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1. Introduction

In this paper we discuss several systems dealing with sets and classes.
The main point of the paper is that there is intuitively a difference between
sets and classes in general and that proper classes can be elements of sets
and act in much the same way as Urelements. In section 2 we give a general
discussion of how we look at sets and classes. In section 3 we give a des-
cription of the language and underlying logic. A characteristic feature
is that the terms meed not denote objects of the individual domain.
The axiomatic treatment of ordered pairs allows to introduce the elementa-
ry theory of relations and functions without any class theoretical existence
assumptions. In section 4 we describe the system ZF 4 Cls, the general
set theory over classes. The question what classes there are is left open
in that system. We only require that all sets of classes exist. The system
serves as a common Starting point for extensions coming from ZF 4 Cls
by adding comprehension principles. In section 5 we present the system
ZF 4+M-Comp which is almost the same as the system G* of [14]. The
comprehension principle of this system which yields a lot of proper classes
is got from the naive (and contradictory) comprehension schema by a cer-
tain relativization process which relativizes to the sets all variables stand-
ing in a condition so to speak both for elements and for classes. The
investigation of ZF +M-Comp is continued in section 6.

In section 7 we present the system ZF4NF which combines set
theory and stratification and comes from ZF + Cls by adding the compre-
hension principle of Quine’s system NF (“New foundations”) [20], viz.
the stratification schema. The system ZF 4 NF is a set theory in which
functor categories (e. g. the category of all categories) exist in a natural
way. The system ZF +M-Comp is too weak for this.

Systems ZF +M-Comp and ZF +NF are extensions of ZF+Cls in
quite different directions, each having some advantages and some draw-
backs. Of course, one would like to have a supersystem combining the
desirable features of both systems, e.g. a common extension. Unfortu-
nately, ZF 4+ M-Comp and ZF + NF are incompatible. So, in trying to find
a supersystem, one has to weaken the one or the other system or introduce
two different sorts of classes.

In section 9 we weaken ZF+M-Comp and strengthen ZF 4 NF.
We define the notion of M-stratification and the system ZF 4 M-Strat.
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The notion of M-stratification is a generalization of the notion of stratifi-
cation. Therefore ZF +M-Strat is an extension of ZF <+ NF, but not of
ZF 4+M-Comp. However, we hope that ZF 4 M-Strat has got enough good
properties to be interesting and attractive.

2. General view on sets and classes

We maintain that a reasonable difference can be made between the
intuitive notions of sets and classes. The mnotion of class is related to
abstraction, the notion of set is understood as involving a stepwise con-
struction by certain set formation processes.

Suppose that there are certain objects, also called individunals, about
which we speak in a first order language using variables 2, ¥, 2, ... to
range over the objects. Then any formula ¢(z) determines the class

{olg(2)}
i, e. it holds
Va(ve {w|p()} < ¢(z).

In most theories there are more classes than abstractions. Therefore
abstraction gives only a partial explanation of classes. The distinctive
feature of classes is rather that they are uniquely determined by their
elements, that they obey the extensionality principle.

The notion of class is symmetric with respeet to small and large.
Formulas ¢ and 7] ¢ both define classes. Some special classes are:

O =p{z|w # o} (the empty class),
DV =pe{|2 = 2} (Y) (the universal class),
Ru =p; {z|2¢ 2} (the Russell class).
"The universal class contains any object of the theory: It holds
Vo ze.

The delicate point is what classes are objects of the theory. It is well
known that it is impossible that all classes over the objects are objects
too, e. g. the Russell class is not an object of the theory, i. e.(?) can not
belong to the possible values of the variables.

() The symbol QU is adopted from Quine, see [25].
(*) This iz “Quine’s eriterion”, see [23]: To be (for a theory) is to be a possible
walue of the bound variables (in order that the theorems of the theory come out true).
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Adopting a term of Quine [25], we call classes real, if they are objects
of the theory. X is real means: 3z # = X, equivalently: X e V. The other
classes are called wirtual(®). Thus Ru is virtual, Ru¢ ©. Since it is not
possible to have all classes over the objects to be real, the question arises
which classes should be considered to be real. There are satisfactory answers
in this respect concerning sets (see below). But beyond the sets there
seems to be no intuition at all(4). We try to formulate some desirable fea-
tures which a good choice of real classes should have. In lack of intuitive
hints, we only have formalistic and pragmatic criteria. One wants to have
as many classes a3 possible to be real. The real classes should be closed
under the Boolean operation (meet, union, complement) and under the
operations of the general theory of relations and functions (domain,
range, inverse, composition, direct product etc.). Finally for formulas
yielding real classes (via abstraction) there should be a simple syntactic
criterion. There should be a comprehension principle

Comp: {z|p}V if...,

where “...” indicates a syntactical condition on ¢ excluding contradictions.
These requirements do not uniquely determine a theory. But if we look
for a class theory along these lines(5), then it seems fair to say that the
notion of class is intuitively quite different from the notion of set which
we will diseuss now.

The notion of set is in set theory understood in quite another way.
It is true that Cantor’s distinction of “konsistente Vielheiten” and “inkon-
sistente Vielheiten” corresponds more to the difference of real and virtual
classes, and that he identified sets with the former. But fortunately, as
we think, a more restricted understanding of sets has come into usage,
and we suggest to understand sets in this “Zermeloan” way. Under this
interpretation any set is a real class. But it is by no means clear that any
abstraction yielding a real class will give a set. Sets are got from the objects
at hand by the well-known set formation processes (pairs, unions, powers,
subsets, images) described by the Zermelo-Fraenkel axioms. The sets
arc well-founded relative to the objects one is starting with. Sets are

(3) The difference betwecen real and virtual classes is not an absolute one but
relative to the theory. Classes virtual for one theory may be real for an extension,
but new virtual classes (e. g. a new Russell class) come up in that extension.

() The antinomies of set theory are rather antinomies of class theory. They
come up by assuming to many classes to be real. As Godel has pointed out [8], the
notion of set has never led to any contradiction and (empirically) proved to be quite
gound. gt

(") A typical class theory of this type is the theory NF (“New I'oundations”)
of Quine [20]. But we think that the notion of set does not oceur in NF. The same
applies to the theory ML (“Mathematical Logic”) of Quine [21].
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asymmetric with respect to small and large. If # is a set, then any smaller
collection is a set too.

We know that it is impossible that all classes of objects are objects
again. But there is no difficulty in assuming that all sets of objects are
objects again. Therefore we consider only theories in which any set of
objects is an object again(?). By this we decide against ultimate classes
(see below). '

The elements of classes and sets need not be classes or sets. They may
be urelements, i. e. objects without elements but different from the empty
clags. Actually, often one thinks of some urelements “to start with”,
However, it has turned out that for mathematics nothing but classes is
needed. Therefore we later simplify our theory by leaving outside urclements
and classes over urelements(?). We restrict ourselves to pure classes. That
means that we adopt the extensionality axiom:

Ext: VmVy(aa =9 > Vz(zes o 2ze¢ y)).

Thus in our theory dny element of a class is a class again. But it
need not be that any element of a set or class is a set again. It is true that
an element of a set or class must be a well-defined object, i. e. real. But
it must not be a set or an urelement. An element may be a real class that
s not a set, a proper class, Actually, this is the main point of the present
paper.

In the usual systems of set theory (without urclements) any element
is a set. If the predicate “M” means “is a set”, then in these systems we
have:

(*) geM oAy zey.

But this is only correct because these systems deal with a special sort
of sets which we will call hereditary sets. A set z is a hereditary set if all
elements of x are sets, all elements of elements of # are sets etc. The class
of hereditary sets will be called V(?):

V = class of hereditary sets.

It is true that V contains the most important sets and that for most
purposes a theory dealing only with V is sufficient and appropriate. V
contains the ordinals and cardinals (in the von Neumann sense), V con-

(°) Another possibility would be to take just the hereditary sots (see below)
to be real. Of this kind are the well-known systemns ZF, NBG, and NQ (i. e. ZF(?).
There are also systems like Ackermann’s, which have more real sets than just the
hereditary sets but which only call these “sets”.

(") Ttis possible to modify our theoriesin such a way that urelements are admitted.

(®) The symbol “V* is used for the class of sets in some systems of set theory
which from our point of view deal with exactly the hereditary sets.
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tains @ and Pw. Continuum Hypothesis CH and General Continuum
Hypothesis GOH are statements about V. However, we think that the
general notion of set — even if we exclude urelements — is broader than
the notion of hereditary set. If = is a well-defined object of the theory
(i. e. a Teal class), then certainly the singleton {x} being a “small” class,
is intuitively a set, even if & is a proper class. In general therefore (*)
fails to characterize the sets. () is only correct if among the real classes
there are only hereditary sets and only classes of (hereditary) sets. Therefore.
we are led to adopt “M” as a new primitive. The elanguage (without
“M”) is suitable to deal only with classes and will treat sets inadequately
except in special situations. In the e-M-language (with both primitives)
we can study sets and classes in more general situations(®).

Perbhaps one might think that the admission of proper classes as
elements of sets will quickly lead into contradietions. This is not at all the
case. Moreover, we think that sets over proper classes are in perfect ac-
cordance with the intuitive (“Zermeloan”) picture of sets nsed in mathe-
matics. It is true that we cannot adopt the ZF-axioms of the theory of
hereditary sets literally. This is because they are usually formulated with
tacit use of the fact that one is only speaking about V. But we can refor-
mulate the axioms in an appropriate way without changing their intuitive
content. This reformulation has been given in [14] and will be repeated
here. The formulation is similar to formulations of axioms for set theory
over urelements (1°). The only difference is that our non-sets have elements
and are prope;r clagses and that sets are not defined but given by a primi-
tive notion. The question what classes there are beyond the sefs, i. e.
what real proper classes there are, is left open in the general set theory
over classes. For more specific systems we will answer this question later.
Before presenting the set theory over classes, we give in the next section
a description of the langunage and underlying logic. The language will
contain connectives, quantifiers, and the equality symbol. For convenience
we algo add the descriptive operator. Our language is a class theoretical
language, therefore we have the primitive ¢ and the classifier {...|...}.
Of course, we also have the primitive M. We furthermorc add the primi-
tive notion (...,...)> (a binary operation symbol) for the ordered pairs.

It is true that we later can define ordered pairs and prove the axiom
of ordered pairs. However, there are some arguments for an axiomatic
treatment of ordered pairs.: o

{(°) Quine believes very strongly in elegance and in economy of the number
of primitives. He says (with respect to Ackermann’s set theory [1]) that it is “hard
to accept the inelegance of the added primitive term M” (see [25], p. 322). However,
we think that classes and sets are different and that two primitives are adequate.
Moreover, in what follows we will propose a third primitive.

(%) See [27], [30] o.g.
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We think that the ordered pair <{z,y) is not (in an absolute way)
the same a8 {{z}, {#, y}}, but that this is rather the realization of the in-
tuitive notion of ordered pairs in some systems of set theory or class
theory. In other systems there may be other definitions of ordered pairs
movre convenient. Moreover, any definition seems to involve some existence
assumptions about sets or classes. By our choice we avoid any commitment
and can treat the elementary theory of relations and functions on the
“logical level”, i. e. without any specific classtheoretical and settheore-
tical assumptions. A purist in the number of primitives may eliminate
the primitive notion later. But the elimination is different in different
systems. This is another reason for our axiomatic treatment of ordered
pairs.

In our langnage we can introduce already a lot of terminology con-
cerning classes, relations, and functions and many elementary theorems
can be proved. Since it thus looks already like a system, we call it the
elementary theory of classes, relations, and funections, and designate it
by CRF.

3. The elementary theory of classes,
relations, and functions

The language has the wvariables wv,, vy, v,y ... and the symbols
Tha,v,V,3,=,¢64,<{,>{, ], } and M. We define general terms
and formulas.

(1) Any variable and M is a general term. If X, ¥ are general terms,
@ 18 o variable and ¢ is a formula, then (X, ¥>7, "we’, {z|p}’
are general terms (2 being bound in the last two terms),

(2) If X, Y are general terms, x is a variable and ¢,y are formulas,
then "X =Y, "XeY", "¢, (@A), (@vey)', Aap’, Ve are
Jormulas (x being bound in the last two formulas).

We use #,y,z2,... as syntactical variables for variables; @,y for
formulfms; X,Y,... (but also R,Q,f,g,...) for general terms. Quasi-
quotation corners are used in the manner of Quine [217.

KX, Y)" is a pair term; "vag” is a description term; “{z|p}’ is an

abstraction term. Formulas "X = ¥, "Xe Y are quasiatomic.
1
We use the well-known abbreviations (c. g. —, «», 3 (there is cxactly

one)) and conventions (e.g. concerning brackets) and notions like free
and bound occurrences (of variables and general terms). If @ is a formula,



3. Classes, relations and funections 11

than ¢% denotes the result of substituting X for # in ¢ (with the usual
precautions, rewriting bound variables if necessary).

If 2 is a set of formulas, then X% is the set of ¢% for pe X, Similarily
Y% denotes substitution in a general term Y. If ¢ (X) is a formula (with an
indicated occurrence of X), then ¢(Y) is the result of replacing that oc-
currence by Y. Our general terms may be virtual and not necessarily
denote objects. Therefore we have to modify the logic a little bit.

Let us assume that we have a natural deduction type calculus to
derive sequents 2 I~ ¢, where 2 is a finite set of formulas. The structural
rules, the rules for connectives and quantifiers are as usual. The substitu-
tion rule is to be modified as follows:

(3) Subst.: From X \— ¢ infer: 2%, 32 2 = X' | ¢% (V).

We call a term X for which we can prove |- "32 z = X" an indi-
vidual term. For individual terms the reality premis can be detached.
Therefore individual terms can be handled like terms of ordinary first
order logic. Concerning identity we have the identity rule and the repla-
cement rule:

(4) I: — "X = X" for any general term X.
Rpl: ¢(X), X = ¥Y" | @(X) if the indicated occurrences of X and
Y are free.

More general replacement rules are then derived as usual. Concerning
the descriptive operator, we have the rules for proper description and
improper description:

1
() PD: "Jap,p b "vzp =2".
1
ID: "J3ap” - "wap = L.
In the last rule we have already used an abbreviation which is intro-

duced now
(6) U is "{wolvy = v},

B is "{velve F Vo),

L 48 Tvwgw, #E vy (17),

Cls(X)" is "X = {#]ze X} .

