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1. Introduction

In view of the fact that a great many recent papers concern new
kinds of mappings in connection with particular properties of continua,
it has become necessary to systematize these mew classes of mappings
together with some classical classes of mappings as: homeomorphisms,
open mappings and monotone mappings. The main purpose of this paper
is to collect results concerning mappings on metric continua, to elaborate
these results and to give a synthetic monograph about them.

Thus this paper is a study of various classes of continuous mappings,
of relations between them, of methods of producing the new classes, and
a study of general and invariance properties of those classes.

Beginning with nine fundamental classes of mappings, we obtain
new classes by general operations, such as a composition, inheritance,
localization and some other. This line of approach allows me to put
in order these variform classes of mappings.

In addition to the results scattered in the literature the paper con-
tains my own original results which concern the above-mentioned problems
and also an analysis of the essentiality of the assumptions of various
theorems shown by appropriate examples. All the results are collected in
tables at the end of sections. These tables contain also unsolved problems.

The results obtained by the author, recapitulated and proved here,
were also reported at the topological seminar of PAN, conducted by
Professor B. Knaster. The paper has been worked out on the basis of
a dissertation which was prepared by the author at the Institue of Math-
ematics of the Wroctaw University under the guidance of Professor
J.J. Charatonik.

The author wishes to express his gratitude to Professor J. J. Chara-
tonik, whose confidence and continued interest has made this paper
possible. The author is very much indebted to the participants of Professor
Knaster’s seminar for many helpful remarks and he is grateful to Professor
K. Sieklucki for persuading him to prepare this paper.



2. Preliminaries. Special kinds of continua

The topological spaces under consideration will be assumed to be
metric and compact and all mappings will be assumed to be continuous
and surjective. A continuum means a compact connected space.

A continuum X is said to be unicoherent provided that for each two
continua C, and €, such that C,uC, = X, the common part 0,nC, is
a continunum (see [36], § 46, X, p. 162). We say that X is hereditarily
unicoherent if each continuum contained in X is unicoherent.

(2.1)  Each hereditarily unicoherent continuum is unicoherent.

The inverse implication fails to hold. For example, the unit square
is unicoherent and it is not hereditarily unicoherent. A continuum X is
called discoherent if for each two closed sets O, and C, such that X = C,uC,
and C, # X # C,, the set C,nC, is not connected (see [36], §46, X,
p. 162). A continuum X is said to be decomposable if there exists a decom-
position of X into two proper subcontinua C, and C, such that X = C,UC,;
it is said indecomposable if there exists no such decomposition (see [36],
§ 48, V, p. 204). A continuum is said to be hereditarily decomposable (her-
editarily indecomposable) if any subcontinuum of it is decomposable
(indecomposable).

(2.2)  Ewery indecomposable continuum is unicoherent and discoherent.

(2.3)  Ewvery hereditarily indecomposable continuum 1is hereditarily uni-
coherent.

The following proposition characterizes hereditarily unicoherent
continua (see [67], Corollary (5.5)).

(2.4) A continuum X is mot hereditarily unicoherent if and only if it
contains a decomposable discoherent continuum.

A space X is said to be aeyclic if all its homology groups are trivial
(see [6], p. 35). We consider only one-dimensional acyclic continua (a one-
dimensional continuum is called a curve), and then X is acyeclic if and
only if every mapping of X onto a circle is inessential (i.e., it is homotopic
to a constant mapping) (see [27], p. 150). It is known (see [49], 2.3) that

(2.6) Every acyclic curve is hereditarily unicoherent.
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The inverse implication fails to hold, because there are hereditarily
unicoherent continua which are not one-dimensional (see [4], [29]).
Moreover, the so-called standard solenoid, i.e., the inverse limit of circles
8, = 8 with bonding maps f,: S, — S, defined by f(6*™®) = ¢*™
forz € [0,1] and k =1, 2, ..., makes an example of a hereditarily uni-
coherent curve that is not acyclic (ef. van Dantzig’s solenoids described
in [16], pp. 73-76).

A continuum X is called tree-like (arc-like) if for any number ¢ > 0
ther eexists a mapping f: X — Y such that diam f~'(y) < e for each point
y € Y and Y is a one-dimensional polyhedron containing no simple closed
curve (Y is an arc, respectively) (see (3], p. 653; cf. [63], where one can
find a characterization of tree-like continua in terms of inverse systems).
Sometimes arec-like continua are also called “chainable” or “snake-like”.
From above definitions we infer that

(2.6)  Hach arc-like continuum s tree-like.

Further, from Case’s and Chamberlin’s characterization of tree-like
continua (see [7], p. 74) we infer that

(2.7)  Ewvery tree-like continuum s an acyelic curve.

It is known that there exists an acyclic eurve which is not tree-like
(see [7], p. 80). Each two arc-like hereditarily indecomposable (non-
degenerate) continua are homeomorphic (see [70], p. 583) and such a con-
tinuum is called a pseudo-arc (the first example was described in [30]).

A hereditarily decomposable and hereditarily unicoherent continuum
is called a A-dendroid (see [11], p. 16). It follows from [13], Corollary,
p. 21, that

(2.8) Every A-dendroid 18 a tree-like continuum.

An arcwise connected and hereditarily unicoherent continuum is
called a dendroid (see [8], p. 239) and we infer that (see [8], (49), p. 239)

(2.9) Every dendroid is a A-dendroid.

We have the following characterization of a dendroid (see [69], Theo-
rem 2):

(2.10) An arcwise commected continuum X is a dendroid if and only if

the intersection of any two subcontinua of X with nonempty interiors is
conmeoted.

A Jocally connected and hereditarily unicoherent continuum is cal-
led a dendrite (see [36], § 51, VI, p. 300). For example, every one-dimen-
sional polyhedron containing. no simple closed curve (cf. the definition



8 Continuous mappings on continua

of tree-like continua) is a dendrite. Since every locally connected con-
tinuum is arcwise connected, we conclude that

(2.11)  Every dendrite is a dendroid.

Recall that a continuum 7T is a triod provided that there are three
subcontinua A, Band C of T suchthat 7 = AVBU(C, AnBnC = AnB
= AnC = Bn C and this common part is a proper subcontinuum of each
of them. A continuum X is said to be atriodic if it does not contain a triod.
For example an arc and a circle are atriodic. They are the only atriodic
locally connected. continua (see [36], § 51, pp. 274-303). We have (see [3]
and [69], p. 55; cf. also [78], Theorem 13, p. 50)

(2.12) A hereditarily decomposable continuum is arc-like if and only
if it 48 hereditarily unicoherent and atriodic.

Moreover, (see [3]),
(2.13)  Ewery arc-like continuum is atriodic.

As an immediate consequence of the definitions we infer that
(2.14)  Ewery hereditarily imdecomposable continuum is atriodic.

Atriodic continua need not be hereditarily unicoherent (for example
a circle is atriodic and it is not even unicoherent), but they are hereditarily
bicoherent (see [83], p. 153, the definition of the function r(z)). Namely
(see [68], Theorem 5.13)

(2.15)  The intersection of each two subcontinua of an atriodic contimuum
18 the umion of two continua.

Recall that a continuum is called hereditarily divisible by points if
any of its subcontinua contains a point which separates that subecontinuum.
Continua of this type were considered in [81] and [67]. Observe that
(see [67], Theorem 3.2, p. 350)

(2.16) Any continuum which is hereditarily divisible by points is a
A-dendroid.

One can ask whether an atriodic A-dendroid is hereditarily divisible
by points. The answer is negative. We have the following

(2.17) ExamprLE. If in the continuum X deseribed in Example 5 of
[36], § 48, I, p. 191, we subsitute a copy of such a continuum X instead
of any straight line interval, then one can obtain an atriodic A-dendroid
which is not divisible by any point.

We say that a set A is a set of irreducibility of a continuum X provided
there is a point @ of X such that the continuum X is irreducible about
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the set AU {a}. The following theoreni, proved in [55], Theorem 3, is
a generalization of Théoreme XIX in [34], p. 270.

(2.18) A set A is a set of ii’reducibility of a continuum X if and only if
there exist no two proper subcontinua P and B of X sueh that X = PUR
and A <« PnR.

If a continuum X contains a degenerate set of irreducibility, then X
is shortly called irreducible. We have (see [77], Theorem 3.2, p. 456)

(2.19) Ewery umicoherent atriodic conlinuum 1is irreducible.

A continuum X is said to be a (linear) graph if X is the union of a
finite number of arcs which are pairwise disjoint except their endpoints
(see [83], p. 182). We say that a continuum X is an n-star if X is the union
of » ares which are pairwise disjoint except for one given point p, which
is the common endpoint of these arcs and p is called the top of X. We say
that the space X is of order < m at the point p provided for any ¢ > 0
there is an open set G such that

pe@, diamGE<e and cardFr(¢) < m,

where Fr(@) denotes the boundary of G in X (see [36], § 51, I, p. 274).
The minimal cardinal number which satisfies this condition is called
the order of X at p and it is denoted by ord, X. Menger’s theorem, the
so-called “n-Beinsatz” (e.g. see [36], § 51, I, p. 277) says that

(2.20) if X 4s locally connected and n is a matural number, then ord,X
= n if and only if there exists an n-star in X with the top p and X does not
contain an (n-+1)-star with the top p.

The following condition characterizes graphs (see [83], p. 182).

(2.21) A eontinuum X i3 a graph if and only if all points of X save a
finite number of them are of order 2, and all points are of finite order.

Note that every graph is homeomorphic to some one-dimensional
polyhedron.

If a point p is the top of some 3-star contained in a continuum X,
then p is called a ramification point of X (in the classical sense) (see [8]).
A dendroid having exactly one ramification point is called a fan (see [10],
p. 6) and this ramifiaction point is called a top. Obviously

(2.22) Every fan is a dendroid.

A continuum is called regular (or rational) if it possesses a basis of
open sets whose boundaries are finite (or countable, respectively), i.e.,
if this continrum is of order w (or N,, respectively) at cach point. We note
that (see [42], p. 132)
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(2.23) A continuum X is reqular i¢f and only if for any number &> 0,
there exists a positiee integer n such that each collection of mutually disjoint
subcontinua of X having diamelers greater than e consists of at mostn elements.

We say that a continuum X is finitely Suslinian if for any number
¢ > 0 each collection of mutually disjoint subcontinua of X having di-
ameters greater than ¢ is finite (see [42]). A continuum is said to be Sus-
linian if each collection of its mutually disjoint nondegenerate subcon-
tinua is countable (cf. [23]). It follows from (2.23) that

(2.24) Every regular continuum 18 finitely Susliniam.

" Moreover (see [42], p. 132, and [83], p. 94)

(2.25)  Every finitely Suslinian continuum is hereditarily locally connected.
(2.26)  Every hereditarily locally conmected continuum is rational.

(2.27)  Every rational continuum is Suslinian.
/

Further, since every indecomposable continuum contains an uncount-
able number of composants (for the definition and for the properties
see [36], § 48, VI, pp. 208-215), we infer that

(2.28)  Every Suslinian continum s hereditarily decomposable.

There is an arc-like Suslinian continuum which is not rational (see
[14], p. 178 and [41], p. 135). The harmonic fan (see [8], E1, p. 240) is
a rational continuum which fails to be locally connected; the Cantor fan
(see [8], E2, p. 240) is a hereditarily decomposable continuum which is
not a Suslinian continuum. Also, hereditarily locally connected continua
need not be finitely Suslinian (see [36], p. 270) (every planable heredi-
tarily locally connected continuum is finitely Suslinian) and finitely Susli-
nian continua need not be regular (see [36], p. 284).

A continuum is called a local dendrite if each of its points has a
closed neighbourhood which is a dendrite (see [36], § 51, VII, p. 303).
We note that (see [36], § 61, VII, Theorems 1 and 4, p. 303)

(2.29) Ewvery local dendrite is a regular continuum.

(2.36) A Tlocally connected continuum X is a local dendrite if and only
if it containg & finite number of simple closed curves.

By the definition of a graph we conclude that

(2.31)  Every graph is a local dendrite.
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Table I comprises all inclusions between the classes of continua which
are recalled in this section. We use the sign of implication instead of
the sign of inclusion.

TABLE I

/ Y \
graphs 44 lans pseudo-arc

/ continua \
local hereditarily :
dendrites divisible dendroids
by points
y Y
regular . atriodic
continua Adendroids A-dendroids
finitel ' J
s mll.te. y tree-like arc-like
ustinian continua = continua
continua
hereditarily N / } !
locally acyclic incll‘eecr:g:laorgbk
connected curves ¢ omigu a
continua
J
- hereditaril
rational he_r cditarily unicohere:t
continua unicoherent atriodic
continua continua
Y
Suslinian atriodic indecomposable
continua continua continua
J
hereditarily .
decomposable uncﬁ:::i‘;:;m

continua



.3. Classes of mappings

To begin with, we recall the definitions of special classes of mappings
which are used in the next section to define other classes. Namely, a map-
ping f from a topological space X onto a topological space Y is said to be

(i) a homeomorphism if f is one-to-one and the inverse mapping f~'
is continuous; _

(ii) open if f maps every open set in X onto an open set in Y:

(iii) atomic if for each subcontinuum K of X such that the set f(K)
is nondegenerate we have K = f~'(f(XK)) (see [1], [12] and [20]).

The next classes of mappings to be considered are defined by the
property which is satisfied by the inverse image of an arbitrary sub-
continuum of the image. We say that such a glass of mappings is defined
by the subcontinua of the image.

The mapping f from a topological space X onto a topological space ¥
is said to be

(iv) monotone if for any y € Y, the set f~'(y) is connected (see [83],
P. 25); or, which is equivalent, if the inverse image of any subcontinuum
of Y is a continuum (see [36], p. 123);

(v) confluent if for each subcontinuum @ .of Y each component
of the inverse image f~'(Q) is mapped by f onto @ (see [9], p. 213);

(vi) semi-confluent if for each subcontinuum @ in Y and for each
two components ¢, and C, of the inverse image f~'(Q) either f(C,)
< f(C) or f(Cy) < (Cy) (see [52], p. 252);

(vii) weakly confluent if for each subcontinuum @ in Y there exists
a component C of f~'(Q) such that f(C) = @ (see [50]);

(viii) joining if for each subcontinuum @ of Y and for each two
components O, and C, of the set f~'(Q) we have f(C,)nf(C,) # O (see
[56]);

(ix) atriodic if for each subcontinuum ¢ of Y there are two com-
ponents C, and C, of the set f~'(Q) such that f(C,)Uf(C,) =@ and for
each component C of the set f~!(Q) we have either f(C) = @ or f(C) =
J(Gy) or f(C) = f(C,) (see [57]).

As an easy consequences of the definitions we infer that

(3.1) Any homeomorphism is an atomic open mapping.
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(3.2) Any monotone mapping 18 confluent.

(3.3) Any confluent mapping is semi-confluent.

(3.4)  Any semsi-confluent mappings is joiming.

(3.5) Any weakly confluent mapping is atriodic.
It is kmown (see [9], VI, p. 214; cf. [83], (7.5), p. 148) that

(3.6) Any open mapping (of a compact space) is confluent.
Moreover, (see [20], Theorem 1, p. 49)

(3.7 Any atomic mapping of a continuum 8 monotone.

The next theorem is proved in [52], Corollary 3.2, p. 254. We give
a new proof of this theorem.

(3.8) THEOREM. Any semi-confluent mapping is weakly confluent.

Proof. Let a semi-confluent mapping f map a continuum X onto
Y and let @ be an arbitrary subcontinuum of Y. Put # = {H: H is
a subcontinuum of @ and there is a component C of f~'(Q) such that
H < f(C)}. The family s is nonempty, because if y €@, then {y} e .
If {H; } is a sequence of elements of #° such that H; <« H; ,for+ =1, 2,...

then UH H, e . In fact, let C; be components of f~!(Q) such that

H, f(C ). Since X is compact, the set f~!(Q) is compact and we can
choose a convergent subsequence {C; n} of the sequence {C;} (compare [36],
§ 42, I, Theorem 1, p. 45 and § 42, IT). Define K = Lim C; . Since f(K) < ¢

n—>o0

and since K is a continuum (compare [36], § 47, II, Theorem 4, p. ‘170),
there is a component C, of f~'(Q) such that K < C,. By the continuity
of f we have H, c f(K), and thus H, c f(C,). This means that H, € /.

Therefore, it follows from Zorn’s well-known lemma that there is
a maximal element in 5. Denote it by K. By the definition of #, we
conclude that there is a component C of f~!(Q) such that B < f(C). Suppose
that there is a point ¢ € @\ f(C). Take a component ¢’ of f~!(Q) such that
g € f(C’). Since f is semi-confluent, we infer that f(C) <= f(C’)\ {q}, con-
trary to the maximality of R. Thus f(0) = Q.

All the inclusions proved and recalled here are essentxal We now
describe examples which show this. ‘

(3.9) ExAMPLE. Define f(¢) = |t|fort e [ -1, 1]. The mapping f: [—1, 1]
—[0, 1] is open, but it is not monotone.

(3.10) ExampLE. Define f(z,y) = (x,0), where (z,y) denotes a point
in the Euclidean plane having z and y as its rectangular coordinates.
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Put A = {(z,sin2rn/z): 0<o<1}and I, = {(0,y): —1<y<1} and
I, = {(0,y): —1<y< 2} The partial mapping flAVUL, is atomic, but
it is not open. The partial mapping flAUI, is monotone, but it is not
atomic.

(3.11) ExAMPLE. Define

_ ($1y) ﬁ y>'_1,
f‘”””_{m,zmu—n £ oy< -1,

The mapping g = f|AUI, is confluent, but it is neither open nor monot-
one, where A and I, are such as in Example (3.10).

(3.12) ExaAmpLE. Define f(¢) = |t| for te[—1,2]. The mapping
f: [—1,2] - [0,2] is semi-confluent, but it is not confluent.

