Dipartimento di Matematica, Università della Basilicata, via Nazario Sauro 85, 85100 Potenza, Italy
Bibliografia
[1] G. A. Beer, C. J. Himmelberg, K. Prikry and F. S. van Vleck, The locally finite topology on $2^X$, Proc. Amer. Math. Soc. 101 (1987), 168-172.
[2] G. A. Beer, A. Lechicki, S. Levi and S. A. Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367-381.
[3] G. A. Beer and R. Lucchetti, Weak topologies for the closed subsets of a metrizable space, Trans. Amer. Math. Soc. 335 (1993), 805-822.
[4] C. Costantini, S. Levi and J. Pelant, Infima of hyperspace topologies, Mathematika 83 (1995), 67-86.
[5] C. Costantini, S. Levi and J. Zieminska, Metrics that generate the same hyperspace convergence, Set-Valued Anal. 1 (1993), 141-157.
[6] C. Costantini and P. Vitolo, On the infimum of the Hausdorff metric topologies, Proc. London Math. Soc. 70 (1995), 441-480.
[7] D. E. Dobbs, Posets admitting a unique order-compatible topology, Discrete Math. 41 (1982), 235-240.
[8] S. Dolecki, G. H. Greco and A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?, Trans. Amer. Math. Soc. 347 (1995), 2869-2884.
[9] S. Francaviglia, A. Lechicki and S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347-370.
[10] G. Gierz et al., A Compendium of Continuous Lattices, Springer, New York, 1980.
[11] L. Holá and R. Lucchetti, Equivalence among hypertopologies, Set-Valued Anal. 3 (1995), 339-350.
[12] S. Levi, R. Lucchetti and J. Pelant, On the infimum of the Hausdorff and Vietoris topologies, Proc. Amer. Math. Soc. 118 (1993), 971-978.
[13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-183.
[14] J. van Mill and G. M. Reed (eds.), Open Problems in Topology, North-Holland, Amsterdam, 1991.
[15] T. Nogura and D. B. Shakhmatov, When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies?, Topology Appl. 70 (1996), 213-243.
[16] H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530.
[17] P. Vitolo, Strutture d'ordine e topologie sugli iperspazi, PhD thesis, Università degli studi di Milano, Biblioteca Nazionale, Roma-Firenze, 1991.
[18] P. Vitolo, Scott topology and Kuratowski convergence on the closed subsets of a topological space, in: Fifth Conf. on Topology (Lecce-Otranto, 1990), Rend. Circolo Mat. Palermo (2) Suppl. 29 (1992), 593-603.
[19] H. Weber, Uniform lattices. I: A generalization of topological Riesz spaces and topological boolean rings, Ann. Mat. Pura Appl. (4) 160 (1991), 347-370.