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0. Introduction

We study, using an asymptotic expansion, a problem of perturbation of
partial differential equations with two small parameters.

The equations considered are the equations of stationary heat conduc-
tion, and we use the terminology of this domain of physics, so the unknown
function is sometimes called «temperaturenr.

We consider the problem of heat conduction in a domain Q, the
boundary of which 6Q is smooth. This domain is split up into two subdo-
mains. One of them, JF*, is the union of parallel «fibers» periodically
distributed, the period being of the order of a small parameter ¢. The radius
of these fibers is of the order of e, another small parameter. The second
subdomain 0° is the interior of Q\ ¥ and is called the «matrix». The
conduction coefficient is constant over IR, and is of the order of (¢/e)? in
&, so the total conductivity of the fibers is equivalent to that of the matrix.

Previously, the study of the limits (¢ — 0 then ¢ — 0) and (¢ —» 0 then e
— 0) for the problem of elasticity (see [1] or [2]) showed the importance of
the relative orders of ¢ and e; indeed, the two hmits ¢ —» 0 and ¢ — 0 do not
commute. The aim of this work is to study the problem of perturbation when
the two parameters are both small, and to classify the different «imit
problems» according to the relative orders of the parameters.

* This work was carried out when the two authors were in the Laboratoire de Mécanique
Théorique (L.A. 229), Université P. et M, Curie, 4, P1. Jussieu, 75230 Paris Cedex, France. It
constitutes the «Thése de 3éme cycle» of Mrs. Dinari who is now teaching in Morocco.
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The method used is based on a double-scale matched asymptotic
expansion. We study the unknown function accurately in the neighbourhood
of a fiber by the change of variable z, = x,/e (x =1, 2) in the two directions
perpendicular to the direction of the fibers, and we build an asymptotic
expansion of the unknown function, the terms of which depend on the
variables x and z, and are solutions of partial differential equations in - on
unbounded domains. The first terms of the expansion being determined. by
‘matching the development with the one obtained for the next fiber, we
determine the function (or functions) describing the macroscopic conduction.
At this point, essential distinctions have to be made between different relative
orders of ¢ and ¢. Then the so-called «flux method» used in homogenization
theory yields the conduction equation satisfied by that or those functions.

We find three different «limit problems», following the order of magnitu-
de of ¢*|logel with respect to unity.

If ¢ and e are such that ¢?loge|l > 1 or ¢*|loge| < 1 the limit problem of
conduction is a classical one with only one temperature. For the first case,
the conductivity in all directions is that of the matrix, the importance of the
fibers vanishes entirely; for the second case, the conductivity 1s increased 1n
the direction of the fibers and remains that of the matrix in the two
perpendicular directions. These two results fit those obtained by the study of
the limits (¢ —» 0 then £ — 0) and (¢ — 0 then e — 0).

More interesting is the case when c?|loge]l = 4 (4 a positive real num-
ber). The limit conduction problem involves two unknown functions, one
being the temperature far from the fibers, the other the temperature in the
fibers. The derivatives of the last functions in the two directions normal to
the fibers do not occur in the limit problem. So, although it is easy to find a
variational formulation of this problem, we did not succeed in proving the
equivalence between classical and variational formulations, for we lack trace
theorems for the space of functions whose only one derivative is square-
integrable.

The convergence proof is not considered in this paper for it had not
been carried out completely. That mathematical problem is very close to that
approached by D. Cioranescu and F. Murat [3]. From another point of
view, the subject of the present work reminds the studies of Phan-Thien [7]
and [8] on conduction problems and of Russel [9] and Russel and Acrivos
[10] on elasticity problems. But in those papers the method is quite different
and the main point is the «aspect ratio» of the fibers.

The first section states the problem. The results of Sections 3, 4, 5 are
given in Section 2. In the third section we implement the double scale
asymptotic method which gives asymptotic expansion matched in the fourth
section. The flux method used in the following section yields the conduction
equations. The sixth section is devoted to the study of the conduction
problem with two temperatures.
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1. Statement of the problem

We consider a domain Q of R* with a smooth boundary ¢Q. This domain is
composed of two parts. One is the union F** of cylinders parallel to the
direction Ox; and periodically distributed in the directions x; and x,, the
period being homothetic in the ratio ¢ to a given period Y = ]0, Y;[
x]0, Y,[, ¢ a small parameter. We denote by |Y| the surface of Y.

