective funection.
The gradient vector FF(z) of the objective function F(x) = (#—ua,
A (% —m)) at point x; satisties

(1) VE(z) = —24(b—a) = —2(b—Axz).

The GM is based on this idea; as search direction in the step from ¢ to
4+1 one chooses the direction of the residual vector v;:= b—Am,.
The GM is of special importance from a theoretical point of view,
since it is one of the simplest nonlinear methods for which a satisfactory
analysis of the convergence behavior exists in the case of exact compu-
tations. Many more advanced methods, like, e.g., the conjugate gradient
method, are often motivated by an attempt to modify the basic GM
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in guch a way that the new method will have superior convergence prop-
erties.

As far a8 we know, WoZniakowski [5] is until now the enly author
who gave a complete round-off error analysis for the GM in order to
obtain assertions on the numerical behavior and the attainable accuracy
of the GM. Our results derived in this paper are superior to those of Woz-
niakowski in two aspects. Firstly, we prove step-wise linear convergence
of the objective function whereas Wozniakowski gives a result in terms
of the limes superior. Secondly, we prove good-behavior, whereas Woz-
niakowski’s result does not even imply numerical stability (for definitions
see Subsection 3.1).

Given a definite system Az = b, then the GM is defined by the
following statements.

Gradient Method (GM)
Choose an initial point g3
Yo i= b—Amo; 3= 0;

while 7, # 0 do

begin

(2) a; 1= (g, 1) [(re, Ary);

(3) Byyy P = O+ a3

(4) Tip1 1= b0 —A%,;
t:=1¢+1

end.

The inner products in the statement for a; are Fuclidean inner prod-
ucts.

‘We summarize the contents of the paper. In Section 2 we deduce
some well-known elementary algebraic properties of the GM concerning
speed of convergence of the matural error ||AV?(#—ux;)| and of the error
|#—w,|| if no round-off occurs. The main reason for deducing these prop-
erties here is that they are basic for studying the method in the presence
of round-off. ITn Subsection 3.1 we present some preliminaries, basic
tools and notions needed for our round-off error analysis in the next two
subsections. In Subsection 3.2 we derive our main theorems. They contain
the numerical analogues of the algebraic properties in Section 2 for the
perturbed GM. In Subsection 3.3 we show how this leads to assertions
on speed of convergence and attainable accuracy. Finally, in Section 4
we make some final remarks.

In this paper (-, ‘) stands for the Euclidean inner product, {-| in
connection with a vector stands for the Euclidean norm and |-| in con-
nection with a matrix stands for the spectral norm. » denotes the con-
dition number ||A||||A7Y|| of the matrix 4. The matrices A2, A~ are
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the uniquely determined symmetric positive definite matrices satisfying
AW AY? = 4 and A7V = (4Y%)~!, Note that the following relations hold:
(€, Aw) = (4'Fx, AVg) = |[Ag) and (r, A~'2) = (A Pp, A4~Vigp)
= [lA7 2|2,

2. The exact gradient method

In this section we consider the GM iterations if no round-off occurs.
A well-known elementary result is given in the following theorem.

TEROREM 1. At each siep the exact G M minimiges the objective funotion
(6) F(z) = (@ ~a), A(# —a)) = [A"(@—~z)|?
along the line & = w;,+ar; and

”A-l'f2 (5?“ - wi+1)”2 _

- —
(6) ”A1/2 (é _wi)llg - 1 ?‘l’
where

e
“ T A AT

Proof. - Along the line # = x;+4ar; we have
(8) F(z) = ”Al’z(‘i’—a?i‘"C'”'ar)"2
= F(2,)—2a (4 (5—a,), r)+ a2 Ay )2

A |2 A |2

= F(x;)+ A2, (a - (

which is minimal for

_(A(‘%—mt);"'i) _{rgyr)