(3.13) ExAMPLE. Define

o —lit1 =1 for te[—2,0]
f(t)—{ |—t+1]—1| for t€[0,2]-’

The mapping f: [—2,2] »[—1,1] is weakly confluent, but it is not
semi-confluent.

(3.14) ExamprLE. Define

(cos 2nt, sin 2nt) if ¢e[0,1],
f@®) =l(t7 0) if te[l,2],
' (4—t,0) it tel[2,4)].

The mapping f is joining, but it is not atriodie.

(3.15) ExaMpLE. Define f(t) = (cos 2nt, sin 2xt) for ¢e[0,3/2]. The
mapping f is atriodic, but it is neither weakly confluent nor joining.

The following equivalence characterizes open mappings (see [36],
pp. 67-68; cf. also [50], (1.2), p. 101).

(3.16) A mapping f: X - Y is open if and only if im y, = y implies
Ls 7' (4a) =57 (9)- e

n—+ 00



4. Generated classes of mappings

In this section we describe methods which are used to generate new
classes of mappings from eclasses recalled in § 3.

A. The composition of classes of mappings. Let 4 and B be two

classes of mappings each of which contains the class of homeomorphisms.
We define

¥

AB = {gf: ge A, e B}.
We have the following dependences:
(41) AUBc AB.

(42) If Ac D and B c E, then AB = DE.
(4.3) If A(BA) < BA, then AB c BA.
(44) If AA — A, BB — B and AB = BA, then (BA)(BA) = BA.

(4.5) The following conditions are equivalent:
(i) (BA) (BA) = BA,
(ii) A(BA) = BA = (BA)B,
(iii) (AB) (4B) = BA,
(iv) (AB) (4B) = BA.

This means that if classes A and B are closed with respect to com-
position and AB « B4 and AB # BA, then the class AB is not closed
with respect to composition and the clags BA is closed with respect to
composition. .

If we take the class M of monotone mappings and the class O of
open mappings, we obtain two new classes of mappings MO and OM
in the same way as above.

The class OM coincides (see [50], (3.1)) with the class of quasi-open
mappings, which were introduced in [82], p. 9, and which are considered
also in [85]. It follows from (3.16) that (see [50], (2.2)).

(4.6)  The mapping f: X -Y is an OM-mapping if and only if the con-
dition lim y, = y vmplies that the set Ls f~(y,) intersects each component
00

of (). "
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This characterization of OM-mappings easily implies (see [50],
Theorem 2.8) that ’
(4.7)  The composition of OM-mappings is an OM-mapping.
Therefore, by (4.1) and (4.5) we infer that
(4.8) Any MO-mapping is an OM-mapping.
Moreover, (c¢f. [9], III, p. 214) by (4.2)
(4.9) Any OM-mapping is confluent.

The class of MO-mappings containing open mappings and monotone
mappings (cf. (4.1)) is essentially larger than the class of open mappings
and than the class of monotone mappings. Namely, we have the following

(4.10) ExamprLE. Define

-1 i 1<p<2,
ﬂ”_{o if |1 <1.

The mapping f is an MO-mapping, but it is neither open nor monotone.

The class of OM-mappings is essentially larger than the class of
MO-mappings. Namely, we have the following

(4.11) ExamprLE. We define a mapping f:[0,1] - [0, 1] as follows:

3t i 0<t<1/3,
f@oy =12—-3t it 1/3<t<2/3,
0 if 2/3<t<l.

The mapping f is an OM-mapping, but it is not an' MO-mapping (see [50],
Example 3.4).

The mapping g described in Example (3.11) is confluent, but it is
not an OM-mapping (to see this cf. (2.6)). Therefore also the class of con-
fluent mappings is essentially larger than the class of OM-mappings.

B. The hereditary classes of mappings. Let A be an arbitrary class
of mappings which contains the class of homeomorphisms. We ghall call
a mapping f: X — Y hereditarily A if for any continuum K < X the partial
mapping f|K is in 4. Taking the class of monotone, confluent, weakly
confluent or atriodic mappings for A, we get in this way the classes of
hereditarily monotone, hereditarily confluent, hereditarily weakly con-
fluent and hereditarily atriodic mappings, respectively (see [67]). Since
only the above hereditary classes of mappings were considered in
the literature, we will not consider other hereditary classes of mappings.
Note that the class of hereditarily weakly confluent mappings is investi-
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gated in [79], where such mappings are called pseudb-monotone. As an
eas8y consequence of the definitions we infer that

(4.12)  Amy hereditarily monotone (hereditarily confluent, hereditarily
weakly confluent, hereditarily atriodic) mapping defined on a continuum
is monotone (confluent, weakly confluent, atriodic, respectively).

(4.13)  Any hereditarily monotone wmapping is hereditarily confluent,
any hereditarily confluent mapping is hereditarily weakly confluent, and
any hereditarily weakly confluent mapping is hereditarily atriodic.

Moreover, it follows from (3.7) that
(4.14) Any atomic mapping of a continuum is hereditarily monotone.

The class of monotone mappings is not contained even in the class
of hereditarily atriodic mapping. We have the following

(4.15) ExXAMPLE. Put X = {(2,y): # =0,1or2and 0 <y < 1}V{(w, ¥):
0<x<2dany = 0 or 1} and let a mapping f: X — f(X) identify points
which have the second coordinate equal to 1. It is easy to ascertain that
the mapping f is monotone and that it is not hereditarily atriodie.

Similarly, the class of open mappings is not contained in the class
of hereditarily atriodic mappings. We have the following

(416) ExampLE. Put X = {(x,y): ® =0,1,2,0or 3 and —1<y<1}u
Uiz, y): 0<zr<3and y = —1 or 1} and let f(z, y) = (z,ly{). The map-
ping f|X is open, but it is not hereditarily atriodic.

The following examples show that the inverse implications in (4.13)
are not true. :

(4.17) ExAmpLE. Let X denote the pseudo-arc (cf. § 2) and let p € X.
Put M = (X x{0hhu(X x {1})u({p}x[0,1]) and f(z,t) =a for (=,1)
€ M x I. It is clear that the mapping f|M is not monotone (thus it is not
hereditarily monotone; cf. (4.12)), but it follows from Corollary (3.4)
in [57] (cf. [12], p. 243) that f|M is hereditarily confluent.

(4.18) ExAMPLE. The mapping f described in Example (3.9) is heredi-
tarily weakly confluent (ef. [567]. Corollary (3.13) and [71], Theorem 4)
and it is not hereditarily confluent.

(4.19) ExXAMPLE. Let S denote the unit circle, i.e., § = {(2, y): #*+y?
= 1} and let the mapping f: 8§ — f(8) identify all points of some semi--
circle which is contained in 8. It is easy to observe that f is hereditarily
atriodic and that it is not hereditaziyweakly confluent.

2 — Dissertationes Math, 158
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C. The local classes of mappings. Let 4 be an arbitrary class of
mappings and let f map X onto Y. We define: f € Loc (4) provided for
each point # € X there is a closed neighbourhood V of the point z such
that f(V) is a closed neighbourhood of f(z) and the partial mapping f|V
belongs to A.

We have the following easy consequences of the definition:

(4.20) A < Loc (4), ‘
(4.21) If A < B, then Loc (A) c Locl(B),
(4.22) Loc (4) = Loc (Loc (4)).

Recall that a mapping f from a topological space X onto a topological

space Y is said to be

(i) a local homeomorphism if for each point # € X there exists an
open neighbourhood U of 2 such that f(U) is an open neighbourhood of
f(z) and that f restricted to U is a homeomorphism between U and f(U)
(see [83], p. 199);

(ii) locally confluent (locally weakly confluent) provided for each point y
of Y there exists a closed neighbourhood F of ¥ in Y such that the partial
mapping f|f~'(F) is a confluent mapping (a weakly confluent mapping)
of f~}(¥) onto F (see [21], p. 239 and [54], p. 60).

We have the following

(4.23) THEOREM. A mapping f: X — Y is a local homeomorphism if
and only if feLoc (H), where H denotes the class of homeomorphisms.

Proof. Suppose that f is a local homeomorphism and that # is an
arbitrary point of X. Let U be an open neighbourheed of z such that f(U)
is an open neighbourhood of f(x) and f| U is a homeomorphism and let V
be an arbitrary closed neighbourhood of # which is contained in U.
Obviously f restricted to V is a homeomorphism. Since the interior of V'
is an open subset of U and f| U is a homeomorphism, we infer that the
image under f of the interior of V is an open subset of f(U). Therefore
the image under f of the interior of V is an open subset of Y, because f(U)
is an open subset of Y. Thus f(V)is aneighbourbood of f(#). It is closed
as an image of a eompact set. This means that f € Loc (H). _

Conversely, suppose that f e Loc (H). Let # be an arbitrary point
of X and let V be a closed neighbourhood of # such that f(V) is a closed
neighbourhood of f(#) and f|V is'a homeomorphism. Let U’ be an open
set in X such that z € U’ = V. Then f(U’) is an open subset of f(V) which
contains f(x). Since f(V) is a neighbourhood of f(x), we conclude that
there is an open subset G of Y such that f(z) e @ < f(U"). Put U = U'n
Nf~1(G). Sets G and U’ are open, and thus U is open. Since f(U) = f(U’'n
nf~Y (@) =f(U')nG = @, we infer that f(U) is open. Moreover, f|U
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is a homeomorphism, because (f|V)~}|G = (f|U)~! and (f] V)™ is con-
tinuous. Consequently we find that f is a local homeomorphism.:
Similarly, we have the following

(4.24) THEOREM. A mapping f: X — Y is locally confluent (locally
weakly confluent) if and only if f € Loc (K), where K denotes the class of
confluent mappings (weakly confluent mappings, respectively).

Proof. Suppose that f is locally confluent (locally weakly confluent)
and suppose that x is an arbitrary point of X. There is a closed neighbour-
hood F of f(«x) such that f|f~'(F) is confluent (weakly confluent). But
then V = f~!(F) is a closed neighbourhood of # and f|V is confluent
(weakly confluent). This means that f e Loc (K), where K denotes the
class of confluent mappings (of weakly confluent mappings, respectively).

Conversely, suppose that fe Loc (K). Let ¥ be an arbitrary point
of Y and let V, denote a closed neighbourhood of # of f~'(y) such that
f(V,)is a closed neighbourhood of % and f|V, is confluent (weakly con-
fluent). Since f~! () is compact, there is a finite collection Vs Vagsy oovy Ve,
such that the set f~'(y) is contained in the union of the interiors of Vi

Put F' = (\f(V,,). The set F’ is a closed neighbourhood of y. Let F
i=1

be a closed neighbourhood of y such that F is contained in F’ and f~*(F)
is contained in the union of the interiors of Vzi (such F exists, becunase
f~'(v) is contained in the union of the interiors of V). We will prove
that f|f~'(F) is confluent (weakly confluent). Let @ be an arbitrary sub-
continuum of F. Suppose now that K denotes the class of confluent map-
pings. Let C be an arbitrary component of f~!(Q). There is a point # such
that z € C nV,, for some 4. Since f|V,, is confluent, we infer that the com-
ponent €’ of (f|V,,)"'(@) containing the point z is such that f(¢') =
(f1V,)(C") =Q. But 2 e O nC’ and Cis a component of f~*(Q), and thus
C’'c C. Therefore we obtain f(C) = Q. This means that f is locally confluent.
Suppose now that K denotes a class of weakly confluent mappings. Since
Il V%. is weakly confluent for some arbitrary ¢ and since @ < f(Vzi), we
infer that there is a component ¢’ of (f] V%)“‘(Q) such that f(C’)
= (fI¥,) (C") = Q. Then the component ¢ of f~1(Q) such that ¢’ = C
satisfies the equality f(C) = Q. This means that f is locally weakly con-
fluent. The proof of Theorem (4.24) is complete.

Since the investigated classes of local mappings in the literature
coincide with the corresponding classes Loc by the above theorems, we
call the mappings belonging to Loc (A4) locally A.

We will now study classes of locally monotone mappings and locally
MO-mappings. Firstly, we have o

(4.25) O = Loe (0).
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In fact, the inclusion O = Loc (O) holds by (4.20). Let f: X - Y
“and let f € Loe (O). Then for each # € X there is a closed neighbourhood V
of x such that f|V is open by the definition of Loc (O). Therefore f maps
elements of some open basis of X onto open sets in Y. Hence the image
under f of an arbitrary open set in X is an open set in Y. This means that
f is open, i.e., the inclusion Loc (O) = O holds.
It follows from (4.21) and (4.25) that (cf. [83], p. 199)

(4.26)  Every local homeomorphism is an open mapping.

The inverse is not true, because for example the mapping f described
in Example (3.9) is open, but it is not a local homeomorphism.

The following theorem characterizes local homeomorphisms (see [53],
Theorem 4, p. 856 and [83], (6.21), p. 200):

(4.27)  Let a mapping f map a space X onto a continuum Y. The mapping
S is a local homeomorphism if and only if f is open and there is a positive
integer m such that card f~'(y) = n for each ye Y.

(4.28) EXAMPLE. Let (r, ¢) denote a point of the Euclidean plane
having r and ¢ as its polar coordinates. Take the unit circle S = {(r, ¢):
r=1,0< @< 2n}. We define a mapping f as follows:

_ |, 2¢) if 0<¢<xm,
f(’l',(p)——{(r, —2¢) if << 2m.

The mapping f is continuous on § = f(8) and for each y e § we
have card f~'(y) = 2. The mapping f is not open. Therefore the assump-
tions in (4.27) are essential. However, if we take 2 mapping h of S onto
itself defined by the formula h(r, ¢) = (r, 2¢), then k is a local homeo-
morphism, but it is not a homeomorphism. Thus the class of local homeo-

rorphisms is essentially larger than the class of homeomorphisms.

Just as for open mappings, the class of locally OM-mappings coincides
with the class of OM-mappings; namely we have

(4.29) OM = Loc (OM).

Proof. The inclusion OM < Loe (OM) holds by (4.20). We will
prove that Loc (OM) « OM. Let a mapping f map X onto Y and let
f € Loc (OM). It follows from (4.6) that it suffices to show that for each
sequence {y,} of points of ¥ with lim y, = v, the set Ls f~*(y) intersects

n—oo

n—>o
any component of the set f~!(y,). Let C be an arbitrary component of
the set f~'(y,). Since f e Loc (OM), we infer that there is a closed neigh-
bourhood V of an arbitrary point ¢ of C such that f(V) is a closed neigh-
bourhood of y, and the partial mapping f|V is an OM-mapping. We con-
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clude from (4.6) that Ls(f|V) '(y,)nC # @. But Ls (f|¥)"'(y,) <
n—»00

n—>oo

Ls f~'(y,); thus Ls f~'(y,) nC # @.

n—o n—>oo

Equality (4.29) implies the following inclusions:
(4.30) MO < Loc (MO) « OM.

Both the above inclusions are essential. The mapping f described
in Example (4.11) is a locally MO-mapping, but it is not an MO-mapping.
Similarly, there are OM-mappings which are not locally MO-mappings.
This can be seen by the following

(4.31) ExampLE. Let (z, y) be a point of the Euclidean plane having 2
and y as its rectangular coordinates. Put (Fig. 1)

atl

Fig. 1

I ={z9:0<2<1,y =0} .
A, ={x,y): e =12, 0<y<1/2"'} for =% =0,1,2,...,
T =I1ul4,

n=90

and define mappings f: T' — f(T) and g¢: f(T) — I as follows:

(,y) if y<u,
g(@,y) =(—y,0) for (z,y)ef(T).

The mapping f is monotone and the mapping g is open, and thus
their composition 2 = gf is an OM-mapping. We will show that the map-
ping h is not a locally MO-mapping.

Suppose, on the contrary, that the mapping » is a locally MO-map-
ping. Then there is a closed neighbourhood V of the point p = (0, 0)
such that (V) is a closed neighbourhood of #(p) and the partial mapping
h|V is an MO-mapping. Therefore there are a monotone mapping f, and
an open mapping g, such that #|V = f,g,. Since open mappings do not
increase the orders of points (see [83], (7.3), p. 147, compare [36], § 51,
I, p. 277), we infer that for 4, = V either g,(4,) is an arc such that g, (4,)n
NI V) =g:(1/2%,0) or g,(4,) < g(InV) and g,(1/2",1/2"") =
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= ¢,(p). In the first case, since f;¢g,(1/2", 0) = f,9,(p), we obtain a contra-
diction of the monotoneity of f,, because in this case the set f7'(p) has
at least two components, one contained in g,(4,) and one contained
in ¢;(InV). In the second case, since fyg,(1/2",1/2") = g,(p) and
g,(1/2", 1/2™) = g,(p) we infer that there is a point ¢ # p in the arc I
such that h(q) = h(p). This contradicts the fact that the mapping h|I is
a homeomorphism.
Locally monotone mappings have the following property:

(4.32) THEOREM. Any locally monotone mapping f: X — Y is a locally
MO-mapping and there is a positive integer n such that the set f~'(y) has at
most n components for each y e Y.

Proof. A locally monotone mapping f: X — Y is a locally MO-
mapping by (4.1) and (4.21). Since f € Loc(M), we infer that for each
point y € ¥ there are sets V,, V,,..., V, such that the set fYy) is
contained in the union of the interiors of V,, f(V;) are closed neighbour-
hoods of y and f[V; are monotone for ¢ =1, 2, ..., n,. Therefore there
is a closed neighbourhood V',, of y such that the set f“(V,,) is contained
in the union of the interiors of V;. Thus for each ¥’ € V,, the set f~1(y’)
has at most n, components. Since ¥ is compact, we conclude that there
is a positive integér # such that for each y € Y the set f~'(y) has at most »
components. :

The class of locally MO-mappings is essentially larger than the class
of locally monotone mappings. This can be seen from Example (3.9),
where the described mapping f is open, and thus locally MO, but it is
not locally monotone. Similarly, there are locally monotone mappings
which are not monotone and which are not Jocal homeomorphisms.
For example, f described in Example (4.10) is such a mapping. '

We will now study the dependences between the classes of locally
confluent, of locally semi-confluent and of locally weakly confluent map-
pings. It is clear by (4.20) that '

(4.33) Any confluent mapping is locally éonj'l/u,ent, any semi-confluent
mapping 8 locally semi-confluent and any weakly confluent mapping is
looally weakly confluent. ) '

All the inclusions mentioned in (4.33) are essential. We describe
below an example which shows this.