The section S¢ of each fiber is a disk of radius e (e is the second small
parameter, it 1s supposed to be such that e <¢).

The second part of @ is the interior MM* of Q' F* and is called the
matrix.

L3
N
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ot

X

Fig. 1

In this domain Q, we consider the following problem:

Find u® such that
2

(1.1) qf£=%2-k6,-ue“ in F°,

(1.2) ¢ = K& u** in N,
(13) @qgi*+f =0 in Q,

i=1,2,3,

(1.4) g n; and u* are continuous on M N AF* (n;, i =1, 2, 3, are the
components of the normal to ¢¥*),

(1.5 u*=0 on Q.
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In these formulas, kK and K are constants, ¢; denotes the derivative with

respect to x; and we use the convention of repeated indices (ag; b; denotes
2 aiby).

This is a conduction problem, the conductivity being K in the matrix
Mee and ke?/e? in the fibers [, which are thus very conducting. f is the
volumic heat source.

It is easy to prove that this problem has a unique solution and we aim
to find the limits of u* when e and & are small

2. Results

When e and ¢ are small, the conduction of the fibered body is governed by
equations that depend on the order of ¢*{loge| with respect to one.
These equations are:

1° g?|loge| < 1:

>FuU
N =0
Qi 0x; Ox; +f
where
K O 0
0 0 K+kn/|Y|
and U is the «imit» of u®.
2° e?lloge| » 1:
U
= 0.
K 0x; 0x; +/

3° g?jloge] = A (4 a real positive number).
The conduction problem is now described by two temperatures U and

t:
U knd*u
e -0
o Tmaat/ =0
o*u 2K
gx_Ru-v=o.
ox3 }.k(u )

3. Asymptotic expansion

In order to study the function u* in the neighbourhood of a fiber, we expand
this region by the following change of variables:

Z, = X,le, a=1,2.
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Thus, in the variables z,, z,, the fiber has a circular section S of radius 1
and it is embedded in a matrix M which is unbounded, for e is small

Fig. 2

We look for a double scale expansion of u®, the terms of which are
functions of (x,, x,, x3}) = x and (z,, z,) = z. The equations (1) have to be
modified by replacing the operator ¢, by 0d/0x,+(1/e) 9/z,, which yields

oqf* 10qy

(3.1) —+— +f=0 inSuM,
Ox; e (z,
82 6uee 82 Euec
32 = _—k——+—<k , =1, 2,
(32 4 e? 0x, +e3 0z, x
in S,

3 3 w 82 k auec
( . ) ds = ez a)C3

ou K ou*
34 ¢ =K 4 — , oa=1,2,
G4 4 ix, e 0z, ‘

. in S,

35) g5 =K-

0X3

(3.6) gfn, and u* are continuous on 0OS (n, are the components of the
exterior normal to 09).

In these formulas, as in the sequel, the Greek indices denote the indices
1 and 2.

We see from (3.2), (3.4) and (3.6) that il we look for an expansion of u®
in § in the form

3.7) ue =gle, e uglx, z)+eu,(x, 2)+ ...], z=(z;, 2,)€S,
we have to look for an expansion of u® in M in the form
(3.8) ue.‘ =gle, &)[(Uo(x, 2)+eUg(x, 2)+ .. )
+e2 (UL (x, 2)+eUj(x, 2)+ .. )+ ...], z=1(z, z5)e M.

In order to distinguish the expansions of ¥* in S and in M, we use
capital U for the terms in M and small u for the terms in S.

Remark 3.1. (1) The forms (3.7) and (3.8) for the expansions of u® are of
course «suggested» by the results of the reckoning of the terms, which 1s
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done only for the first ones; it is not obvious that the expansion may be
continued in this form.

gl(e, &) is a gauge function which has to be fitted.

(i) From (3.8) we may see that we have to distinguish between ¢* <e,
¢2~¢ and &2 > e. The calculus shows that the third case is the most
interesting one, its results hold those of the first two. Thus we limit ourselves
to the study of the case £* > e.

For ¢ » ¢, the expansion (3.8) may be reorganized as
(3.9) u*=gle, e)[Uolx, 2)+e> Ul (x, 2)+eUd(x, z)+ .. ],
z=(z,, 2z5)e M.