9 = = = a,
® é AV |2 (79 A7) ’

and the minimal value F(z;,+a,) = AV (3 —2;,,)|? satisties
(10) AV (& — @y )|IP = A (@ —@p)[12 — (7, 7)) 1|42,

which proves (6) and (7). m

Since the GM minimizes |4 (& — ;)| at each step it seems natural
to measure the error this way instead of measuring it by | —a,|| or |4 (® —
—a,)|l. Therefore, [ —,|| is called the error and [|4A*(& — ;)| is called
the natural error. In order to obtain, from (6), an upper bound for the
decrement of the natural error at each step we use the Kantorovich in-
equality which states that if 4 is symmetric and positive definite, then
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for any vector # one has
(2, )2 4

(1) (w, Az)(x, A7 z) > (24+1)2°

Theleft-hand side of (11) can be written in terms of norms as || /(]|4"2 x| x
X A~ z|)? and consequently it follows from (6) and (7) that

2) AP G—a ) 4w _(x—l)z_

ARG~ P~ (412 \xt1

Hence the natural error converges step-wise linearly to zero with a ratio
no greater than (x—1)/(»-+1).

Another well-known convergence property of the exact GM reads
as follows.

THEEOREM 2. At each step of the exaot GM the ervor |[&—ux,|| decreases
and

1@ — 25,1112
(13) Tu,-v—*‘;r—lnr:l‘—%@—ei);
Wy
where
(14) e R St A

0,:=
* A2 )12 LA g2

and g, :=v;, with y; defined by (7).
Proof. If in the equality #—u=, , = &—2;—a,r; we take squared
norms at both sides we obtain

(15) ”"‘a_'m'Hl”z = ||9}—m¢|12—2“i("?0—99u i)+ ai(rg, 75).

Since a; = |r;2/||A¥*»,* and & —z, = A~'r, we obtain (13) after some
rearrangements. m

Since the Euclidean norm and the spectral norm are compatible
we have ¢, > »~! and, using the Schwarz inequality, o; < 1. Hence from
(13) and (14) it follows that
(16) Jo—wpalt 1L

o~z %

which implies the step-wise linear convergence to zero of the error with
a ratio no greater than (1—1/x)Y2.
3. The perturbed gradient method

In this section we consider the GM if round-off occurs, due to the use of
floating point arithmetic,



ROUND-OFF ERROR ANATLYSIS OF THI GRADIENT METHOD 593

3.1. Notations, definitions and conventions

Rounding errors. We assume that the GM-algorithm given in Section 1
is performed on a floating point machine with relative precision ¢ and
that adding or subtracting two machine vectors # and 4 and multiplying
a machine vector # and a machine number a yield computed vectors
fl(x+vy) and fl(ax) satisfying

filzty) = I+F)(exy), IF<s,
fl(ax) = (L 4F,)(ax), sl <

Note that (17) is fulfilled in all practical implementations where F, and
F, are diagonal matrices. '
Furthermore, we assume that the matrix by vector product calcu-
lation of a machine matrix A and a machine vector # and the inner product
calculation of two machine vectors # and y satisfy the relations

fl(dz) = (A +B)a, 1B < eCyll4l,
(@, 9) = (I+D)z,3), ID| <0,

where C; and C, are constants depending only on # and e Throughout
this paper C, and C, stand for the upper bounds of the round-off matrices
F and D according to (18), For the standard algorithms F is a full matrix
and D is a diagonal matrix whereas 0, is of order n** and C, is of order #.
In our round-off error analysis we neglect the possibility of underflow
and overflow.

o-notation. In order to simplify the expressions arising from the
application of the basic relations (17) and (18) we use a kind of Bachmann-
Landau o-notation to be able to neglect terms of order ¢ in the presence
of a term of order ¢ with a minimal loss of relevant information. For
instance, we write

(19) e(L4+0,x+260, %% = e(1+Cyx+0), [e0yx42—0],

(17)

E.

(18) '

where the expression between sguare brackets indicates that o stands
for a quantity which is smaller than a constant times eC,2"* The formal
definition of the o-symbol reads as follows.