(1) Here # is a variable new to the context, say the “next” such variable. Similar
requirements apply to other definitions and theorewmns.

(12) We call L the “phantom object”. It serves as a value when no natural value
is at hand, but the value of L itself is not determined. One can pick an arbitrary
object and identify it with L.
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‘We have the following rules for classes (¢ not free in X):

(1) Cly: - "X = {2]p} & Cls(X)AVa(ze X o )",
Cl,: "XeY | "daa =XACl(Y)".

Then we can prove the following theorems:

® - Ols({ole)),
- "Vz(ze {z|¢} =),
TCls(X)", "Cls(¥)", "Vz(ee X 2 ¥) |- "X =X,
- Cls(X) X =@vIzze X7,
Ve ze0?,
- r 3z 20",
- 422 =X o X7,
"Xe U - Vap - %",
"XeV  "¢% —Jxg”,
"Xe V' | "Xe{z|p} ok

Because of the equivalence for "dz 2z = X", we express reality of X
usually by "XeD

Next we have rules concerning ordered pairs: the axiom of ordered
pairs, a rule concerning the reality of ordered pairs, and a rule concerning
pairs with virtual components:

(9) OP: - z,y> =<u,v) oz =uny =" (19),
ROP: - Yz, y>e0?,
VOP: "X¢U" | (X, YY) =<(¥, X> = L (4).

Of course, we need a rule saying that our phantom object L is ne-
vertheless real: '

(10) Ph: — "LeV".

This phantom axiom is not a deep existence assumption. The logical

rules imply anyhow that there are individuals. And (10) does not say
more.

(18) The variables, z,y, %, v shall be different. The same requirement applies
without explicit mentioning in analog cases.

(%) Ordered pairs with virtual components thus have not the characteristic
property of ordered pairs. The rule VOP has the purpose to give a (purely conven-
tional) value to such pairs. It vould also be possible to drop VOP and extend OP
to a schema with capital letters instead of the small ones. This would have the (rather

harmless) effect that one admits virtual non-classes, and the eliminability ot virtual
terms (described below) would not hold.
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Our primitive notion M practically does not play a réle in this gection.
We only add a rule saying that M is a class.

(11) M: | "Cls(M)".

(11) will be provable in set theory.

This ends the description of the system CRF, the elementary theory of
classes, relations, and functions, which is the underlying language and
logic of this paper. By I ¢ we denote that ¢ is a theorem of CRF, by
2 |— @ we denote that ¢ is derivable in CRF from the set of formulas X
using the rules given above. '

Using Ph (for the improper cases) one shows:

(12) F "wep, X, ¥Y)eDV".

Therefore description terms and pair terms are individual terms,

By the admission of general terms which may be real or virtual
our language becomes very flexible. But in principle the apparatus of
virtual terms can be dispensed with and our system reduced to a system
in ordinary first order logic. Our next theorem brings a reduction in that
direction. ‘

Let us call a formula simple iff the only quasiatomic formulas are
of the following types:

o=y, ‘wey', "weM’, "z =129, 2 =<, ¥, ze{z|p}),
"2 = {z|p}" (where 2 does not occur in "wwe’, (z, )", {@, ¢} resp.).

(13) Any formula is equivalent to a simple formula.
The proof uses several equivalences which we will not derive here.
(14) "X =0vea=2X",
F "X =y +> 32(2 = Xrz = wy)",
X =<(Y,2) oda@ =Xrz =(X,2)),
"X =M e X = {z|ze M},
X ={zlp} < (X =0vIyye D)aAVy(ye X o ye {zlp}),
X =@ eda{e =Xaz =0)v (_I';Imw = XAVyy¢ X),
" XeY 3o =Xrze )",
Here and below it is understood that the variables that come in
on the right-hand side are “new” to the context.

By these equivalences we get a reduction to quasiatomic formulas
of the types: "z = X", "ze¢ X" with 2 not occurring in X (except X is z).
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The types "z =&, "2 = wwp", "z = {z|p}" are allowed in simple
formulas. The type "¢ = M" has already disappeared. The next equi-
valence brings a reduction to shorter formulas of type 2 = X".

(16) F 2 =<(X, Ty« dady(x = XAy = Yrz =<2, 1))
v(Tdzz =Xaz=L)v(THyy = Xaz = L)L

So we are done with formulas of type "z = X'. Next we consider
formulas of type "ze X. The types zex", "2e M7, "ze {z|@}" are allowed
in simple formulas. The next equivalences eliminate the other cases:

(16) F "zewp > Iy(y = wpAzey),
F 2e (X, Y) < 3y(y =<X, XD Azey).

A simple formula is not quite an ordinary first order formula. How-
ever, using the following equivalences:

(17)  z={zlgto (2 =OvIyye)aVy(yez o ye{zle}),
F "ze {zlo} « ¢,

we can eliminate quasiatomic formulas of types "z = {z]p}”, "ze {x|¢}’
and only retain "z =@". By further assumptions (e.g. extensionality
or introduction of a primitive constant), we could get rid of
"2 = {vy|v, # v} too. Similarily one can use the following equivalence:

1 1
(18) + 2 =1ap « (JapAVe(z =2 - ¢))v (Tdaparz = L)"

to eliminate description terms and only retain "z = . By introduecing
a primitive constant, we could get rid of "z = w1, # v,' too.

It would in principle be possible to start with a first order system
and introduce the quasiatomic formulas of our flexible language as ab-
breviations by context definitions corresponding to the equivalences
above.

The additional rules would become eliminable rules of ordinary
first order logic. However, this would involve a lot of simple but tedious
work. Since we want to have the flexible language anyhow, we find it
simpler to introduce it as the basic language with a logic of its own outright.

In our language we can define almost all the concepts occurring
in get theory and class theory. First we introduce some terminology of
the algebra of classes:

(19) "X nXY'is {ulue Xaue ¥},
' "X v XY is {ulueXvue X},
T—X" is {ulud¢ X},
‘XINY" s {ulue XAu¢ X},
"X Y is VuueX —»ue¥).
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All the usual theorems of the algebra of classes are provable.
The next definitions introduce some concepts used in set theory:

(20) "UX"is {u|3y(yeMaueye X)}7,
"NX is. {uVy([ye M > (ye X —uey)}.
We call this sei-theoretical union and imtersection. | JX thus contains

only the elements of set-elements of X, non-set-elements are treated as
if they were empty. It would also be possible to define a strong union

and ¢ntersection:
(21) "UX" is {uldyueye X},
"NX" is {u|Vy(ye X - uey)}".

For X < M the set theoretical and the strong notions coincide.
In set theory we need rather (J than [J.

(22) PX" is {u|lueMAuc X},

P X is the class of all subsets of X. We can also introduce the notion
of strong powerclass:

(23) PX" is "{u|Cls(u)au S X},

For XM both notions will coincide (by Aussonderungsschema).
It is useful to have the general absiraction operator:

(24)  Let X be a general term, ¢ o formula, and x,, ..., ©, different varia-
bles, and z be new. Then ™(X|, .o} i {z|3z... 3,
(2 =Xnp)}".

The variables z,, ..., #, are often omitted and must be infered from
the context.
Relational abstraction is defined by:

(26)  w,yle}" is L2, ¥ laye}
The next definitions introduce some terminology involving relations:

(26) "X xY" s {w,ylreXAye X},
Relation(R)" is "R < U xV7,
rXRY" is (X, Y>e R,
fdyg” is {z,y|o = ye X},
"R~ 48 "{», y|yRa}",

‘RoQ” is {z, y|322 R2Qy}",
TRM X" is "{x, y|aRyAye X},
“dom R is "{@|dyyRaz}",
Tran R is "{y|dzyRe}".
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The usual theorems of the general theory of relations hold for these
notions.
We mention the following theorems:

(27) = "Relation({z, y |¢})",
- VaVy(z{z, yle}y © @),
— "Relation (R)A Relation (@) A VaVy (2Ry <> 2Qy) - R = Q™.
Our next definitions concern functions:
(28)  "Function(f)" 45 "Relation(f) A VaVy, Yy, (y . fe A y.fz - Yy = Ys),
f|X — Y is "Funection(f)a domf = Xaranfc Y7,
(@) s "y yfe” ().
The usual theorems of the general theory of functions hold for these

notions.
We mention the extensionality property of functions:

(29) — "Function(f)A Function(g)A domf = domg
AVaz(ze domf — f(x) = g(2)) > f =g".
We also want to introduce fumctional abstraction:
(80) (@ Xig)" is {y,0ly = Xng),
o~ X" is (o> X|xeV)™.
For the first term one finds also the notation (X |, ¢>7, the second

term is often written as "AzX".
We have the theorem:

(31) |- "Va(p - XeD) - Function({z —> X | ¢)) A dom<{z > X |¢p)
= {z|p}AVa(p - (o > X |@)(z) = X)".
n-ary relations are just classes of n-tuples, and n-ary functions are func-

tions with an n-ary relation as domain,
We inftroduce n-tuples by the recursive definition:

(32) (X 8 X,
P<Xo: Xy ooy X7 is Xy ( Xy ovey X))
Then we define:

(33) ‘BX,, ..., X, 18 KXy,..., X, De R,
rf(Xu_ vy X)) 48 F({Xyy ey X)),

(1) Note that any function “maps” any virtual class onto the phantom
object L.
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Other familiar notions like "X™, "{y, ..., x,19}7, (@, ..., @, > X" ete.
can be introduced in an obvious way.

(34) {21y ooy Ty lp}” "?3 "y 3y ... 2, (y = (Bry ooy DA PN,
U Byy ooy B> X @) 8 Wy 2y @Y = XA},
L&y ey By > XD 08 Uy, ooy & > X[y, ..., 2, VY7,
rprn,k1 18 1y ey Yy 0" (for 1Sk ).

The notation in (33) is usual in mathematics. However, one must be
careful to avoid ambiguities which could arise since in our flexible language
any term may play the roéle of a relation symbol or function symbol or
argument symbol. Often the choice of letters “R”, “f”, “X”, indicates
what is meant, But a more transparent and systematic method would
be desirable. One could think of introducing application symbols,
e. g. e,,2, for relational application, and “-o,”, “o—,” for functiomal
application. Thus "X, ... X, ¢, X" and "X>, X, ... X, would be a formula
and the same as (X, ..,X,>eX’, and "X,...X, -, X' and
"X omy Xy ... X, would be a term and the same as "12{z, Xy, ..., X,>e X"
Then ¢, is the same as e. o—; is sometimes written as an accent(9).

Finally we define the notions of real classes, elements, urelements,
proper classes, and ultimate classes:

(38)  Cls 48 {v,|Cls(v,)}7,
EL is "{w,|3v,2,¢ 24},
UR s "ON\CIs",
PC is "CIs\M",
UC 48 "CIs\EL".

Proper classes and ultimate classes are thus real classes. Virtual
classes are not even proper classes or ultimate classes.

Our theory CRF already looks somewhat like a set theory or class
theory. But actually it is nothing but first order logic modelled into
a class theoretical language, since we have no assumptions at all about
the reality of classes. Our only commitment is that the individual do-
main is closed under the formation of ordered pairs. But this is a “first-
order commitment”.

The weakness of our system is shown by the existence of models with
exactly one element e, which is also the only ordered pair: e = (e, e},
and which, of course, must be the phantom object: e = L. There are two
classes @ and U (which is {e}). We can put eee. Then ¢ =V and UV is’

(%) A symbol like o— has the advantage of being similar (but not identical)
to the composition symbol, the associativity of composition and application reads:
(fo g) o— 2 = f o— (go- ). Moreover, it can be used in reversed form:z-—y without
ambignity as to what is the funcfien and what is the argument.

BU
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real and @ is virtual. We can also put e¢ ¢, then is virtual. In addition,
we can put ¢ = @ (then @ is real), or ¢ # @, in the last case ¢ is an urelement
and U, @ are both virtual. But note that finite domains with more than
one element are excluded. However, any infinite domain can be admitted,
since for an infinite domain there are two-place one-one functions which
can simulate ordered pairs.

Our elementary frame is not already a true set theory or class theory.
This is only got when we add various assumptions about the reality of
sets or classes. But the system CRF can serve as a common basis of dif-
ferent set theories and class theories. A comparison of different systems,
e. g. a8 in Quine’s book [25] is easily possible on the basis of CRF. How-
ev‘er,‘in'this paper we are interested only in systems. without urelements
and containing the general set theory over classes which will be described
now.

4. The general set theory over classes

We now give the axioms of the system ZF +Cls. Our axioms will
not be independent. AO follows from S 4, S4 follows from AO and S 3.
“We first decide to adopt the extensionality axiom:

(36) Ext: "z =y Ve(zex ozey) (V).
The next axiom tells us that the empty class is a set.
(87) AOQ: "@eM".

In particular the empty set is a real object. Therefore we can identify
the phantom object with the empty set. This is done in the next axiom,

(38) AO': "L =0".

For the purpose of section 3 it was natural to keep @ and .l inde-
pendently, e.g. @ could be virtual while 1 is always real. But for set
theory the identification in AQ' is reasonable. But then it would be still
simpler to write in (5),(9) @ instead of L outright, then (10) and (38) become
dispensable. So we agree now that we have made these changes and can
forget about AO’ and the phantom object from now on. AQ implies "Cls (M)"
and therefore rule (11) is dispensable. Using Ext and AQ one can show:

(39) f~; "Cls = D"
In particular any set is a class:
(40) —,™ < Cls".

(17) The axioms shall be rather the universal closures of the formulas written
down.
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However, it would easily be possible to admit urelements and set
up a system ZFU4Cls (general set theory over classes with urelements
admitted). We only have to drop the extensionality axiom and take (40)
as a new axiom instead. No other changes are necessary.

The pair set axiom is often given in the form

(41)  Hr,y}e V> {z, yie M.