Putting the expansions (3.7) and (3.9) in the equations (3.1}{3.6) we get
— For z =(z,, z,)e§:

(3.10) A, uy =0,
62 Ug
3.11 A, uy+2 =0,
G10) “ 0x, 07,
o u,
(3.12) Azu2+2ax P +Aug = 0.
—~ For ze M:
(3.13) 4,U3 =0,
(3.14) 4, U2 =0.
— On ¢8:
(3.15) U = u,, Ul =0,
T ou, Oug
. = _— e = 0
(3 16) azd na 09 aza na+ axd na b
(7U8 6U? Ou, 0u,
(3.17) o n, =0; Kaa—na—k azf&: My

All these equations have to be considered as partial differential equa-
tions in z =(z;, z;), x being a parameter. 4, denotes the two-dimensional
laplacian @%/dz, &z, and A the three-dimensional one, %/dx; éx;.

Determination of u, and u,

up is a solution of (3.10) and (3.16), thus it is obvious that u, does not
depend on z:

(3.18) Uy = Uo(X).
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Then from (3.11) and (3.16) we see that u, satisfies

o Cig
A,u, =0 and <-n,=—:-"n,.
0z, (X,

As uy does not depend on z, the solution of these equations is obviously

CUg -
(319) u = ——Z,+u1(x).
0x

Determination of U3 and U?

The equations satisfied by UJ, UY are set on the unbounded domain M.

U$ = up(x) is obviously a solution of (3.13), (3.15) and (3.17); from the
Holmgren unicity theorem, it is the unique one. Thus

(3.20) U3 =ug(x) in M.

U? has to satisfy the equations (3.14), (3.15) and (3.17). u, is not
determined, the second equation of (3.17) may be considered as a Neumann
condition for u,; then from (3.12) and (3.17) we derive the compatibility
condition for the existence of u,:

i K . oU¢ Ou
j(z TH L Aug dz+— [ tndl— [~ ndl=0
s\ 0z, 0x, k 5 0z, s 0%,
which yields
K .oU¢ (azu1
— |\ —n,dl' = — + Aug Jdz.
k s Cz, Sf CZ, 0X,y 0)
Now u; = ———z,+ii; (x). Thus
0x,
K Ut &2
— [(_] Ln,dln = ~f{= uzodz.
k as Cea s 6X3

As uqy does not depend on z, the compatibility condition for the existence of
u, is

k 0%u,
ndlh=——n .
: K~ ox3

aU?
aj; 0z,
Therefore U¢ has to satisfy the following equations:

4,U=0 in M,

321) U=0 on &§,
) 0 k 82
UL, ar = KTt

5 Banach Center t. 19
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It is shown in the sequel that (3.21) does not determine UY uniquely but
we may state the following proposition.

ProposITION 3.1. The solution of (3.21) that is the least singular for large
|z is

where |z| = (z, z,)"%
Proof. U? is a harmonic function, so its general form is

n=+x

U =alogr+b+ Y r"(c,cosnl+d,sinn0)
nj#—ox

where a. b, ¢,, d, are constant and », U are the polar coordinates of a running
point in M.
Assuming that differentiation, integration and summation commute we get

an 2r n=+4+ o 2n
[ =—ndl =a [d9+ Y [en jcosn9d9+d jsmn()dﬂ] = 2na.
as (’"a n=— o
LEX
Therefore
k u,
a=————5.
2K éx3

The Dirichlet condition on dS gives

+

0=b+ ) [(ca+c_p)cosnd+(d,—d_,)sinnd],
n=1

and the unicity of the Fourier series yields
b=c,+c_,=d,—d_,=0.
Thus the general form of UY? is

k ¢ ug
U? = “K ol —— loglz| + Z [c.(r"—r~ " cos n@+d,(r"+r " sinnd].

n=

If ¢, or d, is not zero, then UY is O(r") for large r, and so the most regular
solution of (3.21) is such that ¢, =d, =0 for every n.