DerFINITION 1. Let f and ¢ be two scalar functions defined on a seb
R < R' (I1eN). Then

(20) f@) =0, [g(z)—>0]
Imeans
(21) JE>036>0: |g(z)| < d=>|f(a)| < Klg(z)|. w

The constants K and 8 are supposed to be numerical constants not
depending on &, %, C; and C,. The expression between square brackets is

38 — Benach Center t. XIII
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referred to as the restriction under which (20) holds. The relation (20)
only supplies information to those & for which g(z) is small. We remark
that we do not define the meaning of o itself; as it is often done in asymp-
totic analysis (cf. De Bruijn [2]), we only give the interpretation of some
complete formulas. For instance, if we write for two scalar functions f,
and f,, with f,(z) > 0 (v € R),

(22) filr) < fol@)(1+0), [9(=)>0],

then we mean that there exists a scalar function f, defined on D such
that

(23) L@ 1@ ey @weD) and  fi(@) = o, [g(@)>0].

fa()

If the o-symbol appears in some compound formula or at both sides of
an equality or inequality relation, then the o-symbol hag to be interpreted
as a class of functions. For instance, if we write f,(2)0 = o, [g(z)—=0],
then this has to be interpreted as follows. For any function f, for which
F2(2) = o, [g(2)—0] one also has f,(®)f:(2) = o, [g(2)—0]. Some rather
trivial but often used properties are

9(@) = o0, (g (2)—0],
040 =0, [g(z)-0],
B8 oo =o, (g (2)—>0],
40y =140, [g{@)—0].

These properties indicate that the o-symbol is easy to handle and that
is our main reason for using it. WoZniakowski [5] uses the relation = in
order to simplify error estimates. Instead of (19) he would write

e(L+0,%+2e0, %) = e(L+Cyx%).

However, using this notation without mentioning the underlying restriction
one looses significant information concerning uniformity with respect to
the relevant parameters as we will sec from the analysis in Subsection 3.2.
A disadvantage of the use of o-symbols (and also of the use of the rela-
tion =) is that we do not obtain explicit numerical constants in error
estimates. However, in all cases where we derive formulag with o-symbols
it is possible to retrace the proof, replacing all o-symbols by estimates
involving explicit numerical constants. That is, at every stage of the
proof we are able to indicate definite numbers, where the asymptotic
estimates only state the existence of such numbers (cf. Subsection 3.3).
However, these definite numbers are rather arbitrary whereas the coeffi-
cients in the relations involving o- and =-symbols are more or less
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uniquely determined (comparel +e<<(1— &) <L+ (1 +1/3)e, [0 < e < 1 /4]
and (1—&) ' =1+ (1+o0)e, [e —0]).

Good-behavior. To denote the quality of the approximate solution
computed by an iterative method with floating point arithmetic we use
the concept of good-behavior (cf. e.g. WoZniakowski [5]).

DEFINITION 2. An iterative method for solving a linear system Ax =&
is said to be well-behaved (or, equivalently, has good-behavior) if for all
initial points x, the computed sequence {wi} contains at least one ap-
proximation #; such that

(25) (A+0d)m; =b, |84[<gellAll

for some matrix 4, where g depends only on the dimension of the
system. m

In view of relation (25), good-behavior means that the computed
approximate solution «; is the exact solution of a slightly perturbed
gystem. From a practical point of view, this solution #; is satisfactory
since the clements of the machine matrix A itself in general cannot be
a better representation of the elements of the original matrix than with
relative precision e. Therefore, the corresponding error in z; is inherent
for the system Az = b. It is easy to verify that (25) is equivalent to the
assertion that the residual |4 (2 —m,)] satisfies

(26) M (2 — )| < ge lAl ]l

It can also easily be seen that (26) implies

(27) 1AM (& — )| < gea® A2l
which, in turn, implies

(28) 1% — ;]| < gexll @yl

but the implications do not hold in general vice versa. So, if #; i3 the
exact solution of a slightly perturbed system in the sense of (25), then
the error || —,|| can be of order ex|x;| and therefore this is called the
inherent error. For similar reasons ex'?||AY?| |z, is called the inherent
natural error. An iterative method that computes for all initial points
Z, an approximation @, whose error & — 2,|f is at most of the order of the
inherent error is called numerically stable (cf. WozZniakowski [6]). Thus
a well-behaved method certainly is numerically stable but the reverse
i§ not necessarily true.