(4.34) ExAMPLE. Let (x,y) denote a point of thé Euclidean plane
having ¢ and y as its rectangular coordinates. Put -

X, = {(#, 2 +sin 2x/z): 0 <2< 1}U{(0,y): 0<y§12}u
UL, ) 0<y<2}ufe, 6+sin2n/z): —1< 2 <0},
X, ={®,9): (z, —y) € X}} '
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and let X = X,UX,. We define a mapping f: X — f(X) as folloi;vs:

flz,y) = (=, [8—ly+4l) for (2,9)eX.
It is easy to ascertain that the mapping f is locally confluent and that
it is neither atriodic nor joining.
It follows from (3.3), (3.8) and (4.21) that

(4.35)  Any locally confluent mapping is locally semi-confluent and any
locally semi-confluent mapping is looally weakly oconfluent.

The mapping f described in Example (3.12) is locally semi-confluent
but it is not locally confluent. Similarly, there are locally weakly confluent
mappings which are not locally semi-confluent. This can be seen from the
following:

—

Fig. 2

(4.36) ExAMPLE. Let a continuum X consist of a straight segment
joining the point ( —1, 0) with the point (1, 0), of straight segments joining
the point ( —1, 0) with points (0, 1/2°*) and of straight segments joining
the point (1, 0) with points (0, 1/2***!) for n = 0, 1,2, ... (Fig. 2). The
mapping f: X —[—1,1] defined by f(x,y) = (,0) for (z,y)eX is
locally weakly confluent (even weakly confluent), but it is not locally
semi-confluent. ~ '

The following' theorem characterizes locally weakly conﬂuent map-
pings (see [54], Theorem (2.11), p. 62):

(4.37 ) A mapping f of X onto Y s locally weakly confluént ‘if and only
if there is a positive number ¢ such that for each continuum @ of diameter less
than € in Y there exists a component C of f~1(Q) such that f(C) = Q.

A similar theorem holds also for lo cally confluent mappings; namely

(4.38) THEOREM. A mapping f of X onto Y is locally confluent if and
only if there is a number & > 0 such that for eash continuum Q of diameter
less than ¢ in Y each component of f~1(Q) is mapped by f onta Q.

Proof. Suppose that f is locally confluent. Then there are sets
F,,F,,...,F, such that ¥ = Int F,ulnt F,u ... UInt F, and f{f~'(F,)
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is a confluent mapping for ¢ = 1, 2, ..., n. The family {Int F,, Int F,, ...
., Int F,} is an open covering of ¥. Therefore, by Corollary 4d of [36],
§ 41, VI, p. 24, there is a number &> 0 such that each continuum @
of 'diameter less than ¢ in Y is contained in some F,;. Since f|f~(F;)
is confluent, each component C of f~1(Q) = (fIf~"(¥;))"*(Q) is such that
() = (FIf (F)(C) =
Conversely, suppose that there is a number ¢ > 0 such that for each
continuum @ of diameter less than ¢ in Y each component C of f~'(Q)
is such that f(C) = Q. Let y be an arbitrary point of ¥ and let V be the
closed ball with diameter equal to £/2 and with centre at y. Obviously
fIf~Y(V) is a confluent mapping, because each contimuum @ contained
in V has diameter less than e. Therefore f is a locally confluent mapping.
An analogous condition for locally semi-confluent mappings is only
sufficient, but it need not be necessary. This can be seen from the following

(4.39) ExampLE. Let (x,y) denote a point of the Euclidean plane
having # and y as its rectangular coordinates. We put

T ={0,9): 0<y<1}u{@®,0): —1<z<1}
and we define a mapping f: T — [0, 1] as follows:

(z,v) f o0<z<l1,
_J(y/2,0) if =z=0,
f(@,9) = (13%/2], ¥) if —2/3<z<0,

B12-a+2,y) i -1<z< —2/3.

Observe that the mapping f is locally semi-confluent, but there are
“small” continua contained in [0, 1] for which the condition of semi-
confluence is not satisfied.

‘We do not consider the classes of locally atomic mappings, of locally
atriodic mappings and of locally joining mappings, because we do not
have any interesting theorem of these classes except general dependences.

D. Other methods of the generation of classes of mappings. If we
have some class of mappings defined by subcontinua of the image (cf. § 3),
then we obtain new classes by taking the class of subcontinua of the image
with nonempty interiors or the class of irreducible subcontinua of the
image instead of the class of all subcontinua of the image.

In the literature three such classes of mappings were considered.
Namely, a mapping of a space X onto a space Y is said to be

(i) quasi-monotone if for any subcontinuum @ in ¥ with a nonempty
interior the set f~(Q) has a finite number of components and f maps
each of them onto @ (see [80], p. 136);

(ii). weakly monotone if for any continuum @ in Y with a nonempty

interior each component of the inverse image f~!(Q) is mapped by f onto @
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(see [80], p. 136, where these mappings are called quasi-monotone and
the spaces considered are locally connected continua, see also [75], p. 418);
(ili) pseudo-confluent if for each irreducible continuum @ in ¥ there
is a component C of f~'(Q) such that @ = f(C) (see [51], 5.3).
As an easy consequences of the definitions we infer that

(4.40)  Any quasi-monotone mapping is weakly monotone.

(4.41)  Any confluent mapping is weakly monotone.

(4.42)  Any weakly confluent mapping is pseudo-monotone.
Moreover, it follows from Theorem (4.32) that

(4.43)  Any locally monotone mapping is quasi-monotone.

Hereditarily confluent mappings have the following property:

(4.44) THEOREM. If a hereditarily confluent mapping f maps a con-
tinuum X onto Y, then the inverse image of any subcontinuum of Y with
a nonempty interior is connected. Moreover, if Q is a subcontinuum of Y
such that Q = A nB and sets f~'(A) and f~'(B) are connected, then the set
f7HQ) is connected.- '

Proof. We claim that

(4.44.1) o A and B are proper subcontmua of Y such that ¥ = AU B,
then sets f~'(A) and f~'(B) are connected.

In fact, let A’ be an arbitrary component of f~!(4). Since f is confluent,
we have f(A’) = A. Thus there is a component B’ of f~'(B) such that
A’'n B" # ©. Observe that

(4.44.2) fYA)nB' = A'AB =f(B)n4d’

Indeed, if (f~'(4)nB’)\A’ # @, then there is a component A’
of the set (f|4"UB’)"!(4) which is contained in B’. Since A\B # @,
f(A'VB’) = Y and f(B’) = B, we obtain a contradiction of the confluence
of fl[A"UB’, because f(A") = (f|A’UB’) (A"} # A. Similarly one can
prove the second equality. Thus (4.44.2) holds. .

From (4.44.2) we conclude that

(4.44.3)  Anmy component of f~(A) intersects exactly one component of
f~Y(B) and any component of f~'(B) intersects exactly ome component of

F7(4).

Now, suppose on the contrary that the set f~!(4) is not connected
(if f~'(B) is not connected the proof is quite similar). Thus f~'(4)
= PUR, where P and R are closed, nonempty and disjoint. Put

P’ =|J{K: K is a component of f'(B) and K nP + @}
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and
= |J{K: K is a component of f71(B) and K nR # @}.

Smce P’ and R are closed, we infer that sets P’ and R’ are closed.
Moreover, it follows from (4.44.3) that sets P"nR’, PnR’ and P'nR
are -empty. Therefore, we have a decomposition of X into two closed
disjoint sets PUP’ and RUR’, contrary to the connectedness of X.
This means that (4.44.1) holds.

Let @ be an arbitrary subcontinuum of ¥ with a nonempty interior.
Consider two cases.

Case 1. The set ¥Y\Q is connected. Then ¥ = Y/QuU@, and by
(4.44.1) we conclude that the set f~!(Q) is connected.

Case 2. The set Y\@ is not connected. It follows from Theorem 3
in [36], § 47, I, p. 168, that there are proper subcontinua 4 and B of ¥
such that ¥ = AUB and @ = A nB. By (4.44.1) we infer that the sets
f1(4) and f~'(B) are connected. Suppose on the contrary that f~(Q)
= PUR, where P and R are closed, nonempty and disjoint. Take an
open subset U of X such that P ¢ U <« U =« X\R. Let K be a component
of f~1(B) nU intersecting P. The component K contains the points which
do not belong to f*(Q) (see [36], § 47, III, p. 172). Thus

(4.44.4) f(E)\A # 0.

Consider the continuum KUf~'(A) and the mapping fIKUf!(4).
The set 0 = (f|IKUf'(A))"!(f(XK)) is contained in the set f™(B)n(KuU
uf'(4)) = EVPUR. Since (EUP)NR # O and f(P) =f(R) =@ by
the confluence of f, we infer that the set C has some component W contained
in R. But f(R) « A, and thus, by (4.44.4), f(W) = (fIEVf~(4)) (W)
# f(K). Hence fI|KUf'(A) is not confluent, contrary to the here-
ditary confluence of f. One can observe that the proof of case 2 is also
the proof of the additional proposition of Theorem (4.44).

Theorem (4.44) implies the following

(4.45) COROLLARY. Any hereditarily confluent mapping is quasi-monotone.
The following examples show that other inclusions fail to hold.

(4.46) ExampLE. Let (x,y) denote a point of the Euclidean plane
having # and y as its rectangular coordinates. Put _
X = {(z,sin2x/z): 0 < 2<1}U{(0,y): —3/2<y<1}.

The mapping f is defined by f(w, y) = (=, [y +1|—1) for (z, y)e X
'and thé.méppmg g maps f(X) onto gf(X) and it identifies points (0, 1),
(0, 0) and (0, —1). The composition gf is a quasi-monotone mapping
and it is neither pseudo-confluent nor locally weakly confluent. Moreover,
it is also neither atriodic nor joining.
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(4.47) ExAMPLE. Let a continuum X consist of a straight segment
joining the point (1, 0) with the origin and of straight segments joining
the same point with points (0, 1/») for » =1, 2, ... The mapping f: X —
[0,1] defined by f(z,¥) = @ is open, but it is not quasi-monotone.

(4.48) ExAMPLE. The mapping f described in Example (3.13) is heredi-
tarily weakly confluent, but it is not weakly monotone.

(4.49) ExAMPLE. Let (z,y) denote a point of the Euclidean plane
having # and y as its rectangular coordinates. We put '

T ={0,9): 0<y<1U{@x,0): -1<2<1}
and we define a mapping f: [0, 1] — T as follows :

(—=3t—1/2,0) if 0<t<1/6,

(6t—2, 0) it 1/6<t<2/6,

sty 1@, 66=2) if  2/6<t<3/6,

0, —6t+4)  if 3/6<t<4/6,

| (6t—4, 0) it 4/6<t<5/6,
(—12t+11,0) if b5/6<t<1.

The mapping f is pseudo-confluent and it is neither weakly monot-
one nor locally weakly confluent. This mapping is also neither atriodic
nor joining.

(4.50) ExAMPLE. Let (z, ¥) be such as in Example (4.49). Put

X = {(x,sin2n/z): 0 <o <1}JU{(0,y): —b<y<1}V
U{(x, —4+sin2x/r): -1 2< 0}
and define '

flw,y) = (2, ly+2]) for (»,y)elX.

The mapping f is locally confluent, joining and atriodic, but it is not
pseudo-confluent.

E. Remark. In [22] B. B. Epps considered strongly confluent
mappings. They are omitted in this paper, because they differ in type
from the mappings investigated here.

Table IT comprises all possible inclusion between the classes of map-
pings on continua which are considered here.. These inclusions are essential,
which is shown in the examples described in Sections 3 and 4. We use the
sign of implication instead of the sign of inclusion.
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TABLE II
homeomorphisms
/ l | h " ;.-.
local atomic r:::er:lc:gr;g
homeomorphisms mappings mappings
open monotone
mappings mappings
locally /
open MO-mappings
mappings
.
locally locally  oealy
OM-mappings MO-mappings mappings
quasi-open quasi-monotcne
mappings mappings
v OM-mappings
weakly
monotone
mappings
locally hereditarily
confluent - ::: ﬂu;:n; - confluent
mappings PpIng mappings
locally . L .
semi-conlluent scnl;:co?;l uent njlglmi';g <
mappings ppIngs ppINg
4
1 hereditarily
:\?CC:EI);' weakly weakly
confluent = confluent -— confluent
. mappings mappings
mappings (pseudo-monotone)
pseudo-confluent atriodic he;ﬁ;?i?y
mappings mappings ™ mapnina-



5. General properties of mappings

In this section we investigate some general properties of classes
of mappings which are defined in the previous two sections.

A. The composition property. Let 4 be an arbitrary class of mappings.
We say that the class A has the composition property if for each two map-
pings f: X - Y and g: Y — Z belonging to A their composition gf belongs
to A. As an immediate consequence of the definitions we infer that

(5.1) The composition property characterizes the following mappings:
homeomorphisms, atomic mappings, open mappings, monotone mappings.

It follows from (4.27) that
(5.2) The dlass of local homeomorphims has the composition property.
Proposition (2.3) in [57] says that

(5.3) The composition property characterizes the following mappings:
hereditarily monotone, hereditarily confluent and hereditarily weakly con-
Sfluent. '

Moreover (cf. [9], III, p. 214; [50], 4.4 and [51], 1.5)

(5.4) Classes of confluent mappings, of weakly confluent mappings and
of pseudo-confluent mappings have the composition property.

(5.5) The class of OM-mappings has the composition property, but the
class of MO-mappings does not have l.

The above proposition is implied by (4.5) and Example (4.11) (cf.
(4.7), see also [560], Theorem 2.8 and Example 3.5).
We also have (cf. {83], Theorem (8.3) (ii), p. 153) the following

(5.6) THEOREM. The class of quasi-monotone mappings has the compo-
sition property.

Proof. Let mappings f: X - Y and g: Y - Z be quasi-monotone
and let ¢ be an arbitrary subcontinuum of Z with a nonempty interior.
Since g is quasi-monotone, we infer that the set g=!(Q) has a finite number
of components and g maps each of them onto @. Therefore each compo-
nent of ¢g~'(Q) has a nonempty interior in Y, because @ has a nonempty
interior. Since f is quasi-monotone, we conclude that for each component
C of g~1(Q) the set f~1(Q) has a finite number of components and f maps
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each of them onto O, respectively. Hence the set (gf)~'(Q) has a finite
number of components and gf maps each of them onto , because any
component of (fg)~!(Q) is a component of f~!(C) for some component ¢
of g~*(@). This means that gf is quasi-monotone, and thus the class of
quasi-monotone mappings has the composition property.

Just, as the class of MO -mappings, the remaining classes of mappings
do not have the composmon property. This can be seen from the following
examples.

(5.7) ExAMPLE. Let (r, ¢) denote a point of the Euclidean plane having r
and ¢ as its polar coordinates. Put (Fig. 3)

Fig. 3

={(r,—sm 1) : 1<r<2},

= : (ryp—m) e X4},

8 = "P) 0<¢<2n}
and
X =X,uX,USs,

and define a mapping f: X — f(X) as follows: f(r,¢) = (v, 2¢). It is
clear that f is a local homeomorphism (cf. (4.27)). The monotone mapping
g: f(X) — [0, 1] identifies points of f(S). The mapping gf is not locally
monotone, because there exists no closed neighbourhood V of (1, x/2) in X
such that gf(V) is a closed neighbourhood of gf(1, =/2) and such that
gf!V is monotone.
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(5.8) ExAwmprLE. The mappings f and ¢ described in Example (4.31).
are both locally MO-mappings, but their composition gf is not.

(5.9) ExAMPLE. Let a continuum X consist of a straight segment
joining the point (1, 0) with the origin, of a straight segment joining the
point (1, 0) with (1/2, —1/2) and of straight segments joining the same
point with points (0,1/n) for » =1,2,... The mapping f: X — f(X)
defined by f(z, ¥) = (=, |y|) is quasi-monotone. The mapping g of f(X)
onto [0, 1] defined by g(z,y) = 2 is open. The composition gf is not
weakly monotone.

(6.10) ExAMPLE. Let a continuum X consist of a straight segment
joining the point (—1, 0) with (1, 0), of a straight segments joining the
same point with points ( —1/n, —1/n) and of straight segments joining
the point (1, 0) with points (1/n,1/n) for n = 2, 3, ... (see Fig. 4). The

Fig. 4

mappings f: X — f(X) and ¢: f(X) - [—1,1] defined by

ez, i 0L,

Jl@,y) = {(m,O) i <0,
and

g(w,y) == '
are semi-confluent, but their composition is neither locally semi-confluent
nor jpim‘ng.
(6.11) ExAMPLE. Let a continuum X be such as in Example (4.50).
The mappings f: X — f(X) and g: f(X) — gf(X) are defined as follows:

f(wa?/) = (a"r |y+2|_2)r
_ J(=,0) it —-1<y,
-"‘””’-”)‘{w,yﬂ) it y<—1.

The mapping f is locally confluent and the mapping ¢ is monotone,
but their composition is not even locally weakly confluent.
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(6.12) ExXAMPLE. Let (xz,y) denote a point of the FEuclidean plane
having # and y as its rectangular coordinates. Put

X = {@, —1): -1 <2<0}U{0,y): -1<y<1}u{@=,1): 0<z<3}

and define f: X — f(X) and ¢: f(X) —» gf(X) by f(»,vy) = (=, ly]) and
g(z, y) = (l#—1]), ¥). The mappings f and g are both hereditarily atriodie,
but their composition is not even atriodic.

Recall that a mapping f from X onto Y is called light if dim f~1(y) = 0
for each y € Y (see [83], p. 130). Theorem (2.13) of [54], p. 63 says that
the composition of light locally weakly confluent (light locally confluent)
mappings is locally weakly confluent (locally confluent, respectively).
Such a property for semi-confluent (locally semi-confluent) ma,ppmgs is
not true. This can be seen from Example (5.8).