Result of the expansion
In the neighbourhood of a fiber we may write (for &2 > ¢):

(3.22) u® =gle, ﬁ)[uo(x)+e(— i';o z,+ U, (x))+ j[ for ze S,

k ¢
(3.23) u®* =g¢gle, g) |:u0(x)+£2 (_i 01\'1;"0 log |z|)+ :l for ze M.
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4. Matching of the expansion

The development (3.23) holds true for z belonging to M which i1s an
expanded neighbourhood of a fiber. In order to be able to construct an
expansion of ¥ in the whole Q, we have to match two expansions of u*
valid for two neighbouring fibers. The matching has to be carried out at a
distance of the order of ¢ from the two fibers, i.e. for |z] =~ ¢/e. Therefore we
require that the greatest order of the terms of the expansion (3.23) should be
one for |z| ~ g/e. The most significant term is then called U (x), it represents
the temperature far from the fibers; u(x) denotes the temperature in the
fibers, 1t is the term of order 1 in the expansion (3.22).
For z =¢fe in (3.23) we get

w=U(X)+...,

k &
(4.1) U(x) =g(e, ¢) (uo(x)—ez |log el R%)
. 3

Remark 4.1. The matching justifies the choice of U? of the preceding
section. Indeed, if for U? we had kept terms such as c,r"cosné then the
function U (x) would have depended on & and the matching would not have
been possible.

The function U(x) of (4.1) has to be of order 1; hence three cases are to
be considered, according to the order of &*|loge|:

1° e%|loge| < 1. We then take g(e, &) = 1 and get

(4.2) U(x) = ug(x)
and from (3.22)
(4.3) u(x) = ugy(x).

In this case, the temperature u in the fibers 1s equal to the temperature
U far from them.

2° e%|loge| » 1. We choose g(e, ¢) = 1/e?|loge| and find

This seems to show that when ¢?|loge| > 1, the temperature in the fibers u(x)
tends to zero with e and ¢; this is obviously untrue. For f = 0 and suitable
boundary conditions on Q2 we may have ¥ constant all over and whatever
e and & may be.

Therefore the expansions (3.22) and (3.23) have to be modified for
e llogel > 1.
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It is easy to prove that the expansions

1 i
44 u*= C+m[uo()€)+ . in S,

62 Up

e l | 2 k '
4.5 u —C+82lloge’{u0(x) £ 2K o2

log|z| + J in M

are correct, C being a real constant number. Then the two temperatures U
and u are:

46 Ulx) = c— Tt
(4.6) V=CTk T
4.7) u(x)=C.
3 ¢?|loge| = A (4 a real positive number). We take g(e, ) = 1 and
43) U) = up()— s 20
¢ X) = Holx 2K Ox3’
(4.9) u(x) = uy(x).

Thus when «¢?|loge| is equal to A, the temperatures U and u are related
by the equation
k *u

Now the asymptotic expansions are matched and the relations between
the temperatures U and u are known. We note that these relations are quite
different according to the order of £?|loge| with respect to one.

The equations governing U and u are determined in the following
section.

5. Flux method

This method was developed for homogenization theory; for more details, see
[11] and [12]. The idea of the method is the following:

Let D, be any subdomain of 2 composed of a number of entire cells ¢
(see Fig. 3 and notations). As ¢ is small, such domain D, may approach any
«mooth» subdomain D of Q.

We integrate the equation (1.3) in D,:

[(2gi*+ f)dx =0,

D,

and then integrate by parts:
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} l

n L o r

aD¢
\\\ ;\ s
L'LLL LLr "
r: LLJ_
Fig. 3
(5.1) [ amdl+ | fdx=0

oD, D,

where g* is given by (1.1) and (1.2).

We have to distinguish between different parts of ¢D,. Let ¢D? be the
part of 0D, with a normal n = (n,, n,, 0) perpendicular to the direction Ox,
of the fibers.

Let I'* and I'™ be the parts of ¢D, with a normal n = (0, 0, +1) parallel
to the fibers and corresponding respectively to the fibers and to the matrix;
and let '=rsur,

With this notation, (5.1) may be written:

et €L ", er

mydl+ | K :‘C nydl+ | fdx =0.

-
0x3 Mo 6X3 D

o {u
(5.2) | K—

(/] “Tva
ﬁDe

82
nadr+ [—Zk
rs€

Now we use the expansions of u** in this equation.

All the points of D¢ are far from the fibers, so the first term of u* is here
equal to U(x).

The points of I'* are points ol some fibers, thus u* is here of the order
of u(x) and the following proposition holds true (it is justified in the sequel).

ProposITION 5.1. Up to a term o(1) (very much smaller than one) we may
write

e? ou n du
dI = |——n.drI 1).
msdl =iy ax, 4l ol

r‘L e? 0x,
Some points of I' are near a fiber, other ones are far from them but the

following proposition holds true.