3.2, The two basic theorems. Before starting off the round-off error
analysis of the GM we first deduce some auxiliary results concerning
the computation of a residual vector b —Az. These results will be used
in the subsequent congiderations.
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LEvmmA 1. Let b, @ be two machine vectors and let
Fi=b—dw %0, r:=1l(b—fl(42)),
o 1= [lANl/Fl, = 1A 2] /A7)

Then we have

(29)

(30) (f,r) = [FII2(L+0) = Ir|*(L+0), [e(14-C.p)—0],
(31)  (#, A7) = AR E (L 4o0) = ATV #|P(1 +0),
¢ [ex* (1 4-0, v)—0].

]

Proof. According to (17) and (18) we have

" 7 =11(b—1fl(dw)) = (I +F)(b— (A +B)x) =7+ ér,
(52) dr 1= F(b~Aa)—(I+F) Tz,

Consequently,

(33) l8rll < e IP]l+ £ (1 -+ &) Oy |A[ |l

and hence, under the restriction &—0,
(34) 18¢(l/I1F]] < e(1+0,¢(L+0)),

A= 37| A~ 28)) < ex'* (1 +Cr 9 (1 +0)),
which can be weakened to

l”&""/”f” = 0, [e(14C,p)—0],

35
(5% A= 8r /A7) = 0,  [ex* (L +C,yp)—>0].

The first equalities in (30) and (31) follow immediately from. (32) and
the appropriate inequality of (35). The second equalities follow from the
fact that for { = 0, —% we have

(36) |l — A7 < AP ér)| < |A'Fllo,

under the appropriate restriction. m

We are now ready to deduce the first basic thcorem where the in-
fluence of round-off on relation (6) is expressed in terms of a relative
€rror.

TueorEM 3. Let »; be an arbitrary machine vector for which #,:=b—
—Ax; #= 0 and let x;,, be computed from one step GM. Let

(37) r; 1= f1(b—fl(Aw,)),
(38) ;2= (Al 2l /1IF:|.
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Then we have

|42 (@ — 2,411

(39) AT G ey =170 ),
where
(40) ');i:= (75, ;)]

|47, LA

and

(41) 41l < 4 {1+ Ak Pt (1+0)+¢ {"m (0,40, %Ilﬁ) +0,¢:}0,
under the restriction

(42) e {#* (1 +0, +Cy%") + (1 +C)p} 0.

Proof. From (32) and (34) we know that the computed vector #;
satisties

(43) \7'1' = 7, dr,,

o7/l < (1 +0ugpe) (1+0),  [e—0].
We consider the computation of a; from (2).
(44) [ﬂ(m, r)) = (T +Di)ryy ) = (riy r) (14 24),

2] = [(Dyrgy 1)l (5 75) < €0

Further we have
f1((r;, A7) = (T +D))rs (A+B)ry) = (rg, Ar)(L+py),
|t = |(D:£,Ti3 Ar;) 'I‘( (I+D;)rs, Eﬂ)l/(" Ar;)
< {eCallrill 1Ar )+ eCo A [ Il (1 4 0) } /[ Ay
N < e0pn*+eC,%(1+0), [eC,—0].
This yields

ﬂ( u'ri) ()14 4)
I v R v el

(4D)

with g <e
Hence,

(r ;)
a; = 1+ da;),
(H 1) (
|8a;] = |A;— pos+ 6+ Ayl /114 gty

< e(140,(1+ »*) 40,2 (1 +0),

(47)
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under the restriction
(48) 5"”2(02 +0, "1/2)">