In [52], Theorem 3.3, p. 254, in [54], Theorem 2.5, p. 61 and in [50],
4.6 some particular properties of the composition of locally confluent,
locally weakly confluent and semi-confluent mappings are proved.

B. The composition factor property. Let A be an arbitrary class
of mappings. We say that the class A has the composition factor property
if for each mapping f: X — Y belonging to A the equality f = gh (we as-
sume that g and h are continuous) implies that the mapping g belongs
to A. .

As a direct consequence of Whyburn’s factorization theorem (see
[83] (4.1), p. 141) we infer that

(6.13) If A is a class of mappings having the composition factor property,
then for each f belonging to A there ewists a unique factorization of f into two

mappings g and h, i.e., f = gh, where h is monotone and g is light and be-
longs to A.

The following propositions say which classes of mappmgs have the
composition factor property. Obviously,

(5.14)  The class of homeomorphisms has the composition factor property.
It follows from (3.1) and (3.2) of [83], p. 140 that

(6.15)  Classes of open mappings and of monotone mappings have the
composition factor property.

As immediate consequences of definitions we infer that (cf. [9], IV,
P. 214 and [62], Theorem 3.5, p. 254)

(6.16) The composition factor property have the following mappings:
confluent, semi-confluent, weakly confluent and pseudo-confluent.

Moreover (see [54], Theorem (2.7), p. 61)
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(5.17) The class of locally weakly confluent mappings .hus th: compo-
sition factor property.

Similarly,

(5.18)  The class of locally confluent mappings has the composition factor
property. :

In fact, let f map X onto Y and let g map Y onto Z. Suppose that ¥
is a closed neighbourhood of 2z in Z such that the partial mapping a|h~1(V)
is confluent, where h = gf. Since hlk=*(V) = (glg~*(V)) (FI2~X(V)), we
conclude that glg~'(V) is confluent by (5.16). Therefore g is locally con-

fluent.
In the some easy way as for confluent mappings one can infer that

(5.19) Classes of quasi-monotone mappings and of weakly monotone
mappings have the composition factor property.

From (4.6) we conclude that

(56.20)  The class of OM-mappings has the composition factor property.
Further, it is clear that

(5.21)  The class of joining mappings has the composition factor property.
The following problem is open:

(5.22) Does the class of atomic mappings have the composition factor
property (on continua)?

We conjecture that the answer is positive.
The remaining classes of mappings do not have the composition
factor property. This can be seen from the following examples.

(6.23) ExXAMPLE. Let (r,¢) denote a point of the Euclidean plane
having # and ¢ as its polar coordinates. Take the unit circle § = {(1, ¢):
0 < ¢ < 2n}. The mapping & of § onto itself defined by h(r, ¢) = (7, 2¢)
is a local homeomorphism. Let f: § — f(8) be a mapping which iden-
tifies points (1, 0) and (1, =) and let a mapping g: f(S) — S be such that
h = gf (there is exactly one such g). The mapping ¢ is not a local homeo-
morphism.

(5.24) ExampLE. The mapping f described in Example (4.10) is locally
monotone and it is a composition of two mappings, namely of a monotone
mapping g defined by '

t+1 i —2<t< -1,

it —1<t<1,

g(t) =10
t—1 if 1<t<2

3 — Dissertationes Math. 168
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and of an open mapping % defined by h(¢) = |t|]. We have f = kg and ¢
is not locally monotone.

(5.25) ExAMPLE. Let f denote the step-function which is extended
to the whole interval [0, 1] (see [35], § 16, II, p. 150). The mapping f’:
[—1,1] — [0, 1] defined by f'(t) = f(|¢t}) is an MO-mapping, because | |
is open and f is monotone. The mapping f’ is a composition of two map-
pings, namely f° = hg, where
W =1 f —-1<t<0,
IO =\rey it 0<t<1
and
t if 0t 1.
As in Examples (4.11) and (4.31) one can show that the mapping &
is not a locally MO-mapping.
The following Example is a modification of Example (2.8) of [57].

(6.26) ExXAMPLE. Let (z,9) denote a point of the Euclidean plane
having # and vy as its rectangular coordinates and let f be the step-function
extended to the whole interval [0, 1] and let C denote the Cantor stan-
dard ternary set lying in [0, 1] (see [35], § 16, II, p. 150). Consider the
confinnum X defined by
X ={x,9): veC and 0 <y <1}V {(=, 0): 021}y
u{l/2,y): -1<y<0}

and the mapping f': X — f'(X ) defined as follows:

F'@ Y =\(f@.y) i y<o.

The mapping f’ is hereditarily monotone and f* = hg, where
9@, 9) = (f(x),y)

and -

. . (2, 0) if 0<y,
h(m’y)—{(w,y) it y<o.

~ Since the mapping % restricted to the set {(z, 1): 0 <z << 1}U{(L, 9):
0<y<1}u{(®0):12<2<1}U{(1/2,9): —1<y<0} is not weakly
confluent, we conclude that % is not even hereditarily weakly confluent.

(6.27) EXAMPLE. Let (z,y) be as in Example (5.26). We put
T={0,y): 0<y<1}u{(x,0): -1<z<1}
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and we define a mapping f: [0,1] - T as follows:

(—6t, 0) it 0<t<1/6,

| (6t—2, 0) it 1/6<t<2/6,

fay = 10,61=2) it 2/6<t<3/6,
(0, —6t-+4 if 3/6<t<4/6,

(61— 4, 0) it 4/6 <t<5/6,

(—6t+6,0) if 5/6<t<1.

The mapping f is hereditarily atriodic and it is a composition of two
mappings ¢ and h, i.e., f = hg, where g: [0, 1] — g([0, 1]) identifies points
0 and 1; and h: g([0,1]) — T is such that f = hg (there is exactly one
such h). The second mapping h is not even atriodic, and thus if is not
hereditarily atriodic.

(6.28) ExAMPLE. Let a continuum X consist of a straight segment
joining the point (0, 2) with the point (0, —2), of straight segments joining
the point (0, 1) with points (1/n,2) for n =1, 2, ... and of straight seg-
ments joining the point (0, —1) with points (—1/#, —2) for n =1, 2, ...
(see Fig. 5). Define a mapping f from X onto f(X) and define a mapping

Fig. &
from f(X) onto the interval [ —1,1] as follows:

flz,y) = (@, 1—[2—|y+1]))
and

g(z,y) =(0,9).

It is easy to ascertain that the mapping gf is locally semi-confluent
and that the mapping g is not locally semi-confluent.
The following theorem comprises also Theorem (2.7) of [57].

(75.29) Let a weakly confluent mapping f map a continuum X onto Y.
If a mapping g: Y — Z i8 such that gf is atomic (hereditarily monotone,
hereditarily confluent, hereditarily weakly oconfluent, airiodic, hereditarily
atriodic), then the mapping g i8 atomic (hereditarily monotone, hereditarily
confluent, hereditarily weakly confluent, atriodic, hereditarily atriodic,
respectively).
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In fact, if gf is atomiec (in the remaining cases the proof is similar)
and @ is an arbitrary subcontinuum of Y such that the set ¢g(Q) is non-
degenerate, then there is a continuum K in X such that f(K) = @, because f
is weakly confluent. Therefore, since gf(K) = g(@), we infer that K
= (gf)"'((gf) (K)). Thus @ = g~'(g(Q)). This means that g is atomic.

C. The product property. A product f, xf,: X, xX, - ¥, xY, of
two mappings f;: X; > Y, (¢ =1, 2) is defined by

(fux fo) (@, 25) = (fl(w1)7f2(m2)) for z,eX, and z, € X,.
It is easy to observe that the following two formulas hold:

(5.30) (fuxfo)(A X B) = fi(4) X fo(B),
(5.31)  (fixf)"HCxD) = fr(C)x f; (D),

where A «c X,, Bc X,, (= Y, and D < X,.

Let A be an arbitrary class of mappings. We say that the class A
has the product property if for each two mappings f; and f, belonging
to A their product f, x f, belongs to A.

As an immediate consequence of the definitions from (5.30) and
(6.31) we infer that (cf. [49], (1.9))

(5.32)  Classes of homeomorphisms, of monolone mappings and of open
mappings have the product property.

Since (kh,g,) X (hygs) = (hy X hy)(g, X g5), We conclude by (5.32) that
(cf. [49], (1.10))

(5.33)  The product property characterizes the follo'wmg mappings: MO-map-
pings and OM-mappings.

We have the following

(5.34) THEOREM. If a class A of mappings has the product property,
then a class of locally A mappings also has the product property.

Proof. Let mappings f,: X; - ¥, and f,: X, > ¥, belong to
a class of locally A mappings. Therefore for arbitrary points z; € X,
and z, € X, there are closed neighbourhoods V, in X, and V, in X, of
‘@, and @,, respectively, such that f;(V,) and f,(V,) are closed neighbour-
hoods of f,(x;) and f,(z,) in ¥, and in Y,, respectively, and the partial
mappings f,|V, and f,|V, belong to A. Then the set V, xV, is a closed
neighbourhood of (x,, z,) in X, x X, and then the set (fy X f) (ViXV,)
is a closed neighbourhood of (fy X f3) (%, @;) in ¥, X ¥, by (5.30). Moreover,
since the class A has the product property and since (f; Xfy)|VyiXV,

= ( fllV,) X (f,1V,), we conclude that the mapping (f, X fa})l V, X V, belongs
to A, because f,| V, and f,|V, belong to A. This means that the mapping f, X f,
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is a locally 4 mapping. Hence the class of locally A mappings has the
product property.

By (5.32), (5.33) and Theorem (5.34) we obtain the following
(5.35) ComrOLLARY. The product property characterizes the following map-
pings: local homeomorphisms, locally monotone mappings and locally MO-
mappings.

The remaining classes of mappings do not have the product property.
This can be seen from the following two examples.

(6.36) ExAMpLE. Let (z,y) denote a point of the Euclidean plane
‘having # and y as its rectangular coordinates. Put
X = {(#,sin2x/z): 0 <2z <1}U{0,y): -1<y<1}
and define a mapping f: X - I = [0,1] by f(x, ¥) = x. The mapping f
is atomic. Let h: I — I be the identity mapping onto I, i.e., h(t) =t.
The product mapping f X h: X x I — I xI is not even hereditarily atriodic
because f x h restricted to the set (X x {0, 1/2, L}u{(1, 0)} x I)u({(0, 1)} x
X{t: 0<t<1/3 or 2/3<t<1YU({(0, —1)} x{t: 1/3 < t<<2/3}) is not
atriodic.
The following example is a modification of Example of [60].

(5.37) ExAMPLE. Let (r,t) denote a point of the Euclidean plane
having r and ¢ as its polar coordinates. If 0 < a < b, then we put

K(a,b) ={(r 12r—(a+b)|sin—1——): a<r< b}.

r
’3(b—a) (r—a)(b—7)

Define

K, =K(Lal)’
n+l n
8, = {(1/'”'7 1): 0< < 2m)},

X = {(0,0)}uv O(Knusn) (see Fig. 6)
flr,t) = (r,3t) for each (r,t)eX
and
Y = f(X).

It is easy to observe that the mapping f is confluent and quasi-mon-
otone (cf. [60], Example).

Now we consider the products X xI and Y xI with I = [0,1]
and, to simplify the notation we shall use (, t, 8) instead of ((r, t), 8) where
(ryt) e X or (r,t) € Y and s € I. Fix a natural #» and consider the following
sets for ¢ = 0,1, 2:
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Fig. 6

mdt ' 2n+1
My = {(r’ 2 ﬁ+ﬁ): (1 8) €f(8pVELUS,), —n<I<T, r< 2n(n—l—1)}’
3
Ai = {(T, t, ot t): (’I‘, ) e Sn+1UKnUSn3 —:gt n’ r< ke —]
- 3 3 2n(n—l—1)I

2 w43t 1 R 4 T
B, = t+— P r = d ——<t< —
i {(T’ T 21m) T TS 3}’_

and

C,-={( t—{—ﬁ Tt 3t D= 1 and —-E<t<ﬂ)}o
2mn 3

It is easy to observe that
(5.37.1) Sets A,, A, and A, are irreducible continua.

Let h: I — I be the identity mapping onto I, i.e., k(s) = s for each
sel. It is easy to check that the mapping fxh: X XI - ¥ x I has
the following properties

(5.37.2)  (Fx k)™ (M) = A,UB,UC, for i = 0,1, 2.
(5.37.3)  (fxh)(4,) = M; for i = 0,1, 2.
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Since M,n M, # @, we coneclude that M,u M, is an irreducible
continuum by (5.37.1) and (5.37.3). Sets A4,UB,, A;U(, and B,UC,
are components of the set (f x h)~!(M,v M,) and none of them is mapped
onto the whole of M,u M,. Therefore

(5.37.4) fxh is meither pseudo-confluent mor locally weakly confluent
because the diameter of My, M, is less than 3[n (cf. (4.37)).

Since Myn M, #+ @ nad M,n M, # O, we infer that the set M, L
uM,u M, is a continuum by (5.37.1) and (5.37.3). Sets 4,VB,V(C,, AU
UB,uU(,and 4,UB,U0, are components of the set (fx h)"'(M,v MU
U M,) and the image under f x h of the union of each two of them is not
equal to M U M,U M,. Therefore

(5.37.5) fXxh is not atriodic.

2n+1 4 .
Let D ———{(r, t,s)e ¥Y: ——— <r}. The set D is a subcon-
2n(n+1) :
tinoum of Y with a nonempty interior. Since M, and M, are continua
(by (5.37.1) and (5.37.3)) and since Dn My, # @ # Dn M,, we infer
that the set Du ML M, is a continuum with a nonempty interior. Sets
AyUA,u(fxh)'(D), By, By, C; and C, are components of the set
(fx k)Y (DU Myu M,) (cf. (5.37.2)). Since (fx k) (By) n(fx k) (B,) = @,
we infer that
(5.37.6)  fxh is neither weakly monotone mor joining.

- Example (5.37) is a solution of the problem asked by A. Lelek (see
[49], Problem I); it is also an answer to the problem asked in [74] in the
Table. Moreover, it is an answer to the following problem, asked by
A. Lelek in his letter to the author: Is the product of two confluent map-
pings always weakly confluent? The answer is negative by (5.37.4).

D. The product factor property. Let A be an arbitrary class of map-
pings. We say that the class A has the product factor property if fxge A
implies that f € A and g € A. This property is investigated in [74], where
it is proved that

(5.38) Let a class A of mappings satisfy the following conditions:
(i) fe A, then fIf~'(B) e A for each closed set B < ¥ and
(ii) of gf € A and f i3 open, then g€ A. _ :
Then the class A has the product factor property.

Thus, by proposition of (5.B) we infer that (cf. [74], Corollaries)

(5.39)  The following mappings have the product factor property: homeo-
morphisms, atomic mappings, monotone mappings, open mappings, OM-
mappings, quasi-monotone mappings, weakly monotone mappings, con-
fluent mappings, semi-confluent mappings and weakly confluent mappings.
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From (5.16), (5.21) and (5.38) it is easy to find that

(5.40)  Classes of joining mappings and of pseudo-confluent mappings
have the product factor property.

We have the following general theorem:

(5.41) THEOREM. If is a class of mappings, then the class of hereditarily A
mappings has the product factor property.

Indeed, let a mapping f, Xf,: X, X X; > ¥, x Y, belong to the
class of hereditarily 4 mappings and let K be an arbitrary subcontinuum
of X, and let x, € X,. Then K X {z,} is a subcontinuum of X, x X,, and
thus the mapping (f; X f,)| K X {z,} belongs to the class A. But (f, x f;)| K X
X {w;} = f1/K (the equality is given with respect to homeomorphisms).
This means that f, belongs to the class of hereditarily A mappings. Simi-

larly, f, belongs to the class of hereditarily 4 mappings. Consequently
the class of hereditarily A mappings has the product factor property.
Theorem (5.41) implies that

(5.42) The following mappings have the product factor property: here-
ditarily monotone mappings, hereditarily confluent mappings, hereditarily
weakly confluent mappings and hereditarily atriodic mappings.

Further, it is clear that property (i) of (5.38) is satisfied for a class
of atriodic mappings. Thus, by (5.29) and (5.38) we conclude that

(5.43)  The class of atriodic mappings has the product factor property.

Similarly (cf. [54], Theorem 2.6, p. 61) by (5 17), (5.18) and (5.38)
we conclude that

(5.44) Classes of locally confluent mappings and of locally weakly con-
fluent mappings have the product factor property.

‘We also have the following

(6.45) THEOREM. The following classes of mappings have the product
factor property: local homeomorphisms, locally monotone mappings, locally
semi-confluent mappings.

Proof. Let a mapping f: X — ¥ be a local homeomorphism (a locally
monotone mapping, a locally semi-confluent mapping), let B be a closed
subset of Y and let x € f~'(B). There is a closed neighbourhood V of z
such that f(V) is a closed neighbourhood of f(x) and f|V is a homeo-
morphism (a monotone mapping, a semi-confluent mapping, respectively).
Then the set ¥V n f~'(B) is a closed neighbourhood of # in f~'(B) and the
set (fI1V)(V A f~1(B)) = f(V) nB is a closed neighbourhood of f(z) in B.
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Since the class of homeomorphisms (of monotone mappings, of semi-
confluent mappings) has property (i) of (5.38) (for semi-confluent mappings
it is proved in [52], Corollary 3.8, p. 255; for homeomorphisms and for
monotone mappings it is obvious), we conclude that the partial mapping
(FIMI(f1 V) "(B) is a homeomorphism (a monotone mapping, a semi-
confluent mapping, respectively). This means that f|f~*(B) is a local homeo-
morphism (a locally monotone mapping, a locally semi-confluent map-
ping, respectively). Therefore the class of local homeomorphisms (of locally
monotone mappings, of locally semi-confluent mappings) has property (i)
of (5.38). ,

Consequently, it suffices to show that the class of local homeomor-
phisms (of locally monotone mappings, of locally semi-confluent mappings)
has property (ii) of (5.38). We will now prove this.

Indeed, let a mapping f: X — Y be open and let a mapping g: Y - Z
be such that the composition gf is a local homeomorphism (a locally
monotone mapping, a locally semi-confluent mapping). Assume y €Y
and take # € X such that f(z) = y. Then there is a closed neighbourhood
V of x such that gf(V) is a closed neighbourhood of gf(#) and the partial
mapping ¢gf|V is a homeomorphism (2 monotone mapping, a semi-con-
fluent mapping, respectively). Since the mapping f is open, we conclude
that the set f(V) is a closed neighbourhood of y. The image of f(V) under ¢
is a closed neighbourhood of g(y), because g(f(V)) = gf(V). Since gf|V
= (91f(V)) (fIV), we infer that the partial mapping ¢|f(V) is a homeo-
morphism (a2 monotone mapping, a semi-confluent mapping) by (5.14)
(by (5.15) and by (5.16), respectively). Hence the mapping ¢ is a local
homeomorphism (a locally monotone mapping, a locally semi-confluent
mapping, respectively). Thus also (ii) of (5.38) holds for these classes of
mappings. Therefore the proof of Theorem (5.45) is completed by (5.38).

The following problems remain open (cf. [74], Table):

(5.46) PROBLEM. Does it follow that the class of MO-mappings (of locally
MO-mappings) has the product factor property?

E. The limit property. Let A be an arbitrary class of mappings. We
say that A has the (weak) limit property if for each two spaces X
and Y (if for each space X and for each locally connected space Y) the set
of all onto mappings f: X — Y belonging to A is closed in the space ¥¥,
where YX denotes the space of all continuous mappings f: X — Y with
the compact-open topology. It is known that (see [37], p. 797)

(5.47)  The class of monotone mappings has the weak limit property.
It follows from Theorems 1 and 2 of [59] that

(5.48)" Classes of confluent mappings and of semi-confluent mappings
have the weak limit property.
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Moreover, by Theorem 3 of [69] we infer that
(5.49)  The class of pseudo-monotone mappings has the limit property.

Since the class of OM-mappings (of quasi-monotone mappings, of
weakly monotone mappings, and of locally confluent mappings) coincides
with the class of confluent mappings onto locally connected spaces (see
[9], p. 214 and p. 215; [50], Corollary 5.2 and [80] Theorem (2.1), p. 137;
and Theorem (2.3), p. 138; cf. § 6 here) from (5.48) we conclude that

(8.50)  The following mappings have the weak limit property : OM-mappings,
quasi-monotone mappings, weakly monotone mappings and locally confluent
mappings.

We will now prove that the class of joining mappings has the weak
limit property. Firstly, recall that (see [69], Lemmas 1 and 2)

(6.51) If G is an open subset of X and P is a closed subset of X, and if
H i8 an open subset of Y and R i3 a closed subset of Y, then the sets {g: g~ (R)
c G} and {g: ¢(P) = H} are open in YX.

Moreover (cf. [69], Lemma 3),

(5.52) If f maps X onto Y and G is an open subset of X, then the sel
{y: 71 (y) = G} is open in Y.

We have the following

(6.53) THEOREM. The class of joining mappings has the weak Ulimit
property.

Proof. Assume that Y is locally connected and let @ denote the

set of all joining mappings from X onto Y. Suppose that f @. We should
prove that f is joining. Suppose on the contrary that f is mnot joining
and let @ be subcontinuum of ¥ and let C; and O, be components of f~1(Q)
such that their images @, = f(C,) and @, = f(C,) are disjoint. Then the
set f~1(Q) is not connected between C, and f~'(Q,). Thus (see [36], § 47,
1T, Theorem 3, p. 170) there are closed sets 4, and A, such that f~'(Q)
=A,VA;,A,n4A, =0, C, c 4, and f~}(Q,) = A4,. Then f(4,) nQ, = O.
Thus the set A; is not connected between f~!(f(4,)) and C, (cf. ibid.).
Therefore there are closed sets 4, and A, such that 4; = A,U4,, 4,N
N4y =@,0, c A, and f~'(f(4,)) 0 A, = @. Hence we have

(5.63.1) f71(Q) = A,UA,UA4,, A;nA; =0 for i #j and 4,j =1,2,3
and f(A;)Nf(A,) = @.

Since X is normal and f is continuous, there are open sets G,, G,
and Gy such that

(5.63.2) A,<@;, GinG; =0 for i j and i,j =1,2,3 and f(G)O
nf(Gy) = 9.
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Since Y is normal, there are open sets H, and H, such that
(5.53.3) f(G)) c H;, H,nH, =@ for i #j and 4,5 = 1, 2.

Consider subsets ¥, and ¥, of YX defined as follows:
(5.63.4) ¥, =1{g: 9(G) < H)} for i =1,2.

Since the sets @, and @, are closed and the sets H, and H, are open,

we conclude that the sets ¥, and ¥, are open in Y*, by (5.51). Moreover,
fe¥,nY, (cf. (5.53.3)), and thus

(5.53.5) the set ¥, n'Y, is an open meighbourhood of f.

Put @ = G,UG,UG,. Since f is continuous and @ is open, from (5.52)
we infer that

(5.53.6) the set U = {y: f~'(y) = G} i3 open in Y.
Moreover, by (5.53.1) and (5.53.2) we have
(5.53.7) Qc U.

The local connectedness of ¥ implies that there is a connected open
set V such that

(6.538) QcVcVcl.

We will show that
(6.53.9) f (V) cG.

Indeed, if xef'(V), then f(x)e V. Hence f(x)e U by (5.53.8).
Since x € f'f(x), we conclude that # ef'(f(x)) =« @ by (5.53.6). Thus

(5.53.9) holds.
Consider the subset 4 of YX defined as follows:

(5.53.10) A ={g: g7 (V) <@}

Since the set @ is open and since the set V is closed, we infer by (5.51)
that the set A is open in Y*. Moreover, by (5.53.9) we have f € 4. Thus
(5.53.11) A4 is an open meighbourhood of f in Y.

Put
(6.83.12) Iy ={g: g(4;) = V} for i =1, 2.

Since the sets A, and A, are closed and the set V is open, we conclude
that the sets I'y and I', are open in Y%, by (5.51). Moreover, f e I, n T,
because f(4,) = @ = V by (5.53.1) and (5.53.8). Thus the set A n¥;n¥,;n

nI'y I is an open neighbourhood of f by (5.53.5) and (5.53.11). Since
fe®, we conclude that there is a g such that

(5.6313) gePnAnY¥Y, n¥,nl nl,.
Since g € 4, we have, by (5.53.10), the decomposition
g7H(T) = (57 (7) nGy) U 7 (7) A G5} U (g™ (7) N6
of g7(V) into three separated sets (cf. (5.53.2)).
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Let ¢ = 1,2. Since the set 4; = f1(Q) and since g e I';, we infer
that g(4,) = V by (5.53.12). Thus A; = ¢g7'(V). This implies that A,
c g7 V) nG;, because A; c G; by (5.53.2). We conclude that there is
a component K; of the set g~*( V) which is contained in the set g7*( V) nG;.
Thus we infer that g(K;) < 9(@;) < H;, because g ¢ ¥; and K; < ¢~ (V) ~
nG; c G;.

Consequently K, and K, are components of the set g~!(¥) such that
g(K,)ng(K,) =9 by (5.53.3). This means that the mapping ¢ is not
joining, because V is a subcontinuum of Y. This contradicts the fact that
g € @ (cf. (5.53.13)). The proof of Theorem (5.53) is complete.

We have (cf. [69], Theorem 4) the following

(b.54) THEOREM. The class of weakly confluent mappings has the limit
property.

Proof. Let @ denote the set of all weakly confluent mappings
from X onto Y. Suppose that f € . We should prove that f is weakly
confluent. Suppose, on the contrary, that f is not weakly confluent,
and let @ be a subcontinuum of Y such that no component of f~1(Q) is
mapped onto @ under f. Let C' be an arbitrary component of f~!(Q). Then
there is a point y, such that y, € @\f(C). Therefore the set f~'(Q) is not
connected between ¢ and f~'(y,) (see [36], § 47, II, Theorem 3, p. 170).
Thus there are closed sets 4y and Ay such that f1(Q) = AoUdy, AgN
NAy, = 0,0 < A, and f'(y,) € Ay. We infer that the set A is open in
FH(Q). Since the set f~'(Q) is compact and the collection {A,: C is 2 com-
ponent of f~1(Q)} covers f~!(Q), we infer that there are closed-open sets 4,,
A,y ..., 4, in f71(Q) and points y,, ¥,, ..., ¥, such that f}(Q) = 4,u
Ud,u...ud, and y,e@Q\f(4;) for each ¢ =1,2,...,n. Put B;
= AN(44,V4;,,U...UA,)). Since A; are closed-open in f(Q),
we infer that B; are closed-open in f~'(Q). Therefore, B; are closed in X.
Moreover,

(5.54.1) f1(Q) = ByuB,U...U B,, B,nB; =@ and y;cQ\f(B;) for
each i =1,2,...,n. :

Since X is normal and f is continuous, there are open sets @,, G,, ..
..., G, such that

(5.54.2) B‘i [and G‘i’ é,ﬁ@j = 0 a%d yi EQ\f(éi) for 6a0h 7: Z;'ﬁj and i,j
=1,2,...,mn

Since Y is normal, there are open sets H,, H,, ..., H, such that
(6.54.3) f(G) = H; =« Y\{y;} for each i =1,2,...,n.

Consider subsets ¥,, ¥,,..., ¥, of Y* defined as follows
(6.54.4) ¥, =1{g:9(G)<cH} for i =21,2,...,n.
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Since the sets &,, @,, ..., G, are closed and the sets H,, H;, ..., H,
are open, we conclude that sets ¥,, ¥,, ..., ¥, are open in YX by (5.51).
Moreover, by (5.54.3), fe ¥1n¥, Nn... n¥,. Thus

(5.54.5) the set ¥.n¥, Nn... ¥, is an open neighbourhood of f.

Put G =G,UG,V...UG@G,. Since G is open and Q is closed, from
(5.51) we conclude that '
(5.54.6) the set 4 — {g: g7 (Q) < G} is open in YX,

Moreover, it follows from (5.54.1) and (5.53.2) that fe 4. Thus,
(5.54.5) and (5.54.6) imply that the set AN¥Y,N¥, n... n ¥, is an open
neighbourhood of f in ¥*. Since f € @, there is g such that
(5.54.7) gedPnANYN¥Y,Nn...NnY,.

Since g € 4, we have, by (5.54.6), the decomposition

97HQ) = (471N U (g7 (@) "Gy U ... U (¢7(Q) nGy)

of ¢7'(Q) into separated sets (cf. (5.54.2)). Let K be an arbitrary com-
ponent of ¢g~!(Q). Then K is contained in the setg~!(Q)NG; for some
i=1,2,...,m. Since ge¥,; (cf. (5.54.7)), we infer that g(K) < ¢(&)
< H; by (5.54.4). Thus y; e Q\g(K) by (5.54.3). Consequently g(K) # @
for each component K of ¢'(Q). This means that the mapping g is not
weakly confluent, because @ is a subcontinuum of ¥. This contradiets
the fact that g € @ (cf. (5.54.7)). The proof of Theorem (5.54) is complete.

One can observe that in the proof of Theorem (5.53), and also in
the proof of Theorem (5.54), we do not use the assumption of the metri-
zability of spaces. Thus these theorems are true in general for compact
Hausdorff’s spaces. In particular, from Theorem (5.54) we obtain an.
answer to the question asked in [59].

Further, one can generalize Theorem (5.54) as follows:

(5.55)  Let n be a positive integer and let A denote a class of all mappings
f: X = Y such that for each subcontinuum @ of Y the image of the union
of some n components of f~1(Q) is equal to Q. Then the class A has the limit
property. v
This proposition is in connection with the following
(5.56) PROBLEM. Has a class of atriodic mappings the (weak) general
limit property (on continua)?
Atriodic mappings do not have the limit property on compact spaces.
This can be seen from the following '

(5.57) ExAmrLE. Let (#,y) denote a point of the Euclidean plane
having # and y as its rectangular coordinates. We put

X ={(z,y): @ =0 or 1/n for n =1,2,...and 1< jy| < 2}U
U{(@,y): —1<a<0and y = —1 or 1}U{(—2,9): —1<y<1}
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and for n =1,2,... we define f,: X —f,(X) = Y as follows:

(,y—1) if —1<zand 1<y,
_ ) @,y+1) i —1<@and y< -1,
f‘n(w, y) - (a}’ 0) “if z = —1 and lyl <1’
(Afn,y) i &= —2.

It is easy to ascertain that mappings f, are atriodic for n =1, 2,"...
and that the sequence {f,} converges uniformly to a mapping f, which
is not atriodic (recall that the topology of the uniformly convergence
of YX coincides with the compact-open topology provided Y is metric).

Similarly, the remaining classes of mappings do not have the (weak)
limit property either. This can be seen from the following examples.

(5.58) ExAMPLE. Let (r,¢) denote a point of the FEuclidean plane
having r and ¢ as its polar coordinates. Put

X ={1,9): 0<o<2r}u{(r,p): 0<r<1 and ¢ =0 or =}

and for each n =1,2,... define f,: X - X by

2 -1

(r,—(ﬂ—)tp) if —n/2 <p< =2,

h1% ()
2 o —2 .
Talry@) = (77 9+ ) if TR2<p<m,

N n
2 2—nn .

(7', — ¢+ - ) f —-r<ep<<—n/2.

It is clear that the mapping f, is a homéoinorphism for each
n =1, 2, ... and that the sequence {f,} is uniformly convergent to a map-
ping f, which is neither hereditarily atriodic nor open.

(6.69) ExampLE. Let (x,y) be such as in Example (5.57). For each
n =1, 2, ... define a mapping f, from [0, 1] onto the unit circle as follows:

fa(t) = (cos 2x(1+1/n)t, sin 2x(1+1/n)t)

for each ¢ € [0,1]. Then f, is locally semi-confluent and the limit function
of the sequence {f,} is not locally weakly confluent.

(6.60) ExAMPLE. For each n = 1,2, ... we define & mapping f, from
[0, 1] onto itself by

6n 3n—2
f,,(t)=3n_2t for te[O, o ],
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and
1 for te[3n_2 ,}-],
fn(t) = ' 6n 2
—2t+2 for te[l/2,1].

The sequence {f,} is & uniformly convergent sequence of locally
monotone mappings, and its limit is not locally monotone.

(5.61) ExampLE. It is easy to construct a sequence {f,} of homeomor-
phisms from [0, 1] onto itself which is uniformly convergent to the step-
function f extended to the whole interval [0, 1] (see [35], § 16, II, p. 150)
and such that f,(0) =0 and f,(1) =1 for any » =1,2,... For any
n =1,2,... we define a mapping ¢, from the interval [ -1, 1] onto the
interval [0, 1] as follows:

(t) o fn(t) lf O<t<l’
W=V i —-1<t<o.

Mappings g, are open, and their limit is not locally MO-mapping
(cf. Example (5.25)).

Now we will use the construction from Example 2 of [69] in the
following:

(5.62) ExaMPLE. Let C denote the Cantor ternary set lying in the unit
interval I = [0, 1]. There is a sequence {f,} of homeomorphisms from I
onto itself such that f,(C) = C for any » =1,2,...and such that it
converges uniformly to the mapping f,, where

o it telo,2/3],
f°(t)—{3t—2 i te[2/3,1].

Put N = (I x{0})u(Cx1I) and g¢,(»,y) = (f,(®),y) for each (z,y)e N
andn =0, 1, 2, ... The mappings g, are homeomorphisms for n =1, 2, ...
and they converge uniformly to g,. Define a mapping y of I onto itself
as follows: '

—t4+1/4 if 0 << 1/4,
@ ) 3-8 i 1A<E<1,
YW =Y 454 it 1/2<t<3/4,
2t—1 if 3/4<t<1.

Consider an equivalence relation ¢ defined on N as follows:

(®,9) ¢ (@', y') if and only if
either (z,y) = (2, 9’) or 2 =2’ =0 and »(y) = p(¥').
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TABLE III
compao- | Jimi
compo- sition product product imit property
gition factor property factor . {

: 1
property property property wea | genera

1 o2 | 3 | 4 5 6 | 7

homeomorphisms + + + + — —
(5.1) (5.14) (5.32) (5.39) (6.58) (5.58)

local + - + + — —
homeomorphisms (6.2) (5.23) (6.35) (5.45) (5.58) (5.58)

hereditarily mon- + — — + — —
otone mappings (5.3) (5.26) (5.36) (5.42) (5.58) (5.58)

atomic + ? — + — —
mappings (5.1) (5.22) (5.36) (5.39) (5.58) (5.58)

monotone + + + + + —
mappings (5.1) (5.15) (5.32) (5.39) (5.47) (5.62)

open + + + + - —
mappings (5.1) (5.15) (5.32) (5.39) (5.68) (5.58)

MO-mappings - - + ? - —
(5.5) (6.25) (5.33) (5.46) (5.61) (5.62)

locally monotone — - + + - -
mappings (5.7) (5.24) (5.35) (5.45) (5.60) (5.60)

locally — - + S - —
MO-mappings (5.8) (5.25) (5.35) (5.46) (5.61) (5.62)

OM-mappings + —+ + + + =
(5.5) (5.20) (5.33) (5.39) (5.50) (5.62)

hereditarily conflu- + - — + — —
ent mappings (5.3) (5.26) (5.38) (5.42) (5.58) (5.68)

quasi-mor;.otone + + - + + —
mappings (5.6) (5.19) (5.37) (5.39) (5.50) (5.62)

weakly monotone - + - + + —
mappings (5.9) (5.19) (5.37) (6.39) (5.50) (5.62)

confluent + + — + + -
mappings (5.4) (5.16) (5.37) (5.39) (5.48) (5.62)

locally confluent - + - + + -
mappings (5.11) (5.18) (5.37) (5.44) (5.50) (5.62)

semi-confluent - + — -+ + -
mappings (5.10) (5.16) (5.37) (5.39) (5.48) (5.62)
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Table III cont.