ProrosiTiON 5.2. Up to a term o(l), we have

er

au
| s mdl = j[ana dI' +o(1).

™ 0x3
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With these two propositions, (5.2) yields

U Ou cU
[ K aan ar+ j'(Ylax3+Kax3)n3dF+jfd x = o(l).

a? O D,

Integrating by parts we get
*uU k 0 u
(Koot

(5-3) ox; Ox, |Y| ax?

+f)dx = o(1).

Now we use the following lemma proved in [11] and [12].

LemMa 5.1. If h(x) is a regular function such that

[ h(x)dx =0
DE

for any domain D, composed of cells ¢, then h(x) is of order O(e).
Then (5.3) yields

o2 U kn P u

(54) axi ax IY' aX3 (QX3

+f=0 in Q.

This equation takes different forms according to the order of &*|loge]
with respect to one.

1° g%|loge] < 1. From (4.2) and (4.3), U and u are equal, thus (5.4)
becomes
U
R =0
Qs ox; 6xj+f
where
K 0 0
(Qij) =|KK 0
0 0 K+kn/|Y|

This equation governing the temperature U in £ is a classical heat
conduction equation; the conductivity in the direction of the fibers is raised
up by km/|Y|. This result is the same as the one obtained in the limit (¢ — 0
then e — 0).

2° e2|logel » 1. u is a constant (4.5), thus (5.4) becomes
aZ
ax Ox;

This is the same result as in the lhimit (¢ — 0 then ¢ — 0). The fibers do

not conduct heat and the conductivity of the fibered body is that of the
matrix.

+f=0.
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3 ¢?|logel = A. U and u are related by (4.10). These two functions are
now solutions of the system

PU  kndu
K ox; axi+|—Y—| 0x§+f =0,
) CPu 2K
u
Y=

This is a nonstandard conduction problem with two temperatures U
and u, U being the temperature far from the fibers, u the temperature in the
fibers. This problem is partly studied in the following section.

Justification of Proposition 5.1
We want to justify that

Bu“ cu
2 j —m!};sn3dr+0(l)

I is the part of ('JDe where the normal is parallel to the fibers. If we
number the fibers of D, with p varying from 1 to N, we may write I
= Jp=1 I'p, where I', is the part of I'" corresponding to the cell ¢;,. We define
rs and I'Y to be the parts of I', corresponding to the fibers and to the
matrix in the same way. Then

auec N 2 auec
\' nydlN = ) j

—nydl.
Se O,y =1 Sez 0x 4

Now, in the fiber p, u® = u(x)+o(l), thereforc

=
zr's 0x;

et N 82 (‘}u 2

nydlh =Y 2‘6 n3d1"+z 2jo(l)d1“
X3

i
p=1 s'
rp

n
au

u(x) 1s almost constant on Fﬁ (it 1s a function of x independent of z). Hence
we may write

N 2 (‘\u N i (‘.\u nl
Y S fmmdl = Y — [ ngdl = — [+ nydr,
for P
" e’ n
[dF = e*n =" [dr.
.S & |Y|r"p
P

In a similar way,

N 2

Y %i()(l)df = o(1).

p=1 S
Tp
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Therefore
&2 ou™ n . ou
— dIr = — (—n,drl 1
2 Lo il =y lagmar e
Proposition 5.1 is justified.
Justification of Proposition 5.2
We want to justify that
] auec a
M 0x3 r 0X3
We may write
. ‘Ju(’l: N . '}ct
(5.6) | Somdl = Y | o nydr.
M 0X3 pm1 r.f," 04

On each of I'' we may use the expansion of u*’, but before we have to
express this expansion in terms of U (x) for the different cases.

1° ¢?|loge] < 1. From (3.23) and (4.2) we have
u*=U+o0(1) in each I')".