Since, from (30) and (43),
(755 7)) = (B, 1)+ (8r4, 15) = (Fyy 1) (14 73),
(67, 7,)] < 1875l 1l sl (16l
(g5 7)1 170 (e 7)) 17
< e(1+0:9)(1+0), [e(1+Cip)—0],
we obtain from (47)
a; = 8;(1+ da;),
;o= (Fyy 1) (v, A7),
180 | = |7,(L+ da;) + day) < |7;] (1 +0) + | éa;l
(2 +C: g+ 0 (1+ %) +0y %) (1 +0),

under the restriction
(51) e(1 40,5 +0y % +Cy;) =0

(49) |zl = (1+0)

(50)

For the computation of x,,, we have
= fl{z;+11(a;r,)) = (I +F ), + (I +F;) ;)
= @;+a,7;+ 5‘”i+1’

8t;,, = I w,+a,(8a) v, + M),

0L = |1+ 8ay) (Fy+-Fy (I+F)) || < 2e(L+0),

under the restriction (561).
From the first equality in (52) it follows that

(63) AP (@ -z, ) = AV D — ;) —a, ANy, — A S,

(52)

and hence, by taking squared norms of both sides,
(64) AV (D —myy,) P = 1AV (D — ;) —a, A7 12—
— 2 (F; — 8, Aryy Sy, 1)+ 1A S |12
From the definition of a, we obtain
(68) A (B —wey )P = A (@ — )2 — (74 re)2 1A )2 —
—2(F—ag Ay, 0y ) + A 0wy, |1
which leads to the basic formula

”Am (‘Av - mz’+1)"2 _
A (& — ;) |12

(56) _);1?(1 +7’¢+1)1
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where y, is defined by (40) and
(57) vi+1 = {2( a’ A’r 6m1+1) - ”-Allz 6m1+1”2}/{a1: i? l)}

It remains to be proved that »,,, satisfies (41) under the restriction (42).
Note that (f;—d;Ar;,r,) =0 and therefore the term a,da;r, in the
relation for dw,,, in (62) cancels when evaluating the inner product in
the numerator of (57). Consequently, from (38), (50) and (52) we obtain,
evaluating term by term,

(58) l(ﬁi_a’z‘A'ri! 5m£+1)|/|éi(ﬁu 7y)]
< WP gl A2 012 1y )2 - LA W B el 15 )1+
o+ BN il 1Py )+ A7 LMl LAY 12
< (IF s+ 15 Nl -+ 1M1+ 1M1 %) (1 + 0)
< 26(1+ %"+ ¢) (1 +0),

under the restriction (51).

We still have to estimate the second order term in (57). This esti-
mate does not affect the numerical constants appearing in the first order
terms and therefore we may estimate rather roughly as far as numerical
congtants are concerned. Since (a-1b)? < 2(a%+4b%) and (a-+b+o0-+d)2
< 4(a?+b%+c¢*+4d*) we find from (38), (50) and (52)

(69) (1A 6wy |2/10; (5, 7)]
< 4173 1B 1A D g 12 A 27|27y, )2+ (8ag )2 +
+ 22012 BA gl 1AM 712}
< {2} +4e2(4 + 079} +20; (1 + %) +C1 ) + 48®x} (1 4 0),

under the restriction (51).
So, finally we obtain from (67), (68) and (59)
(60)  jrpl <4s{l+#+o}(1+0)+
+ 4e* {4 (4 + %) + 803 (1L + ») 4- 40722 + (1 4- 401) 3} (L +0),

under the restriction (51). Ag this inequality can be written in the more
compact form (41) under the restriction (42) we have proved Theorem 3. m

Without giving the proof (which is very similar to the proof of The-
orem 3) we state the second basic theorem which is the analogue of The-
orem 2 in the presence of round-off.