There are theories in which {z, ¥y} is not always real. Any theory
with ultimate classes(*®) (i. e. classes that are real but are not elements)
is of this kind. In such a theory there are sets of objects, e. g. {x} for ulti-
mate 2, that are virtual and thus no object of the theory (*). In such a the-
ory some sets and some classes are real (often the real sets are just the
hereditary sets and the real classes are classes of sets). However, we already
decided to have all sets and some classes to be real (since it is impossible
to have all classes as real). Therefore our pair set axiom can only be:

(42)  Al: "z, y}e M .

In adopting A1 we decide agaﬁ.nst wltimate classes. Any real c,la;s:s.
is an element, even of a set. We have the theorem:

(43) ,7UC =@".

But "PC # @" is possible and will hold in later systems.

The union axiom of set theory obviously means that for any set
of sets the elements of the elements form again a set. Therefore non-set-
members do not contribute to the sei-theoretical union. This means
that we have to use () rather than (J in the wnion aziom:

(44) A2: z2eM - JzeM",
Similar the power set axiom is:
(45) A3: weM > PreM".

Our next axiom is the Aussonderungsaxiom which says that any
real subclass of a set is a set:

(46) zeM w2z NyeM".

(*8) It is a common prejudice that “proper class™ and “wltimate class” mean the
Bame. In this paper we try to argue against this. The term “ultimate elass” has been
introduced by Quine. However, we do not agree with Quine in our understanding of
the term “proper class” and of “set”.

(1) Theories NBG and NQ (i. . ZF(®) and ML have ultimate classecs and thus
virtual sets.
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However, then there might be virtual subclasses of a set which are
not subsets (2). But it is in accordance with the set intuition that any
well-defined property on a set will define a subset. This gives an axiom-
schema rather than a single axiom.

Therefore the Aussonderungsschema is:

(47) S4: weM —»2 N {u|p}eM".

In Mathematics (for an adequate treatment of induction) we need
S4 and not (46). The Aussonderungsschema has been generalized by
TFraenkel to the Ersetzungsschema which says that any image of a set
is a set, any class with set-many elements is real and a set.

1
(48) S5: weMAa(Vyez)zg > {2](Aycz)p}e M.

In this axiomsehema formula ¢ describes a (perhaps virtual) relation
which is on the set 2 a function. S 4 says that the class of the function
values is again a set (and thus real)..

It may be noted that if we had at least one pair set, e. g.if {@, {@}} e M,
then A 1 follows from S 5, since {z,, .} is the image of {@, {@}} under the
function described by the formula: (y = @Az =x,)v(y = {B}Aaz = a,),
This means that in theories with ultimate classes (where A1 is false).
one has to restrict the Ersetzungsschema.

The next axiom is the Fundierungsaxiom:

(49) A6: weMa(TyeajyeM —» (Iye)
(yeMa 1 (Fzea)(2e MAzey)].

A 6 says that any set having set elements has also a set element which
is minimal with respect to ¢ among the set elements. A consequence of
A 6 is that there are no descending infinite e-chains of sets. However,
infinite descending chains like:

e VeVeD

are of course not excluded. The classes need not be well-founded. But any
get is well-founded relative to the non-sets from which it is made up
(even if these constituents of set theory are not well-founded themselves).
A 6 guarantees that the sets are just what we get from non-sets by the
set axioms (see (72)).

It may be noted that A 6 is equivalent to a corresponding Fundierungs-
schema saying that any class X (virtwal or not) such that X " M # @
has a set member which is e-minimal among the set members of A.

(2%) There are theories in which any property over sets defines a rcal class.
In these theories (46) and (47) are equivalent. However, this is only possible if the
theory deals with “some” sets (e. g. hereditary sets) and not with “all” sets of objects.
See (76).
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There are two more axioms which we give without further comment.
The infinity aziom is:

(50)  Inf: "Eas(a:e MA@eaxn(Vzea)z u{z}ea:)".
The azxiom of choice is:
(61) AC: "Vz (a:eMA z < Ma (Vee @)z # DA (Ve a)(Vye )
(2 =yvzny =0) ——>3w(we MA(Vyea)(Tvew)w ny = {'v}))-‘
ZF +Cls is the theory with axioms:
Ext, A0, A1, A2, A3, 5S4, S5, A6, Inf, AC.

We write X' |- ;¢ to indicate that ~ u A - ¢ for some set A of (closed)
formulas, which are axioms of ZF 4-Cls (we did already so in (39), (40),
(43)). Thus H,p means that ¢ is a theorem of ZF +Cls.

The system ZFU+Cls is got from ZF4-Cls by dropping Ext and
taking (40) as axiom. The development of the standard body of the theorems
of set theory starting from these axioms is possible in the same way as
in usual set theory (of hereditary sets or sets over urelements).

We list some theorems:

(52) =, "M¢M°,
=, ¢ M7,
FXeM b, "X ¢ M,
"X, YeM' b, XxY,XNnY,XuY¥eM,
‘R,QeM" b, "R, RoQeM”,
"Relation(R)' ,;"ReM < dom R, ranEe M7,
"Function(f)” ,feM & domfe M.
It is well known that the sets {{}, {z, y}} have all the properties

required by <{z, ¥)>. So it would be possible to identify the ordered pair
(z,y) with {{z},{z,y}} which we call the Kuratowski pair:

.(53) Possible additional axiom OP':
K@y y) = {{w}’ {z, @/}}1

This is often done. One can then eliminate the primitive notion
and consider OP’ rather as a definition (of a meta linguistic abbreviation)
than as an axiom (in the object language). But we will keep the
primitive ordered pairs since we want to have the possibility to redefine
them in some other way if necessary. We will review briefly some other
pairs we use below. A rather simple pair was given by Schmidt [28]:

(54)  Possible additional aziom OP’:
r(“*': Yy = {{{u}}W‘ w} v {{Q: {’U}}['De y}1
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Another definition was given by Kiihnrich [12]:
(55)  Possible additional axiom OP":
", 9> = {{{w}}lneav (ue BLAu = »)}
0 {(@, (o)} Iveyv (ve ELAw =‘y)}1.

All definitions are in our theory adequate, i. e. the properties ordered
pairs should have are fulfilled. (The reality of (z, y)> under (54), (55) needs
a modest portion of class theory beyond set theory.) Under any definition

it holds:
(56) "o, ye M — (&, y>e M"

(adopting OP', or OP", or OP').
‘@, ye V>4V’

Under (53) it even holds thet all pairs are sets:
(7Y  (x,y>eM" (adopting OP').

In a set theory with ultimate classes the Kuratowski pairs will not
work. The Schmidt pdirs work for classes but fail for urelements. The
Kithnrich pairs will work for urelements and classes (ultimate or not).
Therefore these pairs are adequate in the most general situation. If one
only has classes (as we have in ZF +Cls), then the Schmidt pairs are simpler.
If one only has elements (as we have in ZF 4Cls), then the Kuratowski
pairs are still simpler. . .

There are two notions of transitivity. Strong transitivity is:

(88)  "Trans X" is VaVy(veye X - ze X).
This is equivalent to "Vy(ye X -y X)" and to UJ X c X".
Tmnsiti'vity wn the sets is:
(69) Trams, X" is VaVy(ye MAzeye X - xe X)".
This is equivalent to "Vy(yeMAy e X -y < X)" and to " JX = X™

In set theory we need rather the last notion. On classes of sets both
notions coincide.

(60) ;"X =M~ (Trans X « Trans, X)",

But actually & transitive class of sets is a class of hereditary sets
and thus a subclass of V.
For any set we can define the transitive closure

(61) "TC(X)" 48 "M {y|ye M TransyyA X < y}".
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It canbeshownthat TC(X) =X v U X v UU X vUUUZX u...
(using recursion over natural numbers and Ersetzungsschema) and that
TC(X) is a set and transitive in the sets:

(62) 1 2e M -2 < TC(x)A TC(x)e MA Transy, TO(z)".
Now we can define the hereditary sets:

(63)  V is "{vy|vee M A TC(v,) = M)".

The ordinals are defined as usual:

(64)  On 4s "{v,]vse MA 05 = MA Transyvon (Vo € 06)(Vo, € ) (v v,

V0, =D,V 0560},
It turns out that they are hereditary sets:
(65) F,Onc V.

+ Cardinals can be defined as initial ordinals and any set has a cardinal
which is in V. One can introduce transfinite induction and recursion over
the ordinals just as in ordinary set theory. Arguments and values of func-
tions defined by recursions may be any real classes. An example is the
von Neumann hierarchy over any set of non-sets.

(66) Let 2= ONM, 2ze M and define V,(2) for aeOn by fécur.gion-:
Vo(2) =pt 2, )
Voi1(2) =pr PV,(2) vz,
Vi(2) =pr UV, (2) (for limit ordinal 2),
yed

V(2) =pt U Va(2),

aeOn

V(2)\z are the sets over z.
For any set x the base of z are the non-sets in TC(z).

(67) Base(X)* is "TC(X)\M".

Using the Fundierungsaxiom it can be shown that any set is in the
von Neumann hierarchy over its base.

(68) =, Va(ze M - ze V(Base(a))).

This gives the possibility to define a rank for any set. Let “pa...”
mean “the least ordinal a such that...”

(69)  "tk(X)" ds "waXeV, . (Base(X)).

Any set of non-sets has rank zero.
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It turng out that the hereditary sets ave just the sets with empty
base.

(70) =,V =V(@)".

We can also define the von Neumann hierarchy over arbitrary classes
of non-sets.

(71) Let X < O\M, X¢M, and a be an ordinal. Then
"V, (X) is {z3z(ee Maz S Xaze V,(2))}7,
"V(X)" is {z|da(ae Onaze V (X))}

Then (68) gives that the sets are just the sets over the non-sets.
(72) ;™ = V(O\M)".

Our theory ZF +4Cls does not tell us what classes there are beyond V.
The theory is compatible with any reasonable collection of real classes
closed under the set formation processes. One could demand that there
are no real classes beyond the hereditary sets. This would mean that the

axiom
(73) " =M"

holds. Then we would have "0 =M = V7, the primitive notion M would
be superfluous and the formulation of the axioms could be simplified
(as i8 usually done). With axiom (73) we would get the well-known theory
ZF of hereditary sets. By our reformulation of set theory we intended,
however, to show that it is quite compatible with the intuitive notion
of set that there might be non-sets, i. e. proper classes which are
elements of sets.
In such a system we would have:

(T4) ™0 =M

and then of course "0 # M = V7 (%),

Since we have the usual set axioms, our theory ZF 4Cls is suitable
as a “working set theory”. For the working mathematician it is quite
possiblet o0 work within ZF 4Cls and at the same treat the question of class
existence naively, i. e. adopt any class as real if he wants to do so, e. g.
if one wants to work with a functor category, then one assumes it to be
real.

This would be a semiaxiomatic treatment. Questions of set existence
and sethood are decided in aceordance with the axioms, questions of class
existence are decided naively and ad hoc. This would correspond to the

(®1) If we admit urclements, then "V(UR), Cls would play the role of V, U
in (73), (74).
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fact that for sets there is a widely accepted system of axioms(?2) and for
classes there is no such system of axioms. But of course, this seminaive
standpoint is rather unsatisfactory. It would be better to have some fixed
body of axioms of class existence in addition to ZF +Cls.

In the following sections we present several class existence schemes
which have the form of comprehension principles (). '

5. The M-Comprehension schema

A common opinion about classes is that any condition about sets
determines a real class. This would mean that one adopts the following
axiom schema of class existence:

(78)  Tentative awiom schema: "X < M — X e V7,

Unfortunately, (75) gives a contradiction () with ZF 4Cls.
Let X be “{{«}|{z}¢=2}". Then

"W)eV b, )e X o 3w ({y) = {}afe) da).
The premise "{y}e V* can be detached because of A 1. Moreover,

"{y} = {=}" is equivalent to "y =27, and the right-hand side of the equi-
valence is equivalent to "{y}¢y". So we have:

F1yle X < {y}ey".
Substitution yields:
"Xe V' {X}e X o {X}¢ X,
So we get: |-, "X ¢ D"

But on the other hand, from A 1 it follows "X < M". So, instead of
(75), we have in ZF +Cls the theorem:

(76)  There are formulas ¢ such that H, "{z|xe MA @}¢ D",

It is possible to save (75) by admitting ultimate classes (and thus
virtual sets). This is in our opinion the main motivation for systems with
ultimate classes. We, however, decided for A 1 and S 5. Of course, we could

(22) It is another story that the axioms of set theory are still “very” incomplete.

(23) Perhaps it is possible to have class existence axioms directly in the form
of category existence axioms. But we have the feeling that the set theoretical part
is better not given in a categorical language.

(24) This contradiction had been for some time an obstacle for us in finding the
theory ZF +M-Comp to be presented below. The contradiction is also mentioned in
the first edition of [25], p. 322, where Quine contributes the idea to Myhill.



26 Set theory over classes

also regain (75) in our systems by introducing ultimate classes. The old
real classes would become the elements. Any old virtual class would become
real and ultimate. However, we gee 10 point in this, since the job of ultimate
classes can be well done by virtual classes(*).

We saw that it is impossible that any condition on sets defines a real
class. But it is possible that any set theoretical condition defines a real class.
A set theoretical condition is a formula speaking only about sets, i.e.
a simple formula having only bound set variables(®).

(77) It 4s relative consistent to adjoin to ZF 4Cls all axioms:
Ly ey Ty M > (@2 MAg}e DT,

where y, ..., &,, & are the free variables of ¢ and @ 18 a set theoret-
ical condition, i. e. a simple formula with all bound variables in ¢
relativized 1o M.

Actually, a much more general comprehension principle can be
adjoined to ZF +Cls without giving contradictions (if ZF is consistent).
This has been shown in the paper [14](*).

For convenience we give here again in a different terminology what
is essentially the system G* of [14]. The comprehension prineiple will
be called M-comprehension schema and the resulting system will be called
ZF 4+M-Comp.

The key notion in ‘the M- comprehensgion %chema is a certain rela-
tivization process. A variable x is relativized to M in a formula ¢ if all parts
Ve...", dz...% z|...}", "w...” are replaced by "Ve(zeM —»...)",
Az(@e MAa ...)", {z|zeMa ...}, w(ze Ma...)"

We call a formula or general term wusual if bound variables with
different scopes are different and if all bound variables are different from
all free variables. By alphabetic variance any formula or term is logically
equivalent to a usual formula or term.