Indeed, the following term of the expansion is very much smaller than U, for

|z] is at most equal to ¢/e and £?log|z| is very much smaller than one.
Thus (5.6) becomes

. Ou* Yo oU
L (‘}xj n:;dr = ZI La-r}rbdr‘i‘()(l)
v : p=1, A
Il

As e is very small, the measure of I'* is very small, and so

ouet U
" nydl = [~ nydl +o(1).
7 03

The proposition is justified for e?|loge| < 1.
2° £2|logel » 1 and 3° &?|logel = A. For these two cases we may write
u=  oU A83 Uo log |x— x|

(57) 04 ~ o ox3 loge

in each I'Y

where x, is the center of the section I'; and

A=— il e|loge > 1,

A
A=— if e*|logel = A.
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Indeed, if ¢*|loge| > 1, from (4.5) and (4.6) we may write (in I'))

k 62 Ug n 1 k 62 Ug
2K 0x2 " loge 2K 0x3

“ = Ut —— log | =—22|+0(1)

k 6*uqylogix—x,|
2K dx3  loge

= U(x)+ +o(l).

The term u,y/(¢? |logel) is always very much smaller than one, whereas
(log|x—x,})/loge may be of the order of one (for |x—x,| ~e).

If &*|loge| = A, from (4.8) and (3.23) we get (in I'M)

Ak 62u0 k Puy
=U(x)+ K o 3K o2 > log +0(1)
"~ Ak 2 u, 1 X—Xx
1 P
U+ 2K 0x3 [ +loge10g e ]+0(1)

Ak 0% ug log|x—x,|

= UM+ 2K x3  loge

+o(1).

The relation (5.7) is thus settled for e?|loge| > 1 and for &%|loge| = A.
Now from (5.6) and (5.7) we have

ou°t oUu
" n3dr— j—_n3dr

58
8) L@x MaJ

uo log |x— x|

ar+o(l).

+AZ§

p=1 M 6x3 loge
In order to end the justification of thc proposition, we just have to
prove that

Fu, loglx — X,
ny

dr = o(1).

ox3 loge

b}

u, is a function of x, hence almost constant on each I'M. Therefore

% i 63u0n log |x— x| il ~ % & ‘ log |x— x| ir
Pt &x] 7 loge = 3x3 3r'24 loge '

It is obvious that all the integrals on the right-hand side are equal, and it
may be easily proved that they tend to zero with e and ¢, i.e. they are o(1).
Hence

Yoo @Puy  loglx—x,) N By, 0(1)
' 3 M dlr = PP
=1 M 0x3 loge a1 (X3 loge
p
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The measure of I') is ¢?|Y|, so that

o(l) . Pu,

f

As gljloge| is bounded below, this term is o(1), and (5.8) yields

-“ n3dr_ jﬂn:*dr"'()(l)

™ 0X3 Ma X3

Yoo Puy  loglx—x,)
) [ ox3 s

= l

dI = ———
loge € ]oge

——nydr.
ox3 s

€E

The justification is now ended as in the case £*|loge| < 1.

6. Study of the two temperatures conduction problem

In this section, we study the conduction problem constituted by equations
(5.5). These equations have to be completed by boundary conditions.

Different boundary conditions are studied: Dirichlet and Neumann
conditions, homogeneous and nonhomogeneous. These conditions are not
derived from an asymptotic study of boundary conditions for u®, they are a
priori settled; but we may expect that homogeneous Dirichlet or Neumann
conditions for u® yield similar conditions for U and wu.

Therefore we study the following problem:

Find U and u such that

62
‘ué‘ a——(U u+f=0 on Q,
2
(6.1) 6 2+(U uy=0 on Q,
p, v two positive numbers,
v n, = 0 on 59,
0x;
(6.2) ﬁn3 =0 on 09,
aX3

n =(ny, ny, n;) the exterior normal to 69.

Let W(£2) be a suitable function space for this problem. The variational
formulation is written in a very straightforward way:

Find (U, u) belonging to W(Q) such that
EU ou o
6

dx jv——dx

(6.3) V(V’ U) € W(Q) .‘ aX3 3x3

(o]

+ [(U—-uw)(V—v)dx = | fVdx.
o 2
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From this variational formulation, it is obvious that the space W(Q)
must be H'(2) x P} () where

HY Q) ={Vel*(Q) st oV/ixel?(Q),i=1,2,3},
Pi(Q) = (ve () st d/dxyel?(Q)).
H'(Q) is a Hilbert space for the norm

vov T
]|UHH1—[jV2dx j—a—dx] :

It may be proved easily that P}(Q) is a Hilbert space for the norm
llvllpé = [fv*dx+ [(dv/éx3)* dx]”z.
2 o

Then W(Q) is a Hilbert space for the norm
IV, vllw = [V +||vllf»5]”2-

Obviously, the bilinear form

ouU oV

ALU, u), (V, v)] = f#ga—-dx

+jvax3 ax3dx+j u)(V —v)dx

is bicontinuous and symmetric on W (Q), and the linear form

L(V,v) = [ fVdx

is continuous on the same space.
Then, to use the Lax—Milgram theorem, we just -have to prove that the
form A is coercive on W({), that is to say,

da >0 st. Y(V,0)eW(Q) «|lV,vlld < ALV, v), (V, v)].