THEOREM 4. Let x; be an arbitrary maohine vector for which #;:=b—
—Ax; #0 and let x;,, be computed from one step GM. Let

(61) ry 1= f1(b— 1 (4ay),
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and
(62) i = 1A o]l /1A 7).
Then we have
& — ;... o

(63) _Ilgr—w;lll“‘— = 1—0y(2 =i+ 741),
where

. (#,, 1) LA™V )I2
64 Oy i= —
(¢4) A A

-, (755 74) lIrslI®
(66) &= 1AM 7|2 (Fyy A7 )
and

(66)  |nppal < 26241 (L 40y +C, #'?) +2(3+0,) +

+ (1 4+#2(1+20,) 9} (1 +0)
under the restriction
(67) e{w (L +0,+C ) + (1 +C ) p} >0, m

3.3. Good-behavior of the gradient method. If we compare Theorems 1
and 3 and Theorems 2 and 4, then we observe that the perturbed GM
behaves at each step more or less like the exact GM for small values of
¢ > 0. Note that y,—y,, »,—0, ¢,—0;, ¢;—e, and 7,—0 if 0. We agk
what conclusion can be drawn from the results of Subsection 3.2 as far
as the step-wise linear convergence of the natural error and the error
are concerned for the perturbed GM. We first concentrate on the natural
error and thus on Theorem 3. From relation (39) we conclude that the
natural error decreases at the step from ¢ to <41 if and only if v, ; > —1
and 92> 0. Apparently, from (41) and (42), |y <1 if the left-hand
part of (42) is small. From the definition of , and the relations (30) we
obtain
Wl gl R

7 (1+0) =x(1+0)

(68) '):'—2<x - 7 —
EST gy ) (Fy, 7,)?

under the restriction ¢(14C,,)—0 and thus under the restriction (42).
Therefore, not only »_, > —1 but also y, is bounded away from zero
if the left-hand part of (42) is small. Hence the natural error decreases
by a factor close to 1—yZ if (42) is small. Unfortunately, the rela-
tions (30) and the restriction (42) do not supply explicit bounds for »_,
and y,. Hore we encounter a situation where this disadvantage of the
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o-notation emerges. On the other hand, as we said already in subsection
3.1, one can eagily retrace the proofs and replace all o-symbols by definite
estimates involving explicit numerical constants. For instance, one can
prove (cf. Bollen [17]) that if

(69) e {2 (1 40, +0, %" +2(1+0,)} < 1/40
and

(70) e{6 +0,}p, <1/8,

then we have

(1) sl <406, 772 < 4.

The restrictions (69) and (70) were chosen quite arbitrarily and the bounds
in (71) were obtained by a rather rough estimate; they can easily be im-
proved. Hence as an (as far as the factor 1/20 concerns rather arbitrary)
explicit version of Theorem 3 we have the following statement for the GM.

ProposITION 1. If w;,, 48 computed from one step GM based on an
arbitrary machine veclor x; and if furthermore (69) and (70) are satisfied,
then we have

|42 (@ — 2,.1) I° 1

. <1l——.
|42 (3 —m)2 "~ 20% "

(72)

We note that inequality (69) only depends on the machine, the im-
plementation and the matrix involved whereas inequality (70) also de-
pends on 2, since this inequality is equivalent to the inequality

(73) b — Al = 86(6 +C,) 141 12}l -

Now assume that (69) is satisfied. Then Proposition 1 leads to the following
three important conclusions on the GM.

(i) As long as |b—Ax = 8:(64+C,)|4ll|lz;), the natural error
|AY2 (& —m,)| converges step-wise linearly with a ratio no
greater than (L —(20x)"")"~

(ii) X AV (@ — 2, = |4 (@ —a;)] holds for some 43> 0, then

b — Al < 82(6+0,) 14 [l

(ili) There exists an <> 0 such that |b—Ax,[ < 8e(6-+0,) A |»;.
(Bince otherwise (72) would hold for all £ = 0 which would lead
to the contradiction ||b —4x;]—>0 (i—0).)
Combining these three conclusions into one statement we obtain
the following result.
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PRrOPOSITION 2. If (69) is satisfied and if {»,} 158 generated by the GM
with an arbitrary initial machine vector x,, then the natural ervor |AY* (5 — )|
converges step-wise linearly with a convergence ratio no greater than
{L—~(20%)7)*2, at least until an ileration step where the residual satisfies

(74) 6 —Azll < 8e(6--Cy) |4 llzll. m
This implies that the GM is well-behaved and, consequently, numeri-

cally stable, Note that (74) can be used as a stopping criterion for the GM.