(%) If one really wants to add ultimate classes, then we would prefer to use
different styles of varinbles (allowing equalities Dhetween both sorts of variahbles)
for elements and for objects and call the resulting system the second order version
of the original system. Thus ZF(?) the seccond order ZF-set theory is the system intro-
duced for the first time hy Wang [31] and known under several names (NQ, Morse's
set theory, Kelley’s set theory, NBGQ, BQ), and NF(®) is the same as Quine’s system
ML. The second order versions of our systems could easily be presented.

(28) The condition that p is simple can not be dropped ecompletely. Note that
in our flexible language "X e ¥' may show only bound set variables. But actually
there is hidden another variable which becomes apparent in the reformulation
Jz(r = XAzeY)'. So "XeY" is not intuitively a set theoretical condition (rather
"XeMAXeY" is).

(*") Actually we proved this only for a theory with Aussonderungsaxiom and
Ersetzungsaxiom instead of the schemas. But R. B. Jensen pointed out that the
schemas can also be shown relative consistent. Sce section 6.
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We recall the definition of simple formulas (see (13)).

(78) Let @ be a usual and szmple formula. Then ¢™ is any formula that
" comes from ¢ by relativizing certain variables to M. The variables
which are to be relativized to M are determined im the following way.

To all variable ocourrences in o (other than immediately after a quan-

tifier) is given an index which is either 0 or 1. in such a way that:

(1) any occurrence immediately to the left of e gets index 0 and any
occurrence immediately to the right of ¢ gels index 1,

(ii) the indicated occurrences of x and y in a subformula "z =y” get
the same index,

(iii) the indicated occurrences of 2, x, and 4§ in a subformula 7= (v, ¥>"
get.index 0,

(iv) The indicated occurrences of z and x in a subformula "2 = wy®
get the same index,

(v) the indicated occurrences of z and x in a subformula "ze {x|y}"
get index 0,

(vi) the indicated occurrence of z in a subformula "z = {x|yp}" gets index 1
and the indicated occurrence of x gets index 0.

Then all variables getting both indices 0 and 1 (at different occurrences
of course) are to be relativized to M wunless they are already rela-
tiviced to M. The resulting formula ¢* is called a M-formula.

We give some examples of M-formulas. An indexing according to
(78) is given by supersecripts to the variables.

Fg® =y, gl — Y17, P =2, g7, Vu(ulezt - ule yl)?,
"Tw(w® = (u?, "y A w0e 31)?, "V (weat - Judvw® = (0, 1),
"Vw(wle 2t - JuTvwd = u?, 1)) AV, Ve, Vo (Jw,Jw, w? = (ul, %
Awd = {udy 1A wle x A wie ) - u} = uQ)
20 = 1T (w® = {ud, ¥°> A e )",
The M-comprehension schema is:

(79) M-Comp: Let ¢ be usual and simple and. z be new.
Then the following is an aziom (**):

"V ... dzz = {u|p}™.

(38) "V ... 6" is the unmiversal closure of 0.
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ZF +M-Comp i5 the theory which has the axioms of ZF 4Cls and in
addition all axioms of M-Comp. We write X F; p to indicate L U A I ¢

for some set A of (closed) formulas which are axioms of ZF +M-Comp.
Thus I~ ¢ means that ¢ is a theorem of ZF +M-Comp. This system is re-

lative consistent to a version of ZF with urelements (see [13]), and also
to ZF. |
The following is an example of an axiom:

Jeat = {u?|ute M}".

‘We have given indices as supersd’ripts in order to show that this
is a M-formula. Since = "M = {u|ueM}”, we have the theorem:

(80) k5 MO

This can not be proved in ZF +4Cls, and therefore ZF +M-Comp is
a proper extension. Since M is a proper class, we also have:

(1) b PO £

We list some more instances of the M-comprehension schema. We
always give indices in order to show that the formula is a M-formula:

Heat = {ut|ud =u%", "dzel = {u|ud # u},
Mzt = {ulu® = av u® = 9%},

22l = {u0|ule w1A ule 1},

et = {u|ueatv ule y}7,

22t = {u|ue ¢ 2},

"Iz 2t :_{ud 13y (40 MA w0e y1A Y 5)}7,

Jz2l = {uo Vy (4°e M - (YPex' - we :l/.l):‘)}ﬂ,
ool = {(u°|u'e MAVy(y0e ul — y0e x1)}".

Therefore we have the theorem:

(82) 0,0, {,y},e0y,0 0y, —», Jo, M2, Prel".

This shows that the axioms A0, A1, A2, A3, in ZF +M-Comp are
rather sethood-axioms: (of -classes which exist according to the compre-
hension schema) than set-existence-axioms.

The universal elass is also closed under the operations of the elementary
theory of relations. In order to see this, we observe that the formula "uzv
(which is the same as “(u, v) ¢ 2" and which was alrcady considered under
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(78)) is a M-formula with variables u, » getting index 0, and z getting index
1. Therefore the following formulas are axioms:

ezt = {w|FuIo(w® = (u®, ¥)A we i a e y))}",
doet = {w'|FuTv(w® = (u0, WA ud = 1A e 21},
a2t = {w°|u Io(w® = (u, W) A vatud)}”,
ezt = {w*|Ju Iv(w® = (u°, W) A Is(u0as0A syo0))},
deet = {w[TuIv(w® = (U, YA u0lPA e y1)}7,
ezt = {o°|Juuez')",
22! = {u®|Jv uzte®}".

This gives the theorem

(83) 5 "@xy,id,, a7, oy, w1y, doma, ranze V7.
Next we show that the class of hereditary sets is real. It holds
F 2z =V o 32z = {o|ze MA TC(2) < M}".
The right-hand side wi]l be transformed equivalently:

A2z = {z|ze MAVY(ye TC(@) > ye M)}“',
qor = {wlwe MAVy(Vz(zeM - (Transyz A & S 2 — Y« 2)) —>yeM)}

1
’

Foot = {mﬂiwoe I\IAVy(Vz(z°eM —>(V?LV’D('U°€ M — (ue p'A D€ 21
—> ue 1)) AVw(wle 21 > we 21) —> Y0 zl)) — 9% M)}ﬂ.

We have given superscripts in the last formula: It can easily be
verified that variables «, #, v are correctly relativized to M and that the
other variables need no relativization. Therefore the last formula is axiom
and we have the theorem:

(84) F VeO

We called a set theoretical condition a simple and usual formula such
that all variables are relativized to M. This is certainly a M-formula and
therefore we have.the theorem (77) that these conditions define real
classes.

Let ¢ be a condition purely on V with free variables z, 2y, ..., 2,
(i. e. @ is simple and usual and all bound variables are relativized to V).
This is equivalent to a M-formula since the relativization clauses "ve V"
are equivalent to M-formulas (giving index 0 to ») and the whole formula
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can undergo equivalently an additional relativization to M. Thus ¢ will
define a real class.

(85) yy vy Ty V' {2|2e VA e V" (if @ is purely on V with

free @y, ..., 2,2).

Therefore we can say that all classes of the wellknown system NBG
exist in ZF +M-Comp. ,

Actually, for the last theorem it would be convenient to identify
_the primitive ordered pair {z, y> with {{z}, {#, y}} which maps sets onto
sets and hereditary sets onto hereditary sets. But this is possible since
the formula "z = {{z}, {z, y}}" is equivalent to a M-formula with 2, z, y
getting index 0. Since this is the only property of "z = (=, )" we need
here, we can identify {(z,y)> and {{z}, {=, y}}. We give an equivalent
reformulation of 2 = {{z}, {r, ¥}}" with indices now:

rﬂzl(z‘fe MA 2 = 2A VYV, (wlez »wEeM)vaz(wgeM —~ (wie2]
v'l
o (Vu(ulew; o u® =) vVo(olew; <> 1° =av o =y°))))) .

The theory ZF4M-Comp thus proves to be quite comprehensive.
One could ask whether in this theory there are “big structures”, e.g.
ag the permutation group of V. But it seems not possible to derive in
ZF +M-Comp that the class of all (real) one-one-function from UV to U
is real.

In section 7 we present the system ZF +NF where classes like this
exist.

6. Further considerations on ZF +M-Comp

‘Before going to the next set theory over classes, i.e. to ZF +NF,
we bring some additional material about ZF +4+M-Comp.

It is tiresome to have the M-comprehension schema only for usual
and simple formulas. For practical work it would be convenient to work
with the full langunage and to use abbreviations.

Our first topic will be to accomplish this. We introduce certain
well-behaved formulas and terms to which we assign signatures.

We will give rules how these formulas and terms can be combined
and how a signature of the result is computed. In doing so, one can work
with abbreviations. Any well-behaved term will denote a real class.

.Signatures are defined by means of three symbols which we write:
0,1, M.
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(86) A signature o is a mapping of some finite set of variables into
{0,1, M}. The variables in the domain of ¢ are the variables of o,
the variables x of o with o(x) = 0 are the B-var tables, with o(2) = 1
are the C-variables, and with o(z) = M are the M-variables of o.
If the domain of o is {my,..., z,} (with z,,...,2, different) and
o(@e) =1 (L<k<n), then we say that o is {iy,...,5,> with
respect 10 Tyy ..y X,.

E. g. if ois <0, 0, M) with respect to z, y, 2, then 2, y are the B-
variables, 2 is the (only) M-variable, there are no C-variables.

(87)  Let o be a signature and the free variables of ¢ be variables of o.
@ 18 a M-expression of signature o iff there is a simple and usual
M-formula v containing exactly the variables of o free such that
under some assignment of indices in y according to (78) for any
x of o:

(1) o(z) =0 iff x 18 getting index 0 throughout vy,
(ii) o(x) =1 iff z i getting index 1 throughout v,

(iii) o(w) =M iff @ is gelling index 0 at some places in v and index 1
at other places in vy,

(iv) if 2. ..., 2, are the M-variables of o, then "2y, ..., 2,e M" Hpey.

If ¢ is {4y, ...,1%,> with respect to z,,..., z,, then we also say that
@ is a M-expression of signature {i,,...,%,> with respect to z,...,®,.
The reference to the variables is omitted if it is clear from the context.

We also speak of the E-variables, C-variables, M-variables of a for-
mula or term. This is, of course, always meant with respect to some spee-
ified signature. M-expressions arc thus formulas equivalent (in ZF 4+M-
Comp) to usual and simple M-formulas. The signatures show which indices
are given to the free variables. A M in the signature indicates that both
indices are given to the corresponding variable. The equivalence need
only hold if these M-variables are restricted to sets.

The following formulas are M-expressions of the given signatures.
It is always understood (here and in future) that the signature is with
respect to the free variables in the order of first occurrence in the ab-
breviation, given for the formula:

"xey” Signature: {0, 1),
=y Signatures: {0, 0>, 1,15,
2 = {x,y>" Signature: (0,0, 0>,

i E=R Signature: (1,15,

Tuay’ Signature: (0,1, 0,

"Relation (#)", "Function(z)" Signature: {1).
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The equivalent M-formulas have already been given.

Signatures are not uniquely determined. To any formula ¢ we can
equivalently add by conjunction clauses like "dy(zeyv z¢y) or "y (yex
vyda) or "wexzva¢x' bringing in additional occurrences of z either
with index 0, or index 1, or both indices. This shows that we can
change in a signature a 0 or 1 into & M and that we can extend signatures
with resprect to additional variables in an arbitrary way. But in general
it is not possible to change a M into 0 or 1 or to interchange 0 and 1.

The superposition of the signatures o, v is the function p coinciding
with ¢ on the domain of ¢ and coinciding with ¢ on the domain of p,
except for the case that o and 7 differ for a variable # which is the domain
of o and in the domain of 7. In that case ¢(x) = M.

E.g. if ¢is {(1,0,1) with respect to 2,2,y and 7 is (1, M, 0> with
respect to y,u, 2, then the superposition is (0,1, M, M) with respect
to @, ¥y,2, u.

Deleting a variable x of a signature o means to restrict ¢ to the domain
from which x is deleted.

L. g if ¢ is (0,1, M, M) with respect to z, y, 2, u, then (0,1, M)
with respect to @, y,w is got by deleting 2.

The composition of M-expression is governed by the following theorem:

(88) If @,v are M-expressions, then "o, "(pA w)", (pv )" are M-
exPressions.
If @ is a M-expression and z is a E-variable or C-variable, then
Vg, "Azp are M-expressions. If ¢ is a M-expression and x is
arbitrary, then Vao(ze M — ¢)", “Az(ze MA ¢)* are M-expressions.
In any case it is clear, what is the resulting signature.

For the proof of (88) suppose
21y e M 9 o7, Ty e MU E Ty o g

for M-formulas ¢',y" which can be considered to be without common
‘bound variables. Then we have

2y e M T p o T
21y s 2y Yr e Ye MU (@A w) o (@' Ay))A ((pv ) « (¢ v ).

The right-hand sides of the equivalences are M-formulas.
If 2 is not a M-variable, i. e. not among #,, ..., #;, then we can derive:

21y e M "(Vap o Vag') A (Jap — Jap').

The right-hand sides of the equivalences are M-formulas (give @ the
same index as in ¢'),
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If # is a M-variable, say @ is 2, then we can derive
ay ooy 21e M7 B (Vo (ze M~ g)  Vo(ze M- o))
A(3z(xe MA @) < Jz(ze MAg))",

The right-hand sides of the equivalences are M-formulas (give to the
indicated occwrence of z index 0). .

If z is not a M-variable, we can malke it a M-variable by changing
the signature and proceed as before.

The signature of "7]¢" is the same as of ¢.

The signature of "(pA )7, (¢v y)"is the superposition of the signa-
tures of ¢ and of .

Signatures of the quantified formulas are got by deleting  in a signa-
ture of ¢.

We now introduce E-terms and C-terms.

(89)  Let v, o be signatures, z a variable of v, t(z) =0 or 7(z) =1,
let o be got from © by deleting =z, let z,, ..., 2, be the M-variables of o,
and the free variables of X be variables of o. Suppose that

I'z — X'I
i8 a M-expression of signature v and:
21y ey e M "X e D Then:
X 48 a E-ferm of signature o iff ©(2) =0,
: X is a C-term of signature o iff v(2) = 1.