1 | 2 | 3 | 4« | s | 6 | 1
locally semi-conflu- T = - — 3 — —
ent mappings (5.10) (5.28) (5.37) (5.45) (5.59) (5.59)
joining — + - + + -
mappings (5.10) (6.21) (5.37) (5.40) (5.53) (5.62)
hereditarily weakly + - - + — -
confluent mappings (5.3) (6.26) (5.36) (6.42) (5.58) (5.58)
weakly confluent + + - + 4 +
mappings (5.4) (5.16) (5.37) (5.39) (5.54) (5.54)
loca.ll.y weakly - + - + — —
confluent mappings (5.11) (6.17) (5.37) (5.44) (5.59) (5.59)
pseudo-confluent + =+ - + + +
mappings (5.4) (5.16) (5.37) (5.40) (5.49) (5.49)
hereditarily atriodic — - - 4 — -
mappings (6.12)  (5.27) (5.36) (5.42) (5.58) (5.58)
atriodic - - — + ? —
mappings (5.12) (5.27) (5.37) (5.43) (5.56) (5.57)

Denote by ¢ the canonical mapping from N onto N/o. Put M = N /o
and h,(q) = q)(gn(tp‘l(q))) for each ge M and n =0,1,2,...

The sequence {k,} is a sequence of homeomorphisms which converges
uniformly to a mapping h, which is not joining not locally confluent and
not weakly monotone (all this is easy to observe).

For some other general results concerning the limit property see [58].

F. Remark. Papers [44], [51], [71] and [72] deal also with some
other general properties of the mappings which are considered and investi-
gated here.

Table III sums up the properties of mappings studied in §5. The
sign “ -7 (the sign “ —”) denotes that the corresponding class of mappings
has (or does not have, respectively) the property corresponding to given
sign. The number under the sign is the number of the proposition which
justifies the use of the sign in question.
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In this section we will recall some known relations and show somo
other relations between mappings, investigated here on some special
kinds of spaces.

A. Local homeomorphisms onto tree-like continua. It has been
proved by Whyburn in [83], Corollary, p. 199 that every local homeo-
morphism of a continuum onto a dendrite is 2 homeomorphism. A more
general result is contained in [18] (cf. [39], p. 56). In [52] I have proved
that every local homeomorphism of a continuum onto a A-dendroid is a
homeomorphism. Similarly, every local homeomorphism of an are-like
continuum is a homeomorphism (see [73], Theorem 2.0, p. 261). The most
general result of this kind that has been proved is contained in my paper.
Namely, in [61] it is proved that

(6.1) Every local homeomorphism of a continuum onto a tree-like conti-
nuum 18 a homeomorphism.

The proof of this proposition contains a certain simple method which,
I hope, can be used in the proofs of theorems about local homeomorphisms.
This method reduces the investigations of local homeomorphisms on
continua to the investigations of local homeomorphisms on polyhedra.

In [56], Theorem 8, p. 287 it is proved that if f is a mapping from
a continuum X onto a continuum Y which is hereditarily divisible by
points, and f is such that card f~'(y) = » for each y belonging to ¥ and
for some positive integer n, then f is a homeomorphisms. Similarly (see
[56], Theorem 10, p. 289), if f is a joining mapping from a continuum X
onto a A-dendroid Y such that cardf~'(y) = » for each y € ¥ and for
some 7, then f is a homeomorphisms. It follows from (4.27) that. these
implications also generalize Whyburn’s theorem.

There are several problems which eoncern the above relations between
local homeomorphisms and homeomorphisms (see [53], Problem 12,
p. 858; [66], Problem 14, p. 290, [72], Questions 2, 3 and 4, p. 261 and
262, compare [66], Examples 15 and 16, p. 290).

B. Weakly monotone and locally confluent mappings onto locally
connected spaces. It follows from [9], p. 214-215, [50], Corrollary 5.2
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and [80], Theorems (2.1) and (2.3), p. 137-138 that

(6.2) Al locally confluent mappings and oll weakly monotone mappings
onto locally commected spaces are OM-mappings and quasi-monotone map-

pings.

C. Atomic mappings, locally confluent mappings and weakly monotone
mappings on arcwise connected continua. It is known that (see [20],
Corollary 9, p. 53; cf. also ibid. Theorems 5 and 6, p. 52)

(6.3) If f is an atomic mapping of an arcwise connected continuum onto
a nondegenerate continuum, then f is a homeomorphism.

It is easy to infer from (6.2) (see [50], 5.3) that

(6.4) AU locally confluent mappings onto hereditarily arcwise conmected
spaces are confluent.

We also have the following

(6.5) THEOREM. Any weakly monotone mapping onto arcwise connected
space is joining.

Proof. Suppose on the contrary that a weakly monotone mapping
f maps a space X onto an arcwise connected continuum Y and @ is a sub-
continuum of Y such that there are components €, and C, of f~'(Q) with
f(Cy) nf(Cy) = B. From Theorem 1 of [58] we conclude that there is
a subcontinuum R of Y with a nonempty interior, such that R nf(C,)
# @ and R n f(C,) = @. Then the set QU R is a subcontinuum of Y with
a nonempty interior, and C, is a component of f~!(QUR). Since f(C,)
# QUR, we obtain a contradiction of the weak monotoneity of f.

D. Hereditarily confluent mappings onto arcwise connected spaces
and onto hereditarily decomposable spaces. We will now prove two general-
izations of Theorems (4.4) and (4.5) of [57], which are also a solution
of Problem (4.8) of [57] and which partially answer the following question
asked in [57], Problem (4.7).

(6.6) PROBLEM. For which class of continua any hereditarily confluent
mapping is monotone?

We have_the following

(6.7) THEOREM. Any hereditarily confluent mapping of a continuum
onto an arcwise comnected space is monotone.

Proof. Let an hereditarily confluent mapping f map a continuum
X onto an arcwise connected continuum Y and let y be an arbitrary
point of Y such that there is a subcontinuum @ of Y with a nonempty
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interior such that y € Y\@Q. Then
(6.7.1) the set f~1(y) is connected.

In fact, since Y is arcwise connecteed, there is an arc yy’ with end-
points ¥ and y’ such that ¥y’ n @ = {y'}. The set f~'(QUyy’) is connected,
because f is confluent and the set f~1(Q) is connected (cf. Theorem (4.44)).
The hereditary confluence of f implies that the partial mapping f|f~1(Qu
Uyy') is hereditarily confluent. Since any nondegenerate subarc A of yy’

has a nonempty interior in QUyy’, we infer by Theorem (4.44) that the
set

(f1f1(Quyy"))*(4) = f1(4)
is connected. This easily implies that the inverse image of any point of
yy’' is connected. Thus (6.7.1) holds.

Since for each two different points of ¥ there is a subcontinuum @
of Y with a nonempty interior such that @ contains one of these points
and does not contain the other (see [58], Theorem 1), we infer that the
inverse image of any point of Y, except at most one point of ¥, is con-
nected by (6.7.1). Thus an inverse image of any nondegenerate subcon-
tinuum of Y is connected by the confluence of f.

Let b be a given point of Y. Then there is a decreasing sequence

{B,} of nondegenerate subcontinua of ¥ such that {3} = () B,. Since

n=1

f7Hb) = M f~3(B,) and the sequence {f~*(B,)} is a decreasing sequence

7 =]
of continua, we infer that the set f~!(b) is a continuum (see [36], § 47, II,
Theorem 5, p. 170). This means that f is monotone The proof of Theorem
(6.7) is complete.

(6.8) THEOREM. Any hereditarily confluent mapping of a . continuum
onto @ hereditarily decomposable continuum is hereditarily monotone.

Proof. Let a hereditarily confluent mapping f map a continuum X
onto a hereditarily decomposable continuum Y and let ¥ be an arbitrary
point of Y. Take a subcontinuum ¢ of ¥ which is irreducible with
respect to the property that ¥ € Q and the set f~*(Q) is connected (cf. [53],
Lemma 7, p. 856). Suppose that @ is nondegenerate. Then @ = AUB,
where A and B are proper subcontinua of @, because @ is decomposable.
Since the set f~1(@) is a continuum and since the mapping f|f~1(Q) is
hereditarily confluent, we infer that the sets f~1(4) and f~1(B) are con-
nected by Theorem (4.44). But also either y € A or y € B, contrary to the
choice of . This means that @ is degenerate i.e., @ ={y}. Therefore
the set f~1(y) is connected.

Consequently the mapping f is monotone. Since any subcontinuum
of a hereditarily decomposable continuum is also hereditarily decompos-



6. Mappings on some special spaces 53

able, we conclude that the mapping f is hereditarily monotone. The
proof of Theorem (6.8) is complete.

E. Monotone mappings on hereditarily indecomposable continua and
on hereditarily unicoherent continua. It has been proved in [20], Theorem 4,
p. 51 that

(6.9) A continuum X is hereditarily indecomposable if and only if each
monotone mapping from X is atomic. '

Similarly, we have the following characterization of hereditarily
unicoherent continua (see [57], Corollary (3.2)) by monotone mappings.

(6.10) A continuum X is hereditarily unicoherent if and only if each
monotone mapping from X is hereditarily monotone.

F. Mappings onto hereditarily indecomposable continua. It follows
from [12], p. 243; [50], 5.7 and from [57], Corollary 3.4 that

(6.11)  The following conditions are equivalent provided X is a continuum:
(iy X is hereditarily indecomposable,
(i) any mappings of a continuum onto X is confluent,

(ili) any confluent mapping of a continuum onto X is hereditarily con-
Sfluent,

(iv) the projection mapping p: X x I — X 1is hereditarily confluent,
where I = [0,1] and p(zx,t) = x for each (x,t) e X x I.

G. Mappings onto atriodic continua. Using the same methods as in
the proof of Theorem (3.6) of [67], we will now generalize this theorem.
Namely, we have the following

(6.12) THEOREM. Any mapping of a continuum onto an ia,twlodic con-
tinuum s hereditarily atriodic.

Proof. Let a mapping f map a continuum X onto an atriodie con-
tinuum Y and let @ be an arbitrary subcontinuum of Y. We shall prove
three properties of f~!(@), which are needed in the sequel.

(6.12.1)  For each point q € Q there is a component O'q of f~1(Q) such that
for each component C of the set f~1(Q) it is not true that f(C,) = f(C) # f(C,)-

Let Oy be an arbitrary component of f~'(Q) such that ¢ € f(C,) and
let ¢ = {H: f(C,) =« H and there is a component K of f~!(@) such that
f(K) = H}. Denote by 2 a maximal totally ordered subcollection of ¥
and put D = {H: H € 9}. It is clear that D € ¥, and thus there is
a component C, of f~'(Q) such that f(C,) = D. Then C, satisfies the
required conditions.
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(6.12.2)  There are no three components Cy, C, and C, of f~'(Q) such that
the sets f(Cy), f(C,) and f(C,) are pairwise disjoint.

Indeed, suppose on the contrary that C,, C, and C, are components
of the set f~!(Q) such that the sets f(C,), f(C,) and f(C,;) are pairwise dis-
joint. Then there are continua K,, K, and K, such that C; c K; # C;
and f(K;)nf(K;) =@ for any ¢ 5¢j and 4,j = 1,2, 3. Since

Q= (31 (QUSEL) = (QUF(EY) n(QUS(K,) and fIKINQ # O

for any ¢ # j and i,j = 1, 2, 3, we infer that the set U Uf(](i) 15 Y triod.
=1
But Y is atriodic, a contradiction.

(6.12.3)  There are no components Cy, C, and C, of f~1(Q) such that f(C,)
AF(C)) # B # FICIN(F(C))Uf(Cy), for i #j and i,j — 2, 3.

Indeed, suppose on the contrary that there are such components
C,, 0, and C, of the set f~!(@). Then there is a continuum K, in X such
that C; c K, # C, and such that f(C;)\(f(K,)Uf(0)) @ for i #j
and ¢, j = 2, 3. The set f(K,) n(f(C,)Uf(C,)Uf(0y)) is the union of two
components (cf. (2.15)). Since also the set f(C,) nf(C;) is the union of two
components (cf. (2.15)), we can choose an open set U in Y such that
U contains only that component M of the set

B = (£(02) nf (Ca)) U(F(Ky) n(f(C1) UF(Co) UF(Ca)))

which contains the set f(C,). Consider the components P,, P, and P, of
(f(E)U M)n T, (f(C))uM n T and (f(Cs)UM) U, respectively, such
that M c P,APynP,. Since M cPi,nP;ERAU =M for i +j
and 4,j =1,2,8, we infer that M =P, nP;nPy; =P,nP, =P, NP,
= P, nPy. Moreover, it follows from Theorem 1 of {361, § 47, III, p. 172
that M is a proper subcontinuum of each of the continua P,, P, and P;.
This means that the set P, UP,UP; is & triod. But Y is atriodie, a contra-
diction.

Now, let p be an arbitrary point of ¢ and let C, be a component
of f~'(Q) which is determined by (6.12.1). If f(C,) = @, then the con-
dition of the atriodicity of f for the continuum @ is satisfied. Suppose that
f(Cp) # @. Then there is a point g such that ¢ € @\f(C,). Let C, be a com-
ponent of f~'(Q) which is defined by (6.12.1). Then

(6.12.4)  f(C)Uf(C,) = Q.

Indeed, suppose on the contrary that f(C,)Uf(C,) # @. Then
there i3 a point » belonging to @\(f(C,)u f(Gq)); take the component
C, of f~'(Q) which is defined by (6.12.1) .We can assume that f(C,) n
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nf(C,) # O (in any other case the proof is the same) by (6.12.2). Then
F(C) n(f(Cp)US(C,)) = O, because in the opposite case we obtain a contra-
diction of (6.12.3) simply by substituting C,, C, and C, for C,, C, and C,,
respectively. Therefore there is a point s of @ which does not belong to
FCHUS(CHUS(C,). Let C, be as above. It follows from (6.12.3) that
f(C,) n(f(C,)uf(C,)) = B, and by (6.12.2) we conclude that f(C,) nf(C,)
# @. Thus (f(C,)Uf(C,)) n(f(C,)Uf(C,)) = B. Therefore there is a point
such that @ € Q\(f(C,)Uf(C,)US(C,)Uf(C,)); take the component C, of
f~1(Q) determined by (6.12.1). It follows from (6.12.2) that either f(C,) N
A(f(CHUS(CY) # @ or f(C,)n(f(C)Uf(C,) =@. In both cases we
obtain a contradiction by (6.12.3). Hence (6.12.4) holds.

- Now, let O be an arbitrary component of f~!(Q) and suppose that
f(C) is not contained either in f(Cj) or in f(C,). Then f(C)nf(C,) # O
# f(0)nf(C,) and if the set f(C) contains some component of the set
f(Cp) nf(C,) (this set has at most two components by (2.15)), we have
FICINF(C)US(C,) £ B # f(C)N\(f(C)Uf(C,)) contrary to (6.12.3). Thus
suppose that the set f(C) does not contain a component W of f(C,) nf(C,)
and W n f(C) # @. The set W n f(C) has at most two components by
(2.15). Denote one of them by M. Since the set B = f(C,) nf(C,) nf(C)
has a finite number of components (by (2.15)), there is an open set U
in ¥ such that U contains only that component of the set R which con-
tains M. Consider the components P,, P, and P, of f(C,) nf(C)nT,
f(C)) nf(C)nU and W n f(0), respectively, such that M < Py nP;nP;.
Since M <« P;nP;c RnU =M for ¢ #j and 4,j =1,2,3, we infer
that M = P,nP,nPy = P,nP, = P,nP; = P,nP;. Moreover, M is
a proper subcontinuum of each of the continua P,, P, and P by Theorem 1
of [36], § 47, III, p. 172, This means that the set P,UP,UP; is a triod,
which confradicts the fact that Y is atriodic.

Therefore we conclude that any component C of f~'(Q) is contained
either in f(C,) or in f(C,). Hence the condition of the atriodicity of f
for the continuum @ is satisfied. Consequently the mapping f is atriodic.
Moreover, since the property of being an atriodic continuum is hereditary
on continua, we infer that the mapping f is hereditarily atriodie. The
proof of Theorem (6.12) is complete.

The above theorem and Theorem (3.7) of [67] imply the following

(6.13) COROLLARY. Let X be a continuum. Then the following conditions
are equivalent:

(i) X 18 atriodic,
(ii) any mapping of a continuum onio X is hereditarily atriodic,

(iii) any atriodic mapping of a continuum onto X is hereditarily atriodio,
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(iv) the projection mapping p: X XI — X 18 hereditarily atriodio,
where I = [0,1) and p(x,t) = x for each (z,t) e X x I.

There is an atriodic hereditarily unicoherent continuum such that
there is a mapping of a continuum onto it, which is not weakly confluent.
This is an answer to Question (3.11) of [57]. This can be seen from the
following

(6.14) ExAMPLE. Let X denote the indecomposable arc-like continuum
described in Example 3 of [36], § 48, V, p. 205. The mapping f: X — f(X)
identifies the points (0, 0) and (1, 0). Then the continuum f(X) is a here-
ditarily unicoherent atriodic continuum which separates the plane.
Moreover, the mapping f is not weakly confluent.

We will now give a new proof of a theorem which shows that the
indecomposability of f(X) of the above example is essential (this theorem
was first proved in [71], Theorem 4, with the use of the method of inverse
systems). Recall that (see [71], Lemma, cf. also [82], Théoréme 1,
p. 182)

(6.15)  Any mapping of a continuum onto an arc is weakly confluent.

We have (ef. (2.13)) the following

(6.16) THEOREM. Any mapping of a ocontinuum onto an arc-like con-
tinuum is hereditarily weakly confluent.