As far as the monotonicity of the error |#—ua,| for the perturbed
GM is concerned we first concentrate on an explicit version of Theorem 4,
‘One can prove that in (63) there holds [n,.,|< 7/10 if

') e (W (1 4+Cy+Cy %) + (3 +0,)} < 1/40
and
(76) e{1l 422 (14-20,)}p; < 1/8.

From Lemma 1 we obtain under the restriction ex'?(1+C,y;)—>0

iy AV AR
(77 o;l = _
an ! 2 1A~ 12

(1+0) < %(1+40)

and

. AT A
{78 < =
(78) ST A7)

=1+o,

-whereas, if (75) and (76) are satisfied, one can prove that the following
-explicit inequalities hold

{79) 0<or'<hpw, l&l<B
Once more we note that inequality (76) only depends on the machine,

the implementation and on the matrix involved, whereas inequality (76)
is equivalent to the inequality

{80) IAY (@ — ;) || = 8e (L -+ M2 (2 +C)) 1AM | il

Ag an explicit version of Theorem 4 we thus have the following property
for the GM,

ProPeosITION 3. If »;., 18 computed from one step GM based on an
arbitrary machine wvector x; and if furthermore (75) and (80) are satisfied,
then we -have

-zl 1
15—l T ldx’

(81)
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From this proposition we can draw three conclusions in terms of
step-wise linear convergence of the error |# —ua;| similar to those we
derived for the natural error ||AY*(%—wa,)| from Proposition 1, These
.conclusions are combined into the following statement.

ProPOSITION 4. If (7B) is satisfied and if {x;} is generated by the QM
with an arbitrary initial vector m,, then the error \|& —u;|| converges step-
wise linearly with a comvergence ratio no greater than (1—(14sx)')12, at
least until an iteration step where the natural error satisfies

(82) LAY )| < 82 (1+#/2(1+20,) 4] ). m

This implies that the monotonicity of the error cannot break down
before the natural error reaches the level of the inherent natural error.
Note that (82) does not imply that «; is the solution of a slightly perturbed
linear system.

4. Final remarks

1. The constants ¢, and C, do not show up in the first order part
of estimate (41). In the error amnalysis they only appear in the relative
error da; occurring at the computation of a;. The objective function
F (2,4 ar,;) is quadratic in @ and hence, if we are at a distance J from the
point at which this function attains its minimum, the function value
differs by an amount of the order §% from the function value in that mini-
mal point. Consequently, da; does not appear in (58), which explains
the absence of C, and C,. Formulas (41) and (42), however, show that
e0y %' and eC, (% + ;) have to be small in order to have »,,, small. A first
order round-off error analysis would not have given this information.

2. From Proposition 2 it follows that C, has no influence on the reach-
able level for the regidual. This can be explained as follows. Assume
that only round-off occurs at the computation of inner products (€, # 0)
and not at the basic dyadic arithmetical operations, i.e., vector addition,
vector subtraction, scalar by vector product and scalar division nor at
the matrix by vector product computations (C; = 0). Then, retracing
the proof of Theorem 3, we obtain successively

67'{ = 0, ry = F.,', M@[ < 3021 ]/“1' < 302””2’

83
(83) 18| = |day| < eCa(L+#") (1 +0), [e0y%'"->0],

(84) m‘-_i_l = w.‘ 'I"'&‘ (1 + aaa;')ﬁ.
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We have (cf. (8)) for the exact GM
(86) fla) := Fx;+af) = F(w;) —2a(f;, 7))+ a® | A7,

which is a quadratic function in & and f(0) = F(«;). Since f is minima}
at d&; = (#;, #,)/(F,, AF;), f is symmetric around @; and consequently f(a)
< f(0) for all @ satisfying |@; —a| < |@;— 0|. Stated differently, if & = w4,,
for some 0 < » < 2, then F(x;+af)) < F(z;). Hence, if instead of a = g,
one takes @ = w,a,, where 0 < w; < 2, then still the natural error de-
creases at the step from ¢ to 241, The factor w; conld be called a relax-
ation faotor.