Let us use “regular” as a common denotation for M-expressions,
E-terms, and C-terms.

It is convenient to write the signature of a regular term rather as
a (n+41)-tuple than as a n-tuple, adding a first compenent, indicating
whether it is a E-term or C-term. Therefore, if o is (%4, ..., 1,) With respect
to x,, ..., z,, then we say that X is of signature {0|%,, ..., i,) with respeet
to zy,...,2, iff X is a E-term of signature o, and X is of signature
{1|iyy ..., %,> With respect to z,,...,2, iff X a C-term of signature o.

We give examples of regular terms. The equivalents of formulas
2 = X" with a suitable indexing have already occurred, and "XeD
is already known.

x, signatures: <010>, (1|15,

(x, y>7, signature: {010, 0,

M, 3, O, signature: {1},

"{zx,y}", signature: (10,0,

rny, 2oy, exy , woy", wly”, signature: (111, 1),

r—z","U 2", "M &, Pz, "id,", "7, "doma”, rana”, signature:
(11,1,

"x(y)", signature: (0|1, 0).

3 — Dissertationes Mailhematicae CVI
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Regular terms that:denote sets are very convenient since they can
serve both as C-terms and E-terms.

(90) 7 Lot X be a regular term with the M-variables 2y, ..., 2.
\' Suppose zl, cageMT B "X M.

Then ‘X is as well a C-term as a B-term.

AT

“iThen we can derive:
21y ey el 2 =X o dy(ye MAy = 2Ay = X)".

2

" "I X is a O-tetm, then we give indices to the new variables of the
right-hand side of the equivalence in the following way:

Ay (y'e MA Y° = 24yt = X)".

This shows that X is a E-term.
If X is a BE-ferm, then we give indices in the following way:

"By (yPe May* =2A y° = X)7,

showing that X is a C-term.
Using this theorem and axiom A 1, we get a new signature for {z, y}:

“{z,y}" has also signature 0]0, 0).
Using A0, we get a new signature of "@":
| ’EJ" has also signature {0|).
The composmon of regular terms is governed by (91), (92), (93).

(91_)» If Xy Y ‘are E-terms, then (X, ¥)" is a B-term.
“.. For o signature of this term iake the superposition of signatures
of X and Y.

For. the proof consult (15) and replace the formulas 2 = X,y = X
occurrmg there by M-formulas without common bound variables. Note
that "z = =|=" is now "z =@" and can be considered as a M-expression
of mgnatme 0. "(X Y)e V" is already stated in (12).

(92) Suppose @ is a M-expression.
If @ is a E-variable, then "we™ is a B-term;
if @ is a C-variable, then "wwep” is a C-term;
if @ i8 arbitrary, then " (ze M A @) is as well a O-term as a B-term.
Signatures are got by deleting .

“ Suppdse 1y e M B Tp o 97 for a Mformula .
) If z is a E-variable or C-variable, i. e. not among z, ..., s, then:

vy zeM | T2 lngHZ"'lwip
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The right-hand side of the cquivalence is a M-formula (give to z and the
indicated occurrence of z the same index as z has in ).

If » is a M-variable, say z i§ 2,, then (using "l =@eM"), we can
derive:
Zyy oy e M 2 = w(we MAg) o 2 = w(ze MA y)7.

Again the right-hand side of the equivalence is a M-formula (give
to z and the first indicated occurrence of x the same index, which may
be different from the index of x in ).

If x is not a M-variable, then we can make it a M-variable by changing
the signature and proceed as before.

Finally we remark that "we, ur(xe MA ¢)¢ V™ is already stated in (12).

Axiom OP’' would imply that all regular pair terms are C-terms
as well.

(93) Suppose ¢ is a M-expression.
If x i8 a E-variable, then "{x|¢}" is a C-term.

If ® is arbitrary, then "{zlze MA@} is a C-term.
Signatures are got by deleting x.

Suppose "2;,...,2,eM* Tp < ¢* for a M-formula y.
If 2 is a E-variable and thus not among #,, ..., 2, then we can derive:

2y ae M e = {zlg} o2 = {p]y)".

The right-hand side of the equivalence is a M-formula (give index 1
to z and index 0 to z).

If »z is a M-variable, say « is 2;, then we can derive:
oy oy e M I "2 = {wlre MAp} o2 = {z]ze MA v} .

Again the right-hand side of the equivalence is a M-formula (give
index 1 to z and index 0 to the indicated occurrences of ).
If 2 is not a M-variable, then we can make it a M-variable by

changing the signature and procced as before.
The M-comprehension schema yields:
e M ry}eV? (in the first case),

r

Zyy ooy e M0 T{z|we MA 9}V (in the second case).

Therefore we also have:

r

21y vy e M7 T{zp)e U (in the first case),

T2y «vuy e M7 h "{mlmeM/\ p}eV? (in the second case).
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Now we give substitution properties for regular expressions and
terms:
(94)  Suppose ¢ is a M-expression and X a regular term.
(i)  If z is a B-variable of ¢ and X is a B-term, or if x is a C-
variable of ¢ and X is a C-term, then ¢% is a M-expression .
(i) If @ and X are arbitrary, then
"X eMA g%’
18 o M-expression.

A signature is got if we delete z in the signature of ¢ and super-
pose it with the signature of X.

Let 2, ...,% be the M-variables of X. Then we have "z, ..., z,eM".
B "X e Q" Therefore:

oy ae MU ok o (Jez = Xagl)
The right-hand side of the equivalence is a M-expression. This is

seen when we give to zin "z = X" and ¢] the same index as z has in ¢.
We also can derive: ‘

2y o e M "X eMAgk o d2(ze Maz = Xagf)".

Again the right-hand side of the equivalence is a M-expression.
This is seen. when we give to 2z in "z¢ M" index 0, to 2.in "2 = X index 0
or 1 (a8 X is a E-term or C-term) and to # in ¢] everywhere the same index
as ¢ has at corresponding places in ¢.

We can also substitute into terms:

(95)  Suppose Y, X are reqular terms.
(i) If x is o E-variable of Y and X is a E-term, or if x is a C-
variable of ¥ and X is a C-term, then Y% 18 a regular term.
(i) If x is arbitrary and "2y, ...,2zeM I "XeMY, where
21y ...y 2 are the M-variables of z, then Y% is a regular term.
In any case Y5 is a B-term or C-term according to whether Y is

a B-term or C-term. A signature is got if we delete x in the signature
of ¥ and superpose it with the signature of X.

The proof that z = Y% is a M-expression is simple by applying (94)
to the formula 2 = Y. In case (ii) use the additional hypothesis to derive:

21y .00y e M7 P‘; 2 =Y o XeMaz = Y5,

Tinally we have to prove the reality of ¥%. Let y4,..., ¥, be the
M-variables of Y. By regularity of X and y we have:

Py ey e M "XV a0d Ty .oy Ype M7 b T D,
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Since in case (i) # is not among ¥4, ..., ¥,, We even have:
Y1y ooy Yme M 5 VX e V.
Since "X eV, VoX eV | "Y%eDV7, we get:
rzl, ey Zl, yl, tesy y,neM.’ 1_2' rYerqJ-‘.

The M-variables of Y% certainly comprise 2y, ..., 25 Y15 +vey Ym-
In case (ii) we may assume that z is y,. Then we get

Yoy ooy Yme M V(e M > Ye V).

Since
"XeM™, Ve(zeM - YeU)" |- "Y%eD7,
we geb
By e By Yoy ey Y MT T 2D,
The M-variables of Y% certainly comprise 2y, ..., 2 Yay eooy Ym -

Theorems (88) (composition of regular expressions), (91) (composition
of regular pair terms), (92) (composition of regular description terms), (93)
(composition of regular absiraction terms), (94) (substitution into regular
expressions), and (95, 1) (substitution into reqular terms) give purely syntactical
conditions for composing regular ‘expressions and terms and computing
their signatures. The important point is that one need not expand formulas
into primitive notation and transform them into simple formulas. One
can work with abbreviations and need only keep record of the signatures
which is quite casy. Of course, we are interested in regular expressions
and terms because of the following theorem (which in our presentation
is nothing but a part of the definition of regular terms):

(96)  If X is any regular abstraction term with M-variables 2z, ..., 2,
then

rzl, ---,zlEIVI.‘ '_2 r.‘YEQ)-l.

In theorem (96) together with the syntactical theorems about the compo-
sition of regular expressions and terms, one can see a sort of reformulation
of the M-comprehension principle which is more convenient for practical
work.

An additional flexivity is given by (90) and (93, ii). If we have proved
that a regular term X denotes a set, then it can be used in a rather arbitrary
way for the composition of other regular expressions and terms. (Also
in (94, ii) then clause "X e M” can be deleted.) We bring some examples
for the substitution.
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"z = y” is of signature {1, 1>, ranz" is of signature (1[1). So we can
substitute "ranz” for z in "z < ¥ and get "ranz < ¥ of signature (1, 1)
(with respect to 2, y).

Combining it with "funetion(z)" (of signature (1)) and "domz = 27
(of signature {1, 1)) to the formula "function(2)A domz = zA ranz < 47,
we see:

"zl -y is a M-expression with signature (1,1, 1).
Substituting "{}" (of signature (00> for v and "{x, y}" (of signature
{010, 03) for » into "{u, v}" (of signature (0(0, 0>) we see:
{{x}, {w,y}}" is a BE-term of signature <0]0, 0.

A corresponding M-formula had already been given at the end of
section 5.

We now give some more general applications.

Consider the formula "z = XA ¢” for regular X, ¢ and new =z.

This will have certain M-variables and %,,..., %, may be the M-
variables among «y,...,%, and 2,...,# may be the remaining M-
variables. Then

Aoy 30, (Y ooy Yme MAz = XA g)°

is regular with M-variables z,, ..., 2;.
If X is a BE-term, then 2z is a E-variable and

2|3, .. A2, Y1y oy Yme MAz = X))
is regular.
If X is arbitrary, then
"{z|lze MAaTx, ... A2, (Y1) «o s Unme MAz = XA@)}"

is regular. But this is equal to

eldey .. 2 (1) ooy Yy XeMaz = XA )}
So we have the following theorem:
"(97)_ Let X be regular of signature o and ¢ be regular of signature t.
Let yiy ..., ¥y, be the M-variables of the superposition of ¢ and

which are among @y, ..., &, and let 2, ..., 2, be the remaining ones.
If X is a E-term, then

r

Z1geny 2e N 5 |_2 F{Xlxl....,rnyli vy Yme MA@}e V7.
If X s arbitrary, then

r 11—
By vy e M7 r{-‘lel,...,:cnyll ooy Yy X e MA@}e V7.
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Let now X be the n-tupel term "(xy, ..., z,>" which is of signature
{010, ..., 0>. The M-variables of "2 = X A ¢" are then the free variables
of ¢ which are not E-variables and rmn.ong Zyy.eny By, and the M—vanables
of ¢ which are not among z,, .. Therefore we have: '

(98) Let ¢ be regular; let y,, ..., Yy, be the free variables of ¢ which are
not EB-variables and are among %y,...,%,, and let 2z, ...,2 be
the M-variables of ¢ which are mot among ..., x,. Then:

21y ey e MY l‘; 1y ooy BulY1y ooy Yme MA@le V.
A special case for n =2 and m = 0:

(99)  Let @ be regular, u, v B-variables of ¢ and z,, ...,z the M-variables
of p. Then:

21y ey e M7 | {u, v|pte V.

Conditions ¢ of this sort, often without any M-variables, are common
in relation theory.

We now consider what relativizations are needed to malke

r{w Liyoery Tplw = XA}’ "

real. Let y,,..., ¥, be the free variables of "w = XA ¢" whlch a.re not
E-variables and are among #,, ..., %,, and let 21, ..., 2, be'the M- varlables
of "w = XA ¢, which are not among Wiy ey Bye If X is a B- term, then
w is a E-variable, and according to (98)

v 2e M7 "{w Byy coey Byl Yzyeesy ymeMAw—XAqa}s"O"

If X is arbxtlary, then we can consider w a M-varmble, and we have

'

21y eeey e M7 I-—,, Wy L1y ooy Bl Ysy ooy Ymy 'w'eMA"w"%- XA(p}e‘O"

But "weMaw = X7 can be replaced by "XeMA'w—X"
So we have the following theorem:

(100) Let X be regular of signature o and ¢ be regular of sighature v. Let
Y1y +oey Ypn De the variables of the superposmon of o .and T that aré
not E -variables and are among ,,..., s, and let 2., ..., 2 be the
-remaining M-variables.

If X 18 a E-term, then: I

2y ey e M b By, ooy By > K (Y, ooy Y MA@ eV
If X is arbz‘t-rm'y; then:
TEADS }—), @y ooy @ > X Y1y ooy Yy Xe MA@ eV
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We consider some examples.
First we see that the projections are real:

(101) o,V (for 1< h<n),

{#}" is of signature (1]0), "z L y” is of signature (1[1, 1>. Thus "z U {x}"
is of signature (1[M).-Therefore we have by (100):

b oo U {z} |2,z U {z} e M>e V.

We can drop condition "z u {z}¢M", which follows from "ze M.
Therefore:

(102) H (@ a v {z}|oeM)e V.

There seems to be no way of extending this funetion to 0.
Note, however, the following result (which we overlooked for some
time). "{w}" can be considered to be of signature (0]0). Therefore

(103) b o {z})e V7.

This proves that in ZF 4M-Comp there is no phenomenon like the
Non-Cantorian classes of NF (see [26]). For any class there is the class
of its unit subclasses and a bijection between these classes. In fact, by
(103) there is such a bijection for V. Because of (83) the restriction of
this function to any real class and also the range of this restriction
are real.

The preceeding theorems (about regular expressions and terms)
were. intended to extend the motion of M-formula to the full language.
This is convenient if one wants to work with the system. We now adopt
a different strategy, namely to reduce the simple formulas to still fewer
types of quasiatomic formulas. This is convenient if one wants to work
about the system.