Proof. Let a mapping f map a continuum X onto an arc-like con-
tinuum Y and let @ be an arbitrary subcontinuum of Y. Since Y is are-like,
for each n =1, 2, ... there is a mapping ¢, from Y onto [0, 1] such that
diameter of g;*(t) is less than 1/n for any ¢ € [0, 1]. It follows from (6.15)
that the mapping g¢,f is weakly confluent. Thus there is a continuum C,
of X such that ¢,f(C,) = ¢,(@), we can assume that the sequence {C,}
is convergent (see [361], § 42, I, p. 45 and ibid. II, Theorem, p. 47) and let C
be its limit. Then C is a continuum (see [36], § 46, I, Theorem 14, p.
139). We will prove that f(C) = Q. Indeed, if # € C, then there is a sequence
{x,} of points of X with x, € C, for any » = 1,2, ... such that its limit
is equal to 2. Since the diameter of g,(g,f(#,)) is less than 1/n and since
7.f(z,) € g,(@), we infer that there is a point y, € @ such that the distance
between f(x,) and y,, is less than 1/n. Thus f(x) = lim f(z,) = lim y, € Q.

n-->00 n—»o0

Therefore f(C) = Q. Now, if y € @, then there is a point z, € C, such that
9.f(=,) = g,(y). Thus the distance between f(x,) and ¥ is less than 1/n.
We can assume that the sequence {x,} is convergent (because X is compact)
and let z be its limit. Then = € C, and the distance between f(z) and y
is equal to zero. Hence f(x#) = y € f(C). This implies that @ < f(C).
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Consequently the mapping f is weakly confluent. Moreover, since
the arc-likeness is hereditarily on continua, we conclude that f is heredi-
tarily weakly confluent. The proof of Theorem (6.16) is complete.

Theorems (2.12) and (6.16) imply (c¢f. also [67], Theorem (3.9) and
Corollary (3.12)) that

(6.17) COROLLARY. Let a continuum X be hereditarily decomposable.
The following conditions are equivalent:

(i) X is arc-like,

(ii) any mapping of a continuum onto X is hereditarily weakly con-
Sfluent,

(iii) any weakly confluent mapping of a continuum onto X is hereditarily
weakly confluent.

(iv) the projection mapping p: X XI - X is hereditarily weakly
confluent, where I = [0,1] and p(x,t) = & for each (z,t)e X X I.

The above considerations are associated with the following problem:
(see [45], Problem 1): characterize continua which have the property
that any mapping of a continuum onto X is weakly confluent. It is known
(see [67], Examples (3.14) and (13.5)) that there are hereditarily decom-
posable triodic continua having this property.

Note also (see [15]) that

(6.18) A continuum X 48 atriodic and Suslinian if and only if there
exists no weakly confluent mapping of X onto a simple triod.

We will now study invariance properties of mappings. Namely, we
will recall and show some results which say which classes of continua
(recalled in § 2) are preserved under the mappings investigated here.

<



7. Images of unicoherent continua

In this section we will investigate unicoherent invariances of map-
pings; namely, unicoherent continua'and classes of continua which are
contained in the class of unicoherent continua (cf. Table I).

A. Images of unicoherent continua in general. It has been proved
(see [83], (8.61), p. 154) that

(7.1)  Quasi-monotone images of wunicoherent continua are wunicoherent.

All the remaining classes of mappings except the classes which are
contained. in the class of quasi-monotone mappings (cf. Table II) do
not preserve the unicoherence of continua. This can be seen from the
following examples:

(7.2) ExAMPLE. The natural projection of the standard solenoid onto
the first circle §;, = § is an open mapping. The solenoid is a hereditarily
unicoherent, atriodic, indecomposable continuum and § is not unicoherent,

It is not irreducible either (cf. remarks below (2.5) here, see also [9],
p. 218).

(7.3) ExAMPLE. Let a mapping f from the unit interval I = [0, 1]
identify points 1/n with the point 0 for # =1,2,... The mapping f is
joining and f(I) is not unicoherent, not a local dendrite and not an
irreducible continuum (see Fig. 7).

Fig. 7
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(7.4) EXAMPLE. Let (z,y) denote a point of the Euclidean plane
having z and y as its rectangular coordinates and put

A ={=z,sinnfr): 0< << 1}u{(0,‘g/): —-1<y<1}.

The continuum A is an atriodic i-dendroid. Let a mapping f iden-
tify the points (0,1) and (0, —1) (remark that f is quasi-monotone),
and denote the image of X under f by Y (see Fig. 8). The continuum Y

Tig. 8

si unicoherent (it is also irreducible), but it is not hereditarily unicoherent,
because it contains a circle § = f(J), where J is a closed interval joining
the points (0, 1) and (0, —1). Let a mapping g map Y onto 8§ such that.
g 1(g( f(o, 1))) is a onc-point set (it is clear that there is such a mapping).
One can show that the mapping ¢ is hereditarily weakly confluent.

B. Images of hereditarily unicoherent continua. It follows from
Theorem (4.44) (cf. [57], Theeram (5.6)) that

(1.8)  Hereditarily confluent images of hereditarily umicoherent continua
are hereditarily unicoherent.

Moreover,

(7.6)  Locally monotone tmages of hereditarily unicoherent continua are
hereditarily unicoherent.

Indeed, let 2 locally monotone mapping f map a hereditarily uni-
coherent continuum X onto Y and let @ be an arbitrary subeontinuum
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of Y. It suffices to show that @ is unicoherent. Since the mapping f is
confluent (cf. Table II), there is a component C of f~1(Q) such that f(C)
= @. It is clear that the mapping f|C is locally monotone. Thus f|C is
quasi-monotone (cf. Table II). The continuum C is unicoherent, and
thus f(C) is unicoherent by (7.1), i.e., @ is unicoherent.

The following problem remains open (c¢f. [67], Question (5.8)):

(7.7) PROBLEM. Is a hereditarily weakly confluent image of a hereditarily
unicoherent continuum also hereditarily umicoherent? :

It follows from Examples (7.2), (7.3) and (7.4) and from the example
described below that the remaining classes of mappings except the ¢lasses
which are contained in the class of hereditarily confluent mappings or
in the class of locally monotone mappings do not preserve the hereditary
unicoherence of continua.

(7.8) EXAMPLE. Let a mapping f from the unit interval [0, 1] onto
the unit circle § identify the points 0 and 1. The mapping f is hereditarily
atriodic (cf. Theorem (6.12)).

C. Images of acyclic curves. The one-dimensionality of continua
is not preserved by mappings in general. In fact each locally connected
continuum can be represented as the image of the Menger universal curve
under a mapping that is monotone and open (see [2], p. 348). One can
observe also that the locally homeomorphic image of a curve is a curve.
We will now investigate images of acyelic curves. It is known that (see
[64], p. 328)

(7.9) . If dim X > 2, then there exists a weakly confluent mapping of X
onto a 2-cell. _

Let K be a continuum which consists of all points in the plane having
polar coordinates (7, ) for which r =1, r =2 or r = (2+¢%)/(1+¢°)
(see Fig. 9). By an easy modification of the proof of Theorem 1 of [24].
pp- 541 and 542 one can find that

(7.10) If a mapping f maps an acyclic continuum X into K, then f(K)
18 contained in a single arc component of K.

We have the following

(7.11) THEOREM. The atriodic (joiming, pseudo-confluent) image of an
acyclic curve is at most one-dimensional.

Proof. The proof for pseudo-confluent mappings is given in [51],
Theorem 5.5; we will now only prove (7.11) for atriodic mappings and
joining mappings by an easy modification of that proof. Suppose on the
contrary that an atriodic (joining) mapping f maps an acyclic curve X
onto a continuum Y of dimension dim ¥ > 2. By (7.9), there exists a
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Fig. 9

weakly confluent mapping g of ¥ onto the 2-cell I2. Let L be a homeo-
morphic copy of K (described above) which is contained in I2. Since ¢
i3 weakly confluent, we infer that there is a subcontinnum @ in Y such
that ¢(Q) = L. Now, let C be an arbitrary component of f~1(Q). Since C
is acyeclic (see [36], pp. 332 and 354), we conclude that gf(C) is contained
in some single arc component of L by (7.10).

If f is atriodic, then there are two components C, and C, of f~*(Q)
such that @ = f(C,)Uf(C,). Since the set g¢f(C,) ngf(C,) is nonempty,
we conclude that gf (C, U C,) is contained in some single arc component of L.
But L has three are components, and thus gf(C,vC,) = g(Q) # L, a contra-
diction of the choice of Q.

If f is joining, then for each two components €, and C, of f~1(Q) we
have f(C,)nf(C,) #©@. Thus gf(C,)ngf(C,) # G@. Therefore the set
gf(C,) and the set gf(C,) are contained in the same arc component of L.
Consequently gf(f~1(Q)) is contained in some single arc component of L.
But L has three arc components, and thus gf(f~1(Q)) = 9(Q,) # L, a
contradiction of the choice of . The proof of Theorem (7.11) is complete.

One can observe that

(7.12) LeMMA. If a space X is of dimension greater tham 1, then for
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every positive number ¢ there i3 a subcontinuum R of X of diameter less
than ¢ and of dimension greater than 1.

Indeed, since X is of dimension greater than 1, there is a closed
subset V of diameter less than ¢ and of dimension greater than 1. By
Theorem 3 of [36], § 46, V, p. 148, there is & continuous mapping of V
into the Cantor discontinuum C such that the quasi-components of V
(hence its components, see [36], § 47, II, Theorem 2, p. 169) coincide
with the point inverses of f. If the condition dim f~1(t) < 1 is satisfied
for all ¢t of f(V), then dim f(V) > dim V—12>1 by Theorem 1 of [36],
§ 45, VI, p. 114. But dim f(V) < dim C = 0, a contradiction. Therefore
dim f~1(¢) > 2 for some t e f(V). This means that some component R
of V is of dimension greater than 1. _

Now, we will generalize Theorem 1.2 of [15]. Namely

(7.13) THEOREM. The locally weakly confluent image of an acyclic curve
i8 & curve.

Proof. Suppose on the contrary that a locally weakly confluent
mapping f maps an acyclic curve X onto a continuum Y of dimension
dim Y > 2. By (4.37) there is a positive number ¢ such that for each
continuum @ of diameter less than ¢ in Y there exists a component C
of f~1(Q) such that f(C) = Q. By Lemma (7.12) we conclude that there
i8 a subcontinuum R of Y of diameter less than ¢ and of dimension dim R
= 2. By (7.9) there exists a weakly confluent mapping ¢ of R onto the
2-cell I2. Let L be a homeomorphic copy of K (described above) which
is contained in I2. Since g is weakly confluent, we infer that there is a
continuum ¢ in R such that g(Q) = L. Since @ is of diameter less than e,
there is a component ¢ of f~!(Q) such that f(C) = Q. Thus g¢f(C) = L.
Since C is acyclic (see [36], pp. 332 and 354), we conclude that gf(C)
is contained in some single arc component of L by (7.10). This contradicts
the fact that L has three arc components and gf(C) = L. The proof of
Theorem (7.13) is complete.

The quasi-monotone image of an acyelic curve need not be a curve.
This results from the following

(7.14) ExAMPLE. Let a continuum A be such as in Example (7.4).
There is a mapping f from 4 which maps the segment J pf the convergence
of A onto the unit square I? and which maps the line approximating J
homeomorphically onto the line approximating I2. Su¢h a mapping is
quasi-monotone. But the continuum f(4) is of dimension 2 (thus it
contains also indecomposable continua, cf. [64], p. 328).

It has been proved in [41], p. 230 that

(7.18)  The confluent image of an acyclic continuwum is acyclic.
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Thus, by Theorem (7.11), we conclude that (cf. [49], 2.7)
(7.16) The confluent image of an acyclic curve is an acyclic curve.

It follows from the example described below that the loeally con-
fluent image of an acyclic curve need not be an aecyclic curve.

(7.17) ExAMpLE. Let B, be the simplest example of an indecomposable
continuum described in Example 1 of [36], § 48, V, p. 204, and let (=, ¥, ?)
denote a point of the Euclidean 3-space having x, ¥ and 2 as its rectangular
coordinates. Put

B, = {(z,v,0): (#+—3/2,y)e B, and #—3/2>1/2},
B, = {(#,y,0): (x+3/2,y)eB, and #+3/2<1/2},
I, = {(—3/2,¥,0: —1<y<0},
I ={73,9,0): —-1<y<0},

I, = |(2'53n ——z—,y, O): —1<y<0] for #n=2,3,...,
A ={&, —1,0): —3/2<z<5/2},
C, = {x,y,sin2nf(x—1)): L<e<2}U{l,y,2): —1<2<1},
C, ={=,y,sin2x/x): —1<2<0}U{(0,y,2): —1<=2 <.1}
and define
X = AuBluBzudoInuU{O’yuO'; : ¥y >1/2 and ¥ belongs to
the Ca;:cor ternary set lying in the interval [0, 1]}.

It is easy to observe that the set X is a continuum which is her-
editarily divisible by points (cf. Table I). We define a Iocally confluent
mapping f of X as follows:

(x—1/2,y,2) if 1< o,
f(my?/yz) = (1/27y1z) if 0<“’°<1)
(z+1/2,y,2) if x<0.

The continuum f(X) is not hereditarily unicoherent and it contains an
indecomposable continuum which can be mapped onto B, by a monotone
mapping.
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Similarly the weakly confluent image of an acyclic curve need not
be acyclic. This can be seen from the following

(7.18) ExaAmMPLE. Let (r,9) denote a point of the Euclidean plane
having r and ¢ as its polar coordinates. The weakly confluent mapping f
defined by f(¢) = (1, 4nt) for each ¢ € [0, 1] maps the unit interval [0, 1]
onto the unit circle 8. It is also loecally semi-confluent.

The following problem remains open:

(7.19) PROBLEM. Is a semi-confluent (hereditarily weakly confluent)
image of an acyclic (one-dimensional) continuum a,lso an acyclic (one-dimen-
sional, respectively) continuum?

D. Images of tree-like continua. We have the following two general
theorems about images of tree-like continua, which have been proved
by J. Krasinkiewicz (see [31], Theorem 3.1 and [32], Main Theorem).

(7.20) A continuous imgae of a tree-like continuum is tree-like if and only
if it is an acyclic curve.

(7.21) If fis a mapping of a tree-like continuum X onto a curve Y such
that f(C) is tree-like for every irreducible continuum C contained in X, then
Y is tree-like.

From (7.16) and (7.20) we obtain the following theorem which was
first proved in [63], p. 472.

(7.22)  The confluent image of a tree-like continuum s tree-like.

Similarly, a positive solution of Problem (7 19) would imply a positive
answer to the following open question (see [52], ‘Question 5, p. 263 and
[67], Question 5.25, see also [26], Theorem 2).

(7.23) PROBLEM. Is the semi-confluent (hereditarily weakly confluent),
image of a tree-like continuum also tree-like?

The remaining classes of mappings except the classes contained in
the class of confluent mappings do not preserve the tree-likeness of con-
tinua. This can be seen from Examples (7.3), (7.4), (7.8), (7.17) and (7.18).

E. Images of i-dendroids. It follows from Theorem XIV of [91,
p. 217, from Theorem 5.2 of [62], p. 262 and from Corollary (5.17) of
[57] that

(7.24)  The semi-confluent (hereditarily weakly confluent) image of a A-den-
droid i8 a A-dendroid.

The remaining classes of mappings except the classes contained in
one of the two classes of mapoings mentioned in (7.24) do not preserve
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A-dendroids. This can be seen from Examples (7.3), (7.4), (7.8), (7.17)
and (7.18).

F. Images of continua which are hereditarily divisible by points.
The invariance of continua which are hereditarily divisible by points
under mappings has not yet been investigated. Firstly, remark that
(7.24) and (6.1) imply that

(7.25)  The locally homeomorphic image of & continuum which is heredi-
tarily divisible by points is also such a continuum.

Moreover, we have the following

(7.26) THEOREM. The monotone image of a continuum which is hereditarily
divistble by points is also such a continuum.

Proof. Let a monotone mapping f map a continuum X which is
hereditarily divisible by points onto a continuum Y and let @ be an arbi-
trary subcontinuum of Y. Take a subcontinuum C of X which is minimal
with respect to the property f(C) = @ (such a continuum exists by the
monotoneity of f). Since the continuum X is hereditarily unicoherent
(cf. Table I), we infer that the mapping f|C is monotone by (6.10). According
to the assumptions there is a point ¢ and there are proper subcontinua A
and B of C such that A nB = {¢} and AuB = (. Suppose that the point
f(c) does not separate the continuum . Then the set @\ {f(c)} is connected.

Therefore (f|C)~(@\{f(0)}) is connected by Theorem 9 of [36], § 46, I,
p. 131. Thus :

either (f|C)"{@\{f(e)}) = AN{e} or (fIO)7H(Q\{f(e)}) =B\{q}.

But then we have either f(4) = @ or f(B) = @ contrary to the choice
of €. This means that the point f(¢) separates the continuum ¢. Consequently

the continuum Y is hereditarily divisible by points. The proof of (7.26)
is complete.

It follows from (2.16), (6.8) and (7.26) that

(7.27)  COROLLARY. The hereditarily confluent image of a continuum
which is hereditarily divisible by points is also such a continuum.

The following problem remains open:

(7.28) PrOBLEM. Is an open (locally monotone) image of a continuum
which 18 hereditarily divisible by points also such a continuum?

It follows from Examples (7.3), (7.8), (7.17) and (7.18) and from
the example described below that the remaining classes of mappings do
not preserve the continua considered here.

$ — Dissertationes Math, 158
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(7.29) ExamprLE. Consider the Euclidean plane endowed with the
rectangular coordinate system Oxy. Let C be the Cantor ternary sef
situated in the interval [0, 1]. Put (see Fig. 10)

Fig. 10

X ={=,9): veCand 0<y<1}ul {(#,1/3"""): # belongs to the
n=l

intervals contiguous to € with lengths 1/3%*~}u | {(=,1 —(1/3*")):
n=1
z belongs to the contiguous intervals to ¢ with lengths 1/3%"}.