If all relaxation factors satisfy the condition |w;—1|< é for some
3 €(0,1), then for this process a convergence result similar to (6) holds.
Consequently, the factor 1+ da; occurring in (84), which is due to per-
turbations at inner product computations, can be regarded upon as a
relaxation factor for the exact GM. Hence, if for all ¢ there holds |da;’| < 6,
then the natural error converges step-wise linearly to zero and therefore
O, has no influence on the reachable level.

3. We performed (cf. Bollen [1]) several tests with the GM in order
to verify our analytical results of Section 3 for the perturbed GM. In all
experiments we obgerved the step-wise linear convergence of the natural
error at least until an iteration step for which the residual |[b —Aw,|| was
of order e]|A| |jz;]| and the step-wise linear convergence of the error at
least until an iteration step for which the natural error was of order
ex'? | A |lz,|. In most cases where we had to perform many iterations
before the reachable level was attained the ultimate convergence ratios
were close to 1 —»x’.

4. From statement (3) it follows that for the exact GM one has
(86) b—Aw,, , = (b—Ax)—a,Ar,,
which gives the following recurrence relation for 7,
(87) Tip1 = Ty—a A,

Hence,in the algorithm for the exact GM the computation of 7, ; might as
well be based on this recurrence relation. If, instead of (4), we use relation
(87) for the computation of r,,, (4> 0), then this method is called the
recursive residual gradient method (RRGM). Of course, if exact arithmetic
is used, the approximations {z;} generated by the RRGM and the GM
are exactly the same. However, this certainly is not the case when both
methods are performed using floating point arithmetic. For the GM the
vectors #; and r; are directly coupled at each iteration step. Round-off
occurring at the computation of z; immediately affects the computed
vector 7;. For the RRGM the sequence {r;} can be computed without
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even computing the sequence {z;} and the difference between the recur-
gively computed residual vector r; and the exact residual vector b— Az,
g caused by computational round-off at all previous steps.

One can prove (cf. Bollen [1]) that for the perturbed RRGM the
natural error |[4~**7,|, expressed in terms of the recursively computed
residual vectors r; based on (87), converges step-wise linearly to zero
with a convergence ratio no greater than (1—(16x)7")"? if the possibility
of underflow is neglected and if

(88) e{(1+#") (1 +0:)+%(34+Cy)} <1/8.

We realize that from a practical point of view this is not a very interesting
result since convergence of the rescursively computed residual vectors
r; has no direct practical implications. It does not imply that the com-
puted approximations z; tend to . However, from an academical point
of view it is a rather surprising result, since there are not many iterative
processes, used. in practice, generating sequences that tend to zero, also
in the presence of round-off. For results concerning the limiting behavior
of the approximations {#;} generated by the perturbed RRGM we refer
to Bollen [1].

5. Our definition of good-behavior guarantees that a well-behaved
method computes at least one approximation x; of a slightly perturbed
iinear system in the sense of (25). The inequality ||64] < ge| 4| does not
imply that the approximation x, is the exact solution of a perturbed linear
system where the problem data (the elements of A4) are elementwise
relatively disturbed by a factor e, i.e.,

(89) (A+064m, =D, [84'|< geldl,

where the inequality and the absolute values are to be understood in
an elementwise sense. A method which computes at least one approxi-
mation w; satisfying (89) is called a strongly well-behaved method. From
the results of Skeel [4] it follows that a well-behaved method followed
by one step iteration refinement in single precision is a strongly well-
behaved method and hence the GM followed by one step iterative refi-
nement in single precision computes at least one approximation z; that
satisfies (89).

6. In Bollen [1] we deduce results similar to those of Section 3 for
general DM’s by following the same strategy, viz., determining numerical
analogues of fundamental convergence properties of the exact DM for
the perturbed DM. As a special case we consider the conjugate gradient
method of Hestenes and Stiefel [3] and we prove that this method com-
putes at least one approximation #; for which the residual |p —A4w,| is of
order ex'?||4])|z,].
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