First we note that we can get rid of the descriptive operator and
quasiatomic formulas of type 2 = we™ (with 2 not occurring in ¢). By

1

(18), spelling out 3 and noting "L = @7, we get:
(i) l—lrz =wp & (IyVe(r =y o p)AVr(z =2 o ¢))v(T3y
Vi(z =y > q)az = 0O).
Similarily we can derive:
() %= w@eMag) o (Hy(yeMAVm(a:eM > (z =y o p))
AVz(zeM - (z =2 (—-)q?))) v(_l Elg/(ye NIAVx(mél\I > (z =y )
AR = 0’).
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Now suppose that "z = wg’, "2 = w(rze MA@)" are simple and
usual M-formulas, In the first case 2 is a E-variable or C-variable of ¢,
in the second case  is arbitrary. Suppose now that we can logically equi-
valent transform ¢ into a simple and nsual M-formula y of the same signa-
ture as ¢ without description terms. Then we replace ¢ by v in (i) and
(ii). Then we give to , ¥, # in the shown subformulas "z =", "z = 2"
the same index as z has on the left-hand side. Then we replace "z = @”
by "dy(ye MAy =2AVz2¢y)" or by "Vazx¢z" as z has index 0 or has
index 1. ,

In case (ii) we in addition give index 0 to z and ¥ in the shown sub-
formulas "ye M", "we M". If we finally make the bound variables all dif-
ferent, then we see that the right-hand sides become simple and usual
M-formulas of the same signatuwre as "z = we’, "2 = w(re MA ¢)" but
without description terms. Repeating this, we see that any simple and
usual formula is logically equivalent to a simple and usual formula of the
same signature but without description terms.

In a similar way we can eliminate quasiatomic formulas of the type
"z = {z|p}" (¢ not in p). We use the equivalences:

(iii) I—1 2 = {x|p} > Vr(2ez - ¢)" (if is a E-variable of ¢),

(iv) I—-1 2 = {x|re MA ¢} & Vr(zez - ze M)AV&G(weM —(xez <))
(if # is arbitrary).

We can eliminate quasiatomic formulas of type "ze {z|p}’ using
the equivalence:

(v) = ze{x|g} o

In any case it is easy to check that, if we replace ¢ by v (of same
signature but without subformulas of these types) and make all bound
variables different, the right-hand sides become M-formulas of the same
signatures as "z = {r|¢}", 2 ={z|lze MA@}, "ze{x|p}".

Repeating this procedure we can completely eliminate quasiatomic
formulas of the types "z = {x|¢}", "ze{x|g}".

We formulate our results as a theorem:

(104) Any M-expression is equivalent to a M-formula of the same signature
containing only the following types of quasiatomic formulas (which
are aclually atomiec): "wey”, "we M, "x =y, "2 = {z, y>" .-

So it would in principle be possible to restrict the notion of simple
formula and drop clauses (iv), (v), (vi) in (78). Using an additional axiom,
we can go even further.

Suppose that we add (53), i. e. the axiom OP’, ideuntifying (z, ¥
with the set.{{z}, {w, y}}, which is often used as an ordered pair. There
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is no problem in doing so, since the sets {{=}, {=, y}} have all the properties
of ordered pairs and in addition the property given in clause (iii) of (78),
namely "z = {{z}, {z, y}}" is a M-expression of signature <0, 0, 0). This
was already shown at the end of section 5. So we can identify {z,y) and

{{z}, {o, y}}
(105) It is relative consislent to add aziom OP' {0 ZF 4+-M-Comp.

Note that the formula given in section 5 was simple and without
descriptive operator and classifier. Adopting axiom OP’, we can therefore
climinate the primitive notion {...,...) from M-expressions without
changing signatures.

Finally we can also eliminate the equality symbol in M-expressions.

We can use the equivalences:
- "z =y < Ve(zex > zey)"
1
(if "z =97 is considered to be of signature (1,1)) and
l—; fp =y o> Ve(zez o yez)”

(it " =¥ is considered to be of signature (0, 0)).
So we finally see:

(106) Adopting axiom OP', any M-expression is equivalent to a M-formula
containing only the following types of quasiatomic formulas:

"wey', "Txe M.

For formulas of this type, in definition (78) only clause (i) remains.
But then the M-variables are simply the variables occurring on both sides
of the e.

So let us consider the following rather simple comprehension pringiple.

(107) M-Comp*:
Let ¢ be usual and only contain connectives, quantifiers and atomic

formulas of type "wey™, "we M". Let z be different from x and not
n . If we relativize in the formula

V... AV (zez < g)°

all variables occurring on both sides of « to M, then the result is an
azriom.

Let ZF +M-Comp* be the theory which has as axioms the axioms
of ZF +(s, and M-Comp*. We havoe thus seen that ZF 4+M-Comp* 40P’
is the same as ZF+M-Comp+OP'.

The theory ZF +M-~Comp* (restricted to a language without primi-
tive ordered pairs) is actually the theory G* considered in [14]. We did
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mnot use the indexing there which is not needed for the formulation of
M-Comp*. There seems to be one more difference. In [14] we were writing
"Mz instead of "we M and accordingly such z did not bring in additional
left-of-€ or right-of-e occumrrences of x. But we can also avoid additional
guch occurrences of z with our type of atomic formulas, If the z in "Mz™ is
not to be counted as a right-of- e occurrence, then we translate it by "ze M™.
If the z in "Mz is not to be counted as a left-of-¢ occurrence, then we
translate it by "y (y e MA Ve(ze y < z¢ 2))". The equivalence of the systems
G* of [14] and ZF +M-Comp* is thus completely settled.

In clause (iii) of (78) we say that "z = {x, ¥, is of signature {0, 0, 0).
Our next problem will be the question whether we can consider it also of
signature (1,1,1)>. Actually, this is impossible in ZF +M-Comp+OP".
‘We first note the following theorem which is already a theorem of ZF 4-Cls:

(108) R CHEIRCNOTEI TR
For the proof let X be {(z, 2> |<{x, z)>¢x}". Then for any y:

Wy Y VT Ky, e X o (Y, y) =Lz, 2dA 2,054 9)"

The premise "¢y, 4> eV is provable. Furthermore (¥, y) = <&, x)"
is equivalent to "y = &7, and then the right-hand side of the equivalence
is equivalent to "(y,y>¢y". So we have:

}_1 Yy PeX oy, Y4y’

Substituting X:

"XeV 5 (X, X)e X > (X, Xy¢ X

This gives  "X¢ D"

Suppose now in ZF 4M-Comp 40P’ "z = {z,y>” is of signature
{1,1,1). Then Kz, )" is a C-term of signature <1]1>. Since by axiom
OP' we get (&, z)e M7, it is also an E-term and of signature (0]|1).
Substituting this for y in formula "y¢ 2" (of signature <0, 1)) onc gets
formula "(z, x)¢ 2" of signature {1).

Therefore by (97) we could derive:

@, x|z, xye MA (&, By ¢ w}e V™.
Again by OP’ we could derive:

"(ba, wYe MA{z,abdx (B, 2y,
Therefore we could derive:

", | oy ) f e VY
contradicting (108).
However, in our proof we used that all ordered pairs arc sets.
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The question arises whether we can have "z = {(z, y)" of signature
<1,1,1> if we drop this assumption.

This is indecd possible, but we have to take another ordered pair.
Let us try the Schmidt pair which is a set iff both components are sets.
It is easily seen that

Ty — {{{u}}lue m} U {{Q), {v}}ve i‘l}-l

is a M-expression of signature {1, 1, 1>. The problem is now whether we
can have it also of signature <0, 0, 0>. This signature is quite indispensahle
whereas signature (1,1, 1> would only be a welcome addition.

In fact, we can have both signatures.

(109) It is relative consisient to add OP'' to ZF 4+M-Comp and replace
clause (iii) in (78) by

(iii')  the indicated occurrences of z,x and y in a subformula
2 = {x,y>" get all the same index.

In order to see this, we repeat in a modified form the consistency
proof of [14].

The consistency proof is relative to a set theory which is not “over
classes” and therefore intuitively better accessable. It is a set theory
with urelements, set over urelements, and classes of such sets which are
all ultimate if proper. Of course, the set axioms have to be changed a little
bit. Since we want to admit urelements, we drop the extensionality
axiom. Since we will also have ultimate classes, we take the Kiihnrich
pairs, i. e. adopt OP"' (**), We must modify A 1 which contradicts ultimate
classes. We replace it by

(110) A1': "z, yeBL — {w, y}e M.

The replacement schema is now claimed only for functions mapping
elements into elements.

1
(111) 85': "we MA (Vyex)(Jze EL)p — {z|2¢ BLA(Jye x)p}e M".

Clags existence axioms are given by the so-called impredicative
comprehension principle saying that any class of elements is real which
first oceurred in Quine’s system ML [21] and was first brought into con-
nection to set theory by Wang [31].

(112) I-Comp: "X c EL - X D",

By this comprehension principle UR, M, V, On turn out to be proper
classes, but UC (which is equal to PC), Cls, U are virtual.

(**) Ordered pairs for ultimate classcs arc not nrgently needed and one olten
gets along without them. But in view of our general frame CRF (scetion 3) it wonld
be odd to have real objects without ordered pairs.
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Since all proper classes are ultimate, any eclass being an element
must be a set. Conversely of course sets should be elements and not ulti-
mate. Therefore our last axiom is:

(113) ™ = EL n Cls".

The primitive notions M and ¢, > could in principle be eliminated,
and this is usually done in set theory. Let us call this set theory ZFU®, the
second order Zermelo—Frankel theory with urelements admitted(%°).
This type of set theory is well-known and widely used. Therefore a relative
consistency proof to ZFU® can claim to give some plausibility to the
system under consideration. This i3 still true if we add other rather strong
but familiar axioms.

As additional axiom we take:

(114)" "x is a strongly inaccessible cardinal and UR 1s a set of cardinality »™.

We now use this set theory as metalanguage. We want to get a model
4 such that ¢ is the natural element relation, UR4, M4, UC’ have all
the same cardinality » (so that a bijection # between UC? and UR?
is possible) and which is “full” in sense that M“ is closed under the forma-
tion of images by functions mapping elements of M“ onto subclasses
of EL* (this will give the Ersetzungsschema){®!).

Moreover, the formation of ordered pairs of elements and classes
gshould “run parallel” with respect to the bijection F.

Tirst -we consider a model 4’ such that ¢, ¢,>" are natural
(i. e. the same as in ZFU® plus axiom (114)) and:

UR?" = UR = set of urelements.

M'" = H, = set of sets that arve hereditarily of cardinality less
than . ' . ’

UCY =P(UR u H,)\H, = set of sets of cardinality » that con-
tain only wurelements and sets of H,.
. 0%, the individual domain of 4, is the union of these three disjoint
sets.

A" is a model of ZFU® such that UR?" M?" have the same cardinality
%, UC?" has greater cardinality. Using the downward Lowenheim—Skolem
theorem, we thin UC?” down to cardinality » leaving UR*', M*"
unchanged. So we get a model A’ of ZFU® such that <, {z, )"
are natural and

UR4 = UR?", MY =M%, UC"<c UC",

(3) We use the term “seccond order” since we look at this theory in a way
that the class variables are counsidered as second order variables' of the eclement

variables, c. f. footnote (5). )
(31) In [14] we used only a denumerable model that was not full. The im-

provenient was suggested by R.B. Jensen.
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UCY has cardinality ». Moreover, 4" is full (in the sense given above)
since 4" is full and UC'", M*" have not changed.

The model 4 comes from A’ by redefining the ordered pair and leaving
everything else unchanged. So we simply omit the primes and define
(@, > new for z, y « V4. This definition will come later. We first describe
the model A*. Since UC? and UR? have the same cardinality, therc
is a function F which is a one-one mapping of UC' onto UR“. We extend
F to afunction @& by putting

@ = F U idya.

So @ maps UC? u M4 (which is Cls?) one-one onto UR? u M4 (which
is EL), and @ is the identity on M. The situation is visualized in a diagram :

o
astd \
(OA \ MA G

v

\.| UR? /

Model 4

We use the function & to replace the urelements by the ultimate
clagses and define a new model A*. The domain V4" of A* is Ols? and
M is M. We redefine the e relation as follows:

2ty o Ga)’y  (for o, yeOls?).

For the ordered pairs we could take the Kiihnrich pairs restricted
to classes. But of course the Schmidt pairs are simpler(®?). So we put:

(, Dt = ({[{u}}lue m} U {{@, {w}}lve y})d‘

This ends the description of the model 4*. We now return to A and
define the ordered pairs there: we put

@, yp* = (@, Yy if z,yeCls?,
(@, H* = GG (=), G ()™ it z,yeBLA.

If z,ye M, then both lines define the same value. The pair is not
yet defined for ze¢ UC! and y< UR? or for #¢ UR? and ye UR. For
these arguments we put:

(e, ?/)’A = H(z,y),

() Any two-place function will do if it maps M4 x M4 one-one into M4 and
(Cls4 x Cls4)\ (M4 x M4) one-one into UCA.
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where H iy some one-one function mapping (UC! x UR?) u (UR4 x UCY)
in M“ such that the values are not pairs already defined. This is a suitable
definition of ordered pairs. The axiom of ordered pairs e.g. is fulfilled
since it is a2 one-one function. For the one-one property it is important
that {x,y>“*" ¢ M‘ if one of # or y is in UC4, since otherwise {(z, y)> and
{G(x), G(y)> would be different but have the same ordered pair in 4.
The axioms of ZFU® are actually given (with the exception of OP'’')
without mentioning ordered pairs. So 4 will be a model of ZFU® except
OP’’’. (Note that in the schema S 5’ the formula ¢ is arbitrary, so identi-
fying {x, y) with some other one-one function will make no difference.)
We now give a syntactical definition which parallels (78):

(113) Let ¢ be usual and simple and assume that indices are given to the
variable occurrences in o according to (78) but with (iil) replaced
by (iii') of (109).
Then ¢™C comes from ¢ by relativizing to EL all variables get-
ting index 0 throughout ¢, relativizing to M all variables getting "_both
indices in @, relativizing to Cls all variables getting index 1 throughout
p. We call ¢=¥C o E-M-C-formula.

Let us speak of signatures of E-M-C-formulas in the same way as
we spoke of signatures of M-formulas. The signatures indicate what
indices are given to the free variables of the formula.