The continuum X is irreducible between each point with abscissa 0
and each point with abscissa 1. Moreover, X is hereditarily- divisible
by points. The mapping f: X — f(X) identifies the point (z, y) with the
point (o', ¥’) if and only if ¥y = y’ and either # and z’ belong to the same
closed interval contiguous to ¢ with length 1/3?*~! and y < 1/3**"! or
xz and @' belong to the same closed interval contignous to C with length
1/3* and y>1—(1/3") for some n =1,2,...It is easy to observe
that the mapping f is confluent, quasi-monotone and hereditarily weakly
confluent. Moreover, f(X) is an irreducible continuum, which has no
separating point.

F. Images of dendroids. Since the arcwise connectedness is an invariant
under an arbitrary continuous mapping (see [83], p. 39) by (7.24) we
infer that

(7.30) The semi-confluent (hereditarily weakly confluent) image of
a dendroid i3 a dendroid.
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Moreover (see [68], Theorem 3),

(7.31)  The weakly monotone image of a dendroid is a dendroid.
Further, we will prove that

(7.32) THEOREM. The locally confluent image of a dendroid is a dendroid.

Proof. Let a locally confluent mapping f map a dendroid X onto
a continuum Y. Then the continuum X is tree-like (ef. Table I). Thus
also X is an acyclic curve. By Theorem (7.13) (cf. Table IT) we conclude
that Y is one-dimensional. From (7.21) we infer that it suffices to show
that the image under f of an arbitrary arc in X is tree-like. et A be an
arbitrary arc in X and let ¢ be a component of f~!f(4) such that A < C.
The partial mapping f|C is locally confluent.

Indeed, let ¢ be a positive number such that if a subeontinuum @
of Y is of diameter less than e, then each component of f~!(Q) is mapped
by f onto @ (cf. Theorem (4.38)). If @ is a subcontinuum of f(A) of diameter
less than ¢ and if ¢’ is a component of the set ¢ nf~1(Q), then ¢’ is also
a component of f~'(Q), because C is a component of f~'f(4) and f~1(Q)
c f~'f(4). Thus f(C') = Q. This means that the mapping f|C is locally
confluent by Theorem (4.38).

Since 4 = € < f~1f(4), we infer that the equality f(C) = f(4) holds.
The continuum f(A) is locally connected as a continuous image of the
arc A. Therefore the mapping f|C is confluent by (6.2). The continuum C
is a dendroid as a subcontinuum of a dendroid X. Thus the equality
f(C) = f(4A) implies that f(A) is a dendroid by (7.30). Hence (cf. Table II)
f(A) is a tree-like continuum (cf. Table I). The proof of Theorem (7.32)
is complete, _ ,

Each class of mappings considered here which is not contained in
the class of semi-confluent mappings, in the class of hereditarily weakly
confluent mapping or in the class of locally confluent mappings does
not necessarily preserve dendroids. This can be seen from Examples (732),
(7.8) and (7.18).

G. Images of fans. It follows from [10], Theorem 12, p. 32, from
[62], Theorem 5.6, p. 263 and from [57], Corollary 5.23 that

(7.33) The semi-confluent (hereditarily weakly confluent) image of a fan
i8 @ fam (or am are).

We also have the following
(7.34) COROLLARY. The locally confluent image of a fam is a fan (or an are).

Indeed, let a locally confluent mapping f map a fan X onto Y. Then
X is a dendroid (cf. Table I). Therefore Y is a dendroid by Theorem
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(7.32). Since a dendroid is hereditarily arcwise connected, we infer that f
is confluent by (6.4). Hence Y is a fan by (7.33) (cf. Table II).

Examples (7.3), (7.8) and (7.18) and also example described below
(cf. [568], Example 3) imply that any class of mappings investigated here
which is not contained in any of the three classes mentioned in (7.33)
and (7.34) does not preserve fans.

(7.35) ExAMPLE. Let A denote a harmonic fan lying in the plane Oxy
and consisting of a straight segment J joining the point (0, 1) with the
point (1, 0) and of straight segments joining the same point with points
(1+(1/n), 0) for » = 1,2, ... Denote by B the image of A under the
reflection » with respect to the line # = 0. Put X = AU B (see Fig. 11).

Fig. 11

The mapping f: X — f(X) identifies two different points (x,y) and
(#yy’) if and only if y =9" =1/2 and either (x,y)eJ and (',%’)
=r(z,y) or (z,y')ed and (x,y) = r(2',y’). Since the inverse image
under f of each subcontinuum of f(X) with a nonempty interior is con-
nected, we conclude that f is quasi-monotone. The continuum f(X) is
a dendroid having two ramification points.

H. Images of dendrites. Since local connectedness is an invariant
under arbitrary continuous mappings, we conclude from (7.30), (7.31)
and (7.32) that

(7.36)  The semi-confluent (locally confluent, weakly monotone, heredi-
tarily weakly confluent) image of & dendrite is a dendrite.

The remaining classes of mappings considered here, except the classes
which are contained in the classes mentioned above in (7.36), do not
preserve dendrites. This can be seen from Examples (7.3), (7.8) and (7.18).

E. D. Tymechatyn in [79], Corollary 2, characterizes continua which
are weakly confluent images of dendrites.

Note also the following interesting theorem (see [83], Theorem 2.4,
p. 188): '
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TABLE IV
con- her-
tinua tree edi- unico
heredi- ) taril .
den- fans den- | 2-den- t::‘(ialyl like |acyeclic unicoy- herent
drites droids | droids | gio.o con- | Curves |p..ons| com-
ible by tinua con- tinua
) points | tinua
1 2 3 4 5 6 7 8 9 10
local + + + + + + + + +
homeo- (7.36) (7.33) (7.30) (7.24) (7.26) (7.22) (7.18) (7.6) (7.1)
morphisms
hereditarily + + + + + + + + +
monotone (7.36) (7.33) (7.30) (7.24) (7.26) (7.22) (7.16) (7.8) (7.1)
mappings
atomic + + + + + + + + +
mappings (7.36) (7.38) (7.30) (7.24) (7.26) (7.22) (7.18) (7.6) . (7.1)
monotone + + + .+ + + + + +
mappings (7.36) (7.33) (7.30) (7.24) (7.26) (7.22) (7.16) (7.6) (7.1)
open + + .+ + ? + + - -
mappings (7.36) (7.33) (7.30) (7.24) (7.28) (7.22) (7.16) (7.2) (7.2)
MO-mappings + + + + ? + + - -
(7.36) (7.38) (7.30) (7.24) (7.28) (7.22) (7.16) (7.2) (7.2)
locally
monotone + + + + ? + + + +
mappings (7.38) (7.33) (7.30) (7.24) (7.28) (7.22) (7.16) (7.6) (7.1)
locally + + + + ? + + - -
MO-mappings (7.36) (7.33) (7.30) (7.24) (7.28) (7.22) (7.16) (7.2) (7.2)
OM-mappings + + + + ? + + - -
(7.36) (7.33) (7.30) (7.24) (7.28) (7.22) (7.18) (7.2) {7.2)
hereditarily
confluent + + + + + + + + +
mappings (7.36) (7.33) (7.30) (7.24) (7.27) (7.22) (7.16) (7.5)  (7.1)
quasi- + — + - - - - - +
monotone (7.36) (7.35) (7.31)  (7.4) (7.29) (7.4) (7.4) (7.4) (7.1)
mappings
weakly
monotone + - -+ - - — - - -
mappings (7.36) (7.35) (7.31) (7.4) (7.29) (7.4) (7.4) (7.2) (7.2)
confluent -+ + + 4- - + + - -
mappings (7.36) (7.33) (7.30) (7.24) (7.29) (7.22) (7.16) (7.2) (7.2)
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Table IV cont.

Continuous mappings on continua

1

|

2|

3

4

5

locally
confluent

mappings

+
(7.36)

+
(7.34)

+
(7.32)

(7.17)

(7.17)

(7.17)

(7.2)

semi-
confluent
mappings

+
(7.36)

+
(7.33)

(7.30)

+
(7.24)

(7.29)

9

(7.23)

(7.2)

locally
gsemi-
confluent
mappings

(7.18)

(7.18)

(7.18)

(7.17)

(7.17)

(7.17)

(7.2)

joining
mappings

(7.3)

(7.3)

(7.3)

(7.3)

(7.3)

17.3)

hereditarily
weakly
confluent

mappings

(7.36)

(7.33)

(7.30)

(7.24)

(7.29)

(7.3)

(7.23)

(1.7)

(7.4)

weakly
confluent
mappings

(7.18)

(7.18)

(7.18)

(7.18)

(7.18)

(7.18)

(7.2)

(7.2)

locally
weakly
confluent
mappings

(7.18)

(7.18)

(7.18)

(7.17)

(7.17)

(7.17)

(7.2)

(7.2)

pseudo-
confluent
mappings

(7.18)

(7.18)

(7.18)

(7.18)

(7.18)

(7.18)

(7.18)

(7.2)

(7.2)

hereditarily
atriodic
mappings

(7.8)

(7.8)

(7.8)

(7.8)

(7.8)

(7.8)

(7.8)

(7.8)

(7.4)

atriodic
mappings

(7.18) (7.18) (7.18) (7.18) (7.18)

(7.18)

(7.18)

(7.2)

(7.2)

(7.37)

If f: X — Y is light and open, then for each dendrite D in Y and

any point x of f~(D) there exists a dendrite E in X containing x whioch

is mapped topologically onto D wunder f.

Such an implication is not true for dendroids (see [62], Example 2).
Table IV sums up the invariance properties studied in § 7. The sign
“+” and the sign “—?” denote that the corresponding class of mappings
preserves or does not preserve, respectively the corresponding class of
continua. The number under the sign is the number of the proposition
which justifies the use the sign in question (cf. Table II).
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In this section we consider problems concerning the invariance of
irreducible .continua and of atriodic continua, and also the invariance of
unicoherent subclasses of atriodic continua (any continuum belonging
to such a class is irreducible by (2.19)) under an arbitrary class of mappings
considered in this paper.

A. Images of irreducible continua in general and of indecomposable
continua. Theorem 3 in [27] is an answer to the question which was posed
in [38] and which was first partially solved in [6]. In Theorem 4 of [55]
we generalize this theorem, and using (2.18) we infer that

(8.1) If X i3 a continuum, A is & set of irreducibility of X and f is a quasi-
monotone mapping from X onto Y, then f(A) is a set of the irreducibility
of Y.

Therefore (cf. [36], § 48, VI, Theorem 7’, p. 213),

(8.2) The quasi-monotone image of an irreducible (indecomposadble) con-
tinuum s irreducible (indecomposable, respediively).

Each class of mappings considered here which is not contained in
the class of quasi-monotone mappings does not preserve either irreducible
continua or indecomposable continua. This can be seen from Examples
(7.2), (7.3) and (7.4) and from the following

(8.3) ExawmpLE. Let X denote a pseudo-are. Obviously there is a conti-
nuous mapping from X onto the interval [0,1]. Each such mapping is
hereditarily weakly confluent by Theorem (6.16) (cf. Table I).

B. Images of atriodic continua. It has been proved in [57], Prop-
osition (5.19) that

(8.4)  The oonfluent image of an atriodio continuum 8 atriodic,
The following problem remains open (cf. [567], Question (5.18)):

(8.5) PROBLEM. Is the semi-confluent (hereditarily weakly oconfluent)
image of an alriodic continua always atriodio?

Examples (7.3) and (7.14) and two examples described below show
that classes of mappings which are not contained either in the class of
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semi-confluent mappings or in the class of hereditarily weakly confluent
mappings do not preserve the atriodicity of continua.

(8.6) ExAMPLE. Let (2, y) denote a point of the Euclidean plane having
o and y as its rectangular coordinates. Put

X = {(x,sin 2x/5): 0<2<<1}U{0,y): —b<y<1}U
U{(w, —4+sin2xnjz): —1< o< 0}
and define a mapping f: X — f(X) as follows:
f(z,y) = (2, ly+2|) for each (z,y) e X.

It is easy to ascertain that f is a locally confluent mapping which
maps the atriodic A-dendroid X onto the atriodic continuum f(X).

(8.7) ExampLE. The continuum X and the mapping f described in
Example (5.20) of [67] have the following properties: fis weakly confluent
and hereditarily atriodie, X is an atriodie A-dendroid which is also irre-
ducible, and f(X) is a simple triod (cf. (6.18)).

C. Images of hereditarily unicoherent atriodic continua. It follows
from (7.5), (7.6) and (8.4) (cf. Table II) that

(8.8)  The hereditarily confluent (locally monotone) image of & hereditarily
unicoherent atriodic continuum is also sueh a continuum.

The following problem remains open (cf. Problems (7.7) and (8.5)).

(8.9) Is the hereditarily weakly confluent image of a hereditarily umico-
heréent atriodic continuum also such a continuum?

Examples (7.2), (7.3), (7.4) and (7.8) show that classes of mappings
which are not contained either in the class of locally monotone mappings
or in the class of hereditarily weakly confluent mappings do not preserve
hereditarily unicoherent atriodic continua.

D. Images of hereditarily indecomposable continua. It is an immedi-
ate consequence of the definition of the confluence that

(8.10) The confluent image of a hereditarily indecomposable continwum
18 hereditarily indecomposable.

The following problem is open:

(8.11) I3 the semi-confluent (locally confluent, locally semi-confluent)
image of a hereditarily indecomposable continuum also such a continuum?

It is my conjecture that there is a locally confluent mapping of a
pseudo-arc (which is hereditarily indecomposable; compare Table I)
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onto a continuum which is not hereditarily indecomposable, but I do
not kmow any such example.

Example (8.3) and the example deseribed below show that no class
of mappings considered here which is not contained in the class of locally
semi-confluent mappings preserves hereditarily indecomposable continua.

(8.12) ExAMPLE. Let A denote a pseudo-arc and let @ and b be two
arbitrary different points of A. The mapping f: 4 — f(A) identifies
two different points # and y of A if and only if either x = a and y = b
or x = b and y = a. It is easy to observe by Theorem 2’ of [36], § 48,
VI, p. 210 that the continuum f(4) is indecomposable. Therefore any
proper subcontinuum of f(A4) has an empty interior (see [36], § 48, V,
Theorem 2, p. 207). Thus f is quasi-monotone. Moreover, it is clear that f
is joining and that the continuum f(A) is not hereditarily indecompos-
able.

E. Images of arc-like continua. It follows from [5], p. 47 and from
[74], Theorem 1.0, p. 259 that

(8.13) The image of an arc-like continuum under an OM-mapping is
arc-like.

We have (see [43], p. 94 and [52], p. 263; cf. [49], Problem II) the
following.

(8.14) PROBLEM. Is the confluent (semi-confluent) image of an arc-like
continuum always arc-like?

Also the following problem remains open (cf. [57], Question (5.25)):

(8.15) PrROBLEM. Is the heredzta,mly confluent (hereditarily weakly con-
fluent) image of an arc-like continuum always arc-like?

Examples (7.3), (7.4), (7.8), (7.16), (7.18) and (8.6) show that the
remaining classes of mappings which are not contained in the class of
semi-confluent mappings as well as the class of hereditarily atriodic
mappings do not preserve the arc-likeness of continua.

Continuous images of arc-like continua are characterized in [40].

F. Images of an pseudo-arc. Known theorems which speak about
the invariance of the pseudo-arc under mappings follow from theorems
which speak about the invariance of the arc-likeness of continua and
from theorems which say which mappings preserve the hereditarily inde-
composability of continua because each two arc-like hereditarily indecom-
posable (nondegenerate) continua are homeomorphic (see [69], p. 583).
Namely, we conclude by (8.10) and (8.13) (cf. Table IT) that



74 Continuous mappings on continua

(8.16)  The image of a pseudo-arc under an OM-mappings is a pseudo-are.

Examples (8.3) and (8.12) show that mappings which belong to the
one of the classes of mappings investigated here and which are not locally
semi-confluent do not preserve a pseudo-arc. The answers to the following
question are unknown (cf. Problems (8.11), (8.4) and (8.15)):

(8.17) PROBLEM. I3 the confluent (hereditarily confluent, locally confluent,
semi-confluent, locally semi-confluent) image of a pseudo-arc always a pseudo-
aro?

G. Images of atriodic A-dendroids. It follows from (7.24) and (8.4)
(cf. (2.12)) that

(8.18)  The confluent image of an atriodic A-dendroid i8 am atriodic A-den-
droid.

Moreover, it has been proved in [57], Corollary 5.17 that

(8.19) The hereditarily weakly confluent image of an atriodic A-dendroid
i8 an atriodic A-dendroid.

The following theorem results from Theorem 1 of [26]:

(8.20) The semi-confluent image of an atriodic A-dendroid is an atriodio
A-dendroid.

All the investigated classes of mappings which are not contained
in the class of semi-confluent mappings, as well as hereditarily atriodic
mappings, have the property of not preserving atriodic A-dendroids.
This can be seen from Examples (7.3), (7.4), (7. 8), (7 16), (7.18) and (8.6).

H. Images of an arc. It follows from Theorem 5.3 of 521, p. 262
and from Corollary (5.21) of [57] that

(8.21)  The semi-confluent (hereditarily weakly confluent) image of an are
18 an are.

Therefore, we infer by (6.4) (cf. Table II) that

(8.22)  The locally confluent image of an are i8 an are.
Examples (7.3), (7.8) and (7.18) show that an arc is an invariant
only for those classes of mappings among the classes investigated here

which are contained in one of the three classes of mappings mentioned
in (8.21) and in (8.22).

Note also that (see [54], Corollary 3.3, p. 67)

(8.23)  The locally weakly confluent image of an arc (of a cirele) is either
an are or a cirde.
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TABLE V
heredi-| heredi-
tarily | tarily inde-
atrio- are- | inde- | unmico- | atrio- | com- | irre-
dioc |psedo-| like | com- |herent| dic | pos- [ducible