In fact, this is untrue: indeed, for v = V = p = a constant, we have
ALV, v), (V.0)] =0

This feature is classical in Neumann boundary problems and the suit-
able set is the quotient space # = W/# where # is the following equivalence
relation:

Vi, v)) #(Va,v;) < 3FpeR st. Vi —V; =v,—v, = 9.
The norm on ¥ is

WV, o)l = inf||[V+ @, v+ ollwe
ceR

where (V, #) is the equivalence class of (V, v).
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The variational formulation (6.3) makes sense in #  if and only if
[fdx=0
2

which is the classical compatibility condition in Neumann boundary prob-
lems.

The continuity of A and L on % may be easily proved. Then the Lax—
Milgram theorem may be applied under the condition that A is coercive on
w", which comes down to the following lemma:

LeEmMMA 6.1. There exists a real constant C such that

YV, Dew IV, dll, < C[IIV-

a,v 2 j1/2
+ —_—
| 0x3 LzJ

where (V, v) is any element of (V, b).
Proof. Let (V, v) belong to W(Q2). We may write v =(v— V)+ V and

frdx <2 [(V—0)?dx+2 [ V?dx.
Q ) o
V belonging to H'(Q), the Poincaré inequality holds true for it, thus

oV v )
fo?dx < C[I(V—v)zdx+j??i——dx+|_f de'zJ.
(94 QN f

n e}

This inequality holds true for any (V, v) in W(Q), therefore

cV v
2 24x < V—-v)?d :
‘{(V‘FQ) dx+§)(v+g) dx C[i( ) x+£ﬁxi éx;

Thus for any real number ¢

V+e, U+Q”l2vm)

av ov v v
5 0x; Ox; [6 3 0x4

[I(V ) dx+ | d\c+|j' V+0)dx| J

and so

IV, ll, = inf|[V+g, v+ollw

eeR
av ov ,
SCinf[j(V—v)zd)H-f + gﬁdx

Z- 1/2
+|{(V +0)dx] J .
2
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Taking ¢ = — [,V dx, we see that inf,_g|{o(V +0)dx|> = 0. Hence

) oV v e
S — 2 — A :
IV, dily < C[i(V e o o o dx]

The lemma is thus proved and we may state

THEOREM 6.2. If [ is such that (,fdx =0, then the variational problem
(6.3) has a solution which is unique up to an additive constant (g, ).

Remarks. (i) (on the equivalence of classical and variational formula-
tions). Let (U, u) be a solution of the variational problem (6.3). It is possible
to prove that (U, u) satisfies (6.1) in a suitable sense; but it is more difficult
to give sense to (6.2), for, in the space P((Q), only the derivative with respect
to x5 has a certain regularity and we lack a trace theorem in this space.

(ii) (on a trace theorem in P}(Q)). If dQ is supposed to be smooth and
such that the set of points where the tangent plane is parallel to Ox; is of
null measure in AQ, then, using methods developed in [6], we may (it is not
done here) define a trace on dQ of a function from P}(Q) and the trace
operator is continuous from P}(Q) to I2(0Q), where I2(3Q) is defined in the
following way:

Let h be equal to a(x}ny where a(x) is a positive continuous function
defined on ¢Q2 and n; the third component of the normal n. Then

L3(7Q) = v measurable on éQ st. | h(x)|v|*dl" < +0}.

&0

(iii) (on other boundary conditions). With the trace properties stated
above the following definition of W,(£2) makes sense:
Wo(Q) = {(V, v)e W(Q) st. V];o=0 in HY?(dQ)
and v, =0 in L}(0Q)}.
We may now study the following Dirichlet problem:
Find (U, u) belonging to W,(Q2) such that
V(‘/’ U)E WO(Q) A [(U! u)’ (l/s U)] = L([/’ U).

Likewise, we may study nonhomogeneous Dirichlet and Neumann prob-
lems and prove the existence and uniqueness of solutions of variational
problems [4].
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