‘Now congider two assignments k, 1* of values from 0¢, 0" to the
variables of some signature ¢. We say that h, A" coherent with respect
to o if

hz) = W*(x) if z is a C-variable of o,
h(x) =@ (h*(z)) if  is a B-variable of o,
hiz) = h*(z) = G(h x))e M* if # is a M-variable of o.

In particular, &(x) is a class of 4 if z is a C-variable, and an element
of 4 if » is a B-variable.
The main lentma is:

(116) If p is simple and usual and h, h* are coherent, then it holds
4 |= ¢®MCR] & 4% |= M [R*].

The proof is straight forward by mductlon on the structure of ¢.

We consider the case that ¢ and also g®™C ¢ are "z = {x, y>". Let

a =h(z), b =h(®), ¢ =h(y), a" =1L"(2), b* = h*(a), ¢t =1 ().
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If all variables get index 0, then by coherence
a =@a%), b=@GE®"), c¢=0(")

and
a=,0 oa — G(@™ 1), 67 (0)™)
@7 a) =<G7Hb), G (e
- a = (b*, .

If all variables get index 1, then by coherence
a=a", b=0" c¢=¢,
and:
a = <b, ) o a = b, o) > at = ¥, eH.

In any case we have:
4= "2 =<(2, [l 4" |= & = (2, ) A7),

The other steps are as in [14].

For the quantifier case the following is important:

The set of possible values for a quantifier in A4 relativized to EL
is EL4. This is mapped by G~ one-one onto Cls? which is 0**, the whole
domain of individuals of 4. The set of possible values for a quantifier in
4 relativized to Cls is Cls? which is V“‘, Because of this, we can drop
the relativizations to EL for E-variables and to Cls for C-variables when"
passing from 4 to 4™

Next one shows that axioms of ZF 4+ M-Comp (except S4, S5) can
be brought into the from ¢™ for some ¢™*© which is immediately equi-
valent to an axiom of ZFU®, This is done in [14]. But S5 is also true.

Let f be a function of A* mapping « (for x« M?") onto a class ¥
(yCls?’). Then G 'ofo@ is a function of 4 mapping x onto y. Since
ceM? and A is full ye M?* = M4,

Tinally by the comstruction of (, >*, the axiom OP'’ holds in 4%
This ends the proof of (109).

Finally we give a brief remark about possible extensions:

In our system ZF 4 M-Comp we excluded urelements. We now see
how we could get a similar system ZFU 4 M-Comp with urelements admit-
ted. The function F is then supposed only to be into UR? and mnot onto
UR“. So there may be some urelements left in the resulting model 4*

However, then in the main lemma we could not drop the relativi-
zations to Cls, since a quantifier over the elasses in 4 would not correspond
to a quantifier over the universe in A So we would have to use a notion

¢"C rather than ¢ in the comprehension schema.
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7. A combination of set theory and stratification

‘We now want to add to ZF 4Cls the class existence schema of Quine’s
system NF [20], viz. the stratification schema (33). A stratified formula
can approximately be described as a formula of a one-sorted class theo-
retical language which is “like a type theoretical formula”, i. e. which by
putting superscripts to the variables can be transformed into a formula
of simple type theory. In NF any stratified condition defines a real class.
NF has been used as a basis of mathematics (e. g. see [26]). However,
NF has some odd features that make it — as we think — hardly acceptable
as a working set theory. E. g. the axiom of choice and the Aussonderungs-
schema fail. A minor point is that NF needs additional axioms: one cannot
prove that the class of natural numbers is real (unless NF is inconsistent).
We think that NF is a typical class theory and that the notion of set does
not occur in NF at all. Since we want to deal with gets too, we need the
additional primitive M (NF is usually given in a language with only e as
primitive). Formulas x ¢ M are stratified whatever the index of 2 is. Further-
more, we treat the ordered pairs as primitive and require that z = {2, ¥)
is stratified if 2, 2, y get all the same index. We say for this that the pair
is homogeneous in type. This is very convenient for the theory of relations
and functions as we will see. Moreover, we think that also intuitively
ordcred pairs should be homogeneous in type, that all n-place relations and
funections over objects of some fixed type should be for all n of the same
next higher type, and that n-tuples for all » should be of the same type
ag the arguments. Most definitions of ordered pairs (e. g. the ones in (53),
(54), (55)) are not homogeneous in type. But actually Quine has shown
in [22] that there is a definition of homogeneous ordered pairs for NF (34).
Unfortunately, the definition is rather complicated. So we consider it
simpler to treat the homogeneous ordered pair axiomatically -outright.
Because of Quine’s result we are sure that this is an eliminable extension
of NF.

The stratification is different from the indexing in section 5 in several
respects. First we can allow any non-negative integer ag index(%).

~ Secondly the indices are given to the variables rather than the variable
occurrences (different occurrences of the same variable in an usual formula
get always the same index).

Thirdly there is no flexibility in changing the signature (if one has
proved that something is a set) as is in ZF 4+M-Comp. Therefore the indexing

{(®) A combination of set theory and stratification is also considered in [3]
and [9]. See section 9 (historic remark).

() Rosser uses in his hook [26] the Quine pairs.

(%) Of course, introducing negative indices would make no difference for NF,

4 — Dissertationes Mathematicae CVI
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of the variables can be continued in a unique way to an indexing of all
gencral terms in a stratified formula. This makes it easy to define the
notion of stratification not only for simple formulas but for arbitrary
formulas and also for terms. '

For simplicity we give the definition only for usual formulas and terms
and require that any alphabctic variant of a stratified formula or term
is also stratified.

(117) A usual formula or usual general term is Jiratified iff there is an
assignment (X — Ind (X)) of indices from the non negative imlegers
to the subterms (other than M) such that:

(i) if "XeX'is a subexpression, then ind(X)+1 = ind(Y),

(i) if "X=Y" is a subexpression, then ind(X) = ind(Y),

(iif) 4f (X, XY)" 8 a sublerm, then ind("(X, ¥)") = ind(X)
= ind( Y)y

(iv) if "we' is a subterm, then ind("we') = indaz,

(v) if {z|g}" is a subterm, then ind({z|p}’) = indz-+1,

(vi) M may get different positive indices at different occurrenes.

The last condition may look strange at first sight. But it is quite
natural since other constant terms are also “floating in type”. E.g. if
U occurs in a formula ¢ at different places than, if ¢ is made usual, we have
to use different bound variables, say: "{z|z = 2}", {y|y =y} . These
terms can get quite different positive indices.

The stratification schema is:

(118)

Strat: Let 2 not occur in "{u|p}". Then
2z = {u|g}
i8 an awiom if it is stratified.
NF is the theory with axioms Ext, Strat.
ZF +NF is the theory which has the axioms of ZF +Cls and all in-

stances of Strat.
We write X f—a @ to indicate 2 v A — ¢ for some set 4 of (closed)

formulas which are axioms of ZF 4+NF. Thus — @ means that ¢ is a theorem
of ZF +NF. ?

ZF +NF seems to be (if consistent) a more satisfactory basis for
mathematies than NF alone. Since it contains a good set theory, the usual
set theoretical reasoning is possible. All theorems of ZF +Cls are also theo-
rems of ZF4NF. Moreover, we have a lot of proper classes in ZF +NF.
The fact that these proper classes have some oddities mentioned above
is perhaps excusahle. One expects that proper classes do not have all the
nice properties of sets.
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In order to show the strength of ZF 4+NF, we present some appli-
cations. We say nothing about the set theoretical part which is assumed
to be covered by section 4. All applications are therefore already theorems
of NF alone. Since NF is well investigated the theorems are not new.
But perhaps the presentation may be of some interest.

Of course, any stratified term denotes a real class. Let X have under
some indexing the index 4. Without loss of generality we can assume
1 > 0 since we can otherwise add 1 to all indices. Take new variables z, u
and put ind(2) =14, ind(#) =i—1. Then

2z = {u|ue X}"
is stratified and an axiom. This gives

(119) If X is stratified; then }-—3 "XeD.

It is convenient to introduce stratification signatures of formulas
and terms.

(120) Let 2, ..., 2, be different and the free variables of ¢ and X be in
{®1y 00ey wp}e
Suppose that ¢ is siratified under some assignment of indices with
ind(z) =% (L<k<<n). Then we say that ¢ has stratification
signature iy, ...,1,> with respect to ,,...,%,.
Suppose that X is siratified under some assignment of indices
with ind (z,) = i,, iInd(X) = 4. Then we say that ¢ has stratification
signature {t|iy, ..., 1,> with respect to =, ..., x,.

Of course, signatures are not unique. When we add to all components
the same positive integer, we get a new signature. In the following we
give the least signature, and it is always understood with respect to the
variables in the order of first occurrence in the given abbreviation.

We will not formulate rules for the composition of stratified formulas
and terms since these are quite clear. We only mention that when we
superpose signatures, they must match, i. e. may not assign different indices
to the same variable. Of course, sometimes signatures can be made matching
by adding a positive integer to one of them.

We now give a list of stratified formulas and terms with signatures.
One will remark, that most of them did already occur with the same sig-
nature in ZF +M-Comp. Only | Jz, (2, Pz have other signatures here,
and Uz, Nz, Pr which are not regular (in the sense of section 6) are
new here.

Stratified formulas:

Twey™ Signature: {0, 1),
g =9y Signature: <0, 0),
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xSy Signature: 1,15,
ey’ : Signature: 0,1, 05,
"Relation (z)", "Function () Signature: (1),

2l >y Signature: (1,1,15,
Stratified terms:

z Signature: {00,
REI2 Signature: <010, 0>,
M,2,9 Signature: {1[),
{z,y}" Signature: (1[0, 0>,
rny',Twouy, exy”, woy", ety Signature: (1]1,1>,
r—o", "id,", @™, "doma”, 'rany’ Signature: (1|1,

"B (y)” Signature: (01,05,
‘Ue, "N, Ua, "N Signature: (12,
Pz, Pa” Signature: (2[1).

We immediately get the theorem that the following abstraction
terms are real:

(az1) M, 3,0,{z,y}, s 0y, » 0y, T Xy, x0Y,

My, —,id,, m‘l; domaz, rans,
Uz, Ne, Uz, Nz, Pz, Pee 0.

But we see no way to prove "Ve V7, or "One V" since the formulation
of transitivity is not stratified.

We now give three theorems about generalized abstraction, about
relational and functional abstraction. The proofs are immediate if one
climinates the definitions.

(122) Suppose ¢ and X are stratified with matching signatures. Then:
I-; r{XlIl...In(P}E CO—"

(123) Suppose @ is straiified of signature {i,%,...,%, 51, .., > with
76SPeEt 10 Tyy ooy Tyy Y1y ovvy Ym. Then:

I_; @1y oy 2y lhe V.

(124)  Suppose ¢ is stratified of signature {i,1,...,%, J1y.eey jm> With
TESPECt 10 Ly, ..oy Lyy Y1y -0y Yoy ond X is stratified of signature
(iliy oveyty By ooy Iy with vespect o @y, ...,3,, 2., ...,2, ond
both signatures match. Then:

l? "By ooey @y H> X|@de V.
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In the same way as in ZF~+M-Comp we see that the projections
are real:

(125) 5 Pruee 0’ (for 1< k< n).

But for the other examples following (101) we get different results.

Since the term "z u {x}" is not stratified, we see no possibility to
prove the reality of the function ocemrring in (102). Since "{2}” is not of
signature {i|i)», we cannot prove the reality: of the function occurring in
(103). Actually, it i3 well known that one can prove in NF that this function
i§ not real.

(126) l; o> {r})¢ V.
In order to see this, we make the assumption:
"2|{{z} |ze V) 2257,

Since "z({x})" is stratified of signature <1|2, 0%, also " zdz({z})"
is stratified of signature (0, 2). Therefore "{z|x¢ 2({z})}” is real, and we
can assume:

o = {22 ¢ 2({z})}e V.
Under the assumption there is a x, such that 4, = 2({z,}). So we have:

"wez({zo}) & wd 2({w})"
This gives a contradiction putting z, for x. This proves

" 13zz({{z} [we D) 225 U,

! would be such

But if "w = {x > {8}>DV7, since w is one-one, w™
a function. This proves (126).

So ZF +M-Comp and ZF 4NF turn out to be incompatible.

We now want to see that classes of big structures exist in. ZF 4NF.
All first order axiom systems are stratified when the relation and function
symbols get index 1 and the individual symbols get index 0. Take e. g.
the formula "group(z, ¥)? saying that « is a class, ¥ a binary composition
on x satisfying the group axioms. Let "Group(z)” be the formula
JxAy(z = (&, y> A group(z, y))". Then "group(z,y)” is stratified with
signature {1, 1> and "Group(2)" is stratified with signature <{1). Therefore
we have:

(127) = "{z] Group(z)}e V.

So the class of all groups (big or small) exists in ZF +NF. In a similar
way one can see that various other classes of models exist in .ZF 4-NF.
In ZF +M-Comp (using ordered pairs with signature (1|1, 1)) the formula
"Group(2)” would also be regular of signature (1)>. But nevertheless (127)
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would not hold since 2 is to be relativized to M. So we would only have
that the class of all small groups (which have a set as individual domain)
exists in ZF +M-Comp. Of course, this class exists in ZF4NF too.

*  QOur next example is the permutation group of a class.

Let rz[m--%laa- 2’ be 2|z - xAz '@ —>o". This is stratified with

signature (1, 1).

Let "X,(x)" be "{z]¢|zi=>2}". This is stratified with signature
{211). The formula "u,v,we X (v)A 4 = vow" is stratified with signa-
ture ¢1,1,1,1). Let "X,(z)" be {u,v,w|u,v,weX,()Au =vow}"
This is stratified with signature (2|1). Let ‘

Perm(2)” be (X;(x), Xy(z))".

This is stratified with signature (21> and therefore is real. Moreover,

it can be proved to be a group:

(128) k- Perm (s)e VA Group(Perm (z))".

Therefore in ZF 4+NF any real class has a permutation group which
is real. In ZF 4+M-Comp we could only prove this for sets. '

Finally we want to show that the category of all categories exists
in ZF 4NF. _

We define a category to consist of classes ¢ (objects), .# (morphisms),
and mappings Do (domain), Ra (range), » (composition) which satisfy
certain axioms.

For better readability we write these symbols in place of variables
and give indices as superscripts which are to show the stratification.

"D (A, %) is "(Function(x»')A domux! € A XA ATANR S AV, B,
is stratified of signature <1,1),

"D, (0, A ,Do)" is "Dol|At - 017,

"Dy (@, A, Ra)" is "Ral|4' - OV,

D,, D, are stratified of signature (1,1,1),

"Dy (A, Do, Ra, x)" is "V Vy([(a?, ¥°> e domx! > 2, 4% A4 A Dol (a)
= Ral(y"))", &, is stratified of signatwre ¢1,1,1,1),

"Dy(M, Do, Ra, »)" is VxVy Vz(w“, Y0y e M1A Do (2°) = Ral(y?)
ADo' (%) = Ral(2%) - xt (20, 4°), #) = wi(2®, #1(3°, &))", B, is strati-
fied of singature {1,1,1,1>.

"De(0, #, Do, Ra, x)" is "Vw(ac% ot — Hy(y"e A A Dol (y0)
= 2°A Ra'(y°) = a®AVz[z®e M1 A Dol (%) = &° > x1(2°, 49)
= ) AVl e M1A2® = Ral(0) — #1 (90, 20) = z”)))", @, is stratified of sig-
nature {1,1,1,1, 1>.

Let

"eategory (2, @y, T3, Ty, 25) D P, (g, 46) A Dy(y, Ty, ) A Dy (X1 Tay 2,)
AD(Zgy Tay Bay Te) A Py (Tay Ta, Byy B5) A D (%, Ty Ty, Ty, %g)"
and let
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"Category (2)” Dbe dx;...3z,(z = (@, ..., 25> A category (zy, ..., z5))"

Then "category(z,, ..., ;)" is stratified of signature {(1,1,1,1, 1>
and "Category(z)' is stratified of signature {1).

Let CAT be "{z|Category(2)}". Then we have:

Fs— "CAT e D"

So the class of all categories exists in ZF 4NF.

Next we consider functors. For better readability we write instead
of variables: :

F, (mapping of objects), F, (mapping of morphisms), cat,, cat,
(two categories), @,, #,, Do,, Ra,, », (constituents of cat;), 0,, #,, Do,,

Ra,, %, (constituents of cat,).
Let '

"D, (caty, caty, Oy, M1, Doy, Ray, %y, Opy Mz, Doy, Rag, #5)°
be "category (cati)a category (cat;) A cat; = (0}, 41, Doy, Ray, YA cats
= (0, 0;, Do;, Rag, #)>".

This is stratified of signature <{1,..., 1.
Let

"Oy(Fo, I yy Oy My, Oy M,)'  be erlvl @i - @éf\ F.lfz|/{.i ">~//;'1~

This is stratified of signature <{1,...,1).
Let

"Dy(Fy, Fpyy Ory M1, Doyy Rayy %y, Oyy My, Doy, Rag, #p)°
be -
Vo Vy(ar, g0 A1 A Dol () = Rag (y°) - Fly(o1 (2%, 4°)
= 3Py (2%), F' (9))) A Vo (20 ] > Fy(Doj(a°)) = Doy(Fy (2))
A F(Ral(2%) = Raj(F (@)
This is stratified of signature (1,...,1).
Finally let "functor(z,, z,, 2, ;)" be
Ay, Ay, Ty, Ty, y; T2, 2, A2, 32, 32, (957(5”3, Zyy Y1y Y2 Y3y Yas Yss 213 %2y Ray
24y 25) ADg(D1, Ty Y1y Yy B13 %) A Do (@15 Boy Y1y Yoy Yas Yas Ysy %1y B2y Ray R4y zs)r
and let
"Functor(z)” be "Ja, Iz, dw; Izyz = (@, 24, 05, T A functor
(1) @2y Ta, flf'a))qI .

Then "functor(z,, a,, a4, &,)" is stratified of signature (1,1,1,1)
an "Functor(z)" is stratified of signature (1).
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Let FOTR be "{z|Functor(z)}". Then we have:
l‘,; "FCTRe V.

This shows that the class of all functors exists in ZF 4NF. Let DOM
be “pr,,} FCTR" and RAN be "pr,, s FCTR".
Then we have:
L "DOM, RAN ¢ V",

Finally let "z is composition of ¥y, 2" be

“Functor () A Functor (y) A Functor (2) A Py 3(¥) = DTy (%) A DTy (7)
=.Pr4.1(?/) OPT, 1 (#)A Py (X) = Py (y)opr, s (2)".

This is stratified of signature (1,1,1). If
COMP is "{z, v, 2|z is composition of y, 2}",

then we have
I; "COMPe D",

It is well known that the categories (as objects) and the functors
(as morphisms) form under the natural composition a category. So we have:

|5 eategory (CAT, FCTR, DOM, RAN, COMP)".

This shows that in ZF +4NF the category of all categories exists and
ig itself a category:

(129) I "(CAT, FCTR, DOM, RAN , COMP) ¢ CAT".

In ZF +M-Comp (using ordered pairs with signature {1|1, 1)) the
formulas "Category (2)", "Functor (2)" would also be regular of signature (1).
But putting this into the abstraction operator would require a relativiza-
tion to M. Therefore in ZF 4+M-Comp only the category of all small cate-
gories that are sets exists. And this category is not small and so does not
belong to itself. The theory ZF 4NF thus proves to be a set theory ful-
filling some of the demands of category theorists. But in category theory
there are also some unstratified notions (e. g. Hom-functors) which can
not be treated adequately by ZF 4NF. Furthermore we do not know any-
thing about the reldtive consistency of ZF 4NF to other known systems.
However, Jensen [11] has given a consistency proof for a theory NFU
(NF with urelements admitted). He has pointed out that the axioms of
an analogous system ZFU+NF (admitting urelements) are true in his
model for NFU.
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8. A generalization of stratification

A merit of ZF +M-Comp is the flexibility of the notion of a M-expres-
sion. Many unstratified conditions define real classes. A drawback is
that the z in "{#|p}” must always be a B-variable or relativized to M.
In this respect ZF +NF is more favourable. But the notion of stratifica-
tion is rather rigid and set formation and class formation in ZF 4+NF are
quite unconnected. The question arises whether we can find a system
combining the good features of both systems. For some time we believed
that both systems were compatible and looked for a common extension.
But we know that no consistent extension exists (cf. (103), (126)).

However, consider the following variant of ZF +M-Comp.

(130) In (78) replace “all variables getting index 0 and 1 are to be rela-
tivized to M” by “all variables getting index 0 at some place in ¢
are to be relativized to M”.

This means that not only the M-variables but also the B-variables
are to be relativized to M. The resulting system will be called ZF 4+M-Comp-.
This is a rather weak system. We can not even prove theorems like:

vy, zny, —x,\Jez, N r, Ve V.

Theorems like:
"D, {z, y}eV

are only derivable because of the set axioms. But (77) still holds true:
any set theoretical condition defines a real class. However, note that
the condition "re¢ V" is not a set theoretical condition. For the formulation
of the notion of transitivity one needs an unrestricted E-variable. Finally
we can no longer prove {z > {z}>e V". We only get "(z > {x} [ M)e D"

But this suggests that ZF+4+M-Comp- might be compatible with
ZF +NF. It is true that ZF 4+M-Comp- is rather uninterestingly weak.
But if we combine it with NF, then many of the theorems of ZF +M-Comp
which we miss in ZF +M-Comp- come in again by the stratification
schema and & rather strong theory results. Therefore a theory ZF 4M-
Comp- +NF (if consistent) would have all the merits of ZF 4+NF and in
addition get some advantages of ZF 4M-Comp concerning unstratified
conditions. Instead of adding to ZF 4Cls two rather unrelated compre-
hension principles (namely M-Comp- and Strat) we now try to fuse them
into one comprehension schema. For easier formulation we admit only
few types of atomic formulas.

(131) Let ¢ be a simple and usual formula containing only quasiatomic
formulas of the types "xey, "we M, "x =97, 2 = {x,y)". Sup-
pose that to all variable occurrences in @ (other tham immediately
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after a quantifier) is given an indew which is & non-negative integer
in such a way that:

(i) the indicated occurrence of x in & subformula "wey” gets
an index one lower than the indicated occurrence of y in that

subformula;

(ii)  the indicated occurrences of x and y-in a subformule "z =y’
get the same index;

(iil)  the indicated occurrences of z, z, yin a subformula "2 = (x,
. y>" get the same index;

(iv)  eny variable getting an index i > 2 at some place in @ gels
everywhere in @ the same inder i in o.

Then ™ comes from g by relativizing to M all variables getting 0
at some place in ¢, and o™ is called M-stratified.

To give a better understanding of this notion, consider & many-sorted
langnage with variables for hereditary sets, for classes of such sets, for
classes of such classes ete. A formula of such a language may be called
a n-th order set theoretical condition. A M-stratified formula corresponds
to such a formula if one parallels the variables getting index 0 (i. 6. index 0
only or both indices 0 and 1) to the set variables; the variables getting
index 1 only to the class-of-sets-variables; the variables getting index 2
to the class-of-clags-of-sets-variables ete. So a M-stratified formula
may approximately be described as a formula which is “like a n-th
order set theoretical condition”. However, note that a M-stratified formula
is a formula of a truly one-sorted language.

The M-stratification schema is:

(132) M-Strat: Let ¢ be usual and simple and only with quasiatomio
formulas of types: "wey”, e M, "2 =4, % = (&, y)".
Let 2z be different from x and not occurring in @. Then
V... 32Vz(ze 2 > )M )
i8 an axiom if it is M-stratified.

ZF 4M-Strat is the system which has the axioms of ZF +Cls and
in addition all instances of M-Strat. X I~ @ indicates that 2 u A — ¢

for some set of (closed) formulas which are axioms of ZF+4M-Strat. Thus
I @ means that ¢ is a theorem of ZF 4+-M-Strat. M-Strat is an extension

of the stratification schema. For, if there are no indices 0, then M-Strat
reduces to Strat, and by adding a constant number to all indices in a strati-
fied formula, we can always avoid index O.

If there are no indices greater than 1, then M-Strat reduces to M-Comp-
(with pairs having also signature (1,1, 1)).
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So ZF 4M-Strat is a common extension of the system ZF 4NF and
ZF +M-Comp-. This is the most comprehensive set theory over classes
suitable for the categories we know so far. But the question of relative
congistency to other systems is open. Since several earlier attempts in
finding a notion of M-stratification resulted in inconsistencies, we are not
inclined to give a too confident prognosis. But it will have become clear
that the problem of fmdmg suitable set theories over classes is quite pro-
mising.

9. Historical remark

The desire of treating proper classes as elements has come up in
mathematics in category theory. Standard examples of categories are
proper classes. Standard examples of functor categories are classes of
proper classes. The need for a more comprehensive set theory has been
formulated several times, e.g. by McLane [13] and Ehresmann [5].
Dedecker in [4] gave some requirements that a good class theory should
have, e. g. any condition on sets should determine a class (this is false
in our ZF 4Cls). Quine in his book [25] also makes some remarks towards
sets of ultimate classes (see p. 321, 322 of first edition and p. 321 of second
edition). An extended set theory has been given by Friedman [7] and
another theory by Osius [19]. The first to bring set theory and stratifi-
cation together seems to have been Houdebine [9], [10]. This system is
also used by Da Costa [3]. Stratification seems also to be involved in the
approach of Engeler and Rohrl [6]. Another approach is by the universes
introduced by Grothendieck and Sonner (see [29]). Universes are (here-
ditary) sets that are models of set theory and therefore, so to speak, con-
tain already everything of mathematical interest.

Quite another system is the system of Ackermann [1]. There are
classes of non-sets in his theory, but sets are hereditary. Actually, this
comes because some classes that are sets (in our sense) are not called sets.

Again of a new type are the systems NF and ML of Quine [20], [21].
However, from our intuitive picture of sets we would say that these are
class theorles and not set theories.

In any system discussed so far either A1l is fa,lse — and so there
are sets of objects not being objects again — or there is no real universal
class containing every object — or “set” is understood in a too narrow
sense (hereditary sets) or in a too wide sense (0 is counted a set by Quine).

The gystem ZF+4Cls and ZF4M-Comp had been given essentially
in [14]. However, we think that our present treatment is more elegant.
At the time of the writing of [14] we did not know the language with
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virtual terms. We now separate the material of [14] into three systems.
The logical paxrt, using ordered pairs as primitive, is given as the system
CRF in advance. This is the underlying logic for different set theories and
class theories. Such a logical system (with primitive ordered pairg) is also
given by Bernays in [2] (Part II, Chapter I). The difference is that classes
and coextensional objects are not -identified (and so classes are always
virtual in [2]) and that the language is not so flexible.

The set theoretical part is given as the system ZF +Cls (which is a spe-
cial set theory formulated in CRF). This is the underlying set theory for
different set theories over classes. The class theoretical part is given as
the system ZF 4M-Comp (which is a special set theory over classes).

In [14] we used M as an additional primitive. We first used ordered
pairs as primitive in [17] and were forced to do so in our attempt to find
the notion of M-stratification. o

We are very much influenced by the writings of Quine, But we think
it unfortunate to try — as he does — to reduce all of set theory, class
theory, and relation theory (and even urelements) to one primitive notion e.

A combination of set theory and stratification has been considered
by us already in 1963 (see [16], p. 42, 43) but we did not work out the.
system before 1969. The work of Houdebine, Da Costa, Engeler, Rohrl
has come to our attention only recently. The system of Houdebine and
Da Costa is different from our system ZF 4NF by another understanding
of the notion of set. The word “set” in [9] and [3] means the same as
“hereditary set” (in our sense). Accordingly there are real sets (in our
sense) in the system of [9] and [3] which are not called “set”, e. g. {V}, {Uk
However, we take ZF 4Cls as basis theory, and this guarantees that all
sets of objects and not only some of these sets are treated by the set theo-.
retical part of the system. Our system ZF 4NF had been found in 1969 and
for the first time been presented in Oslo in September, 1969 (together
with a first version of ZF 4-M-Sirat). The definition of M-stratification
which we present now (and which had some inconsistent predecessors)
was found recently.
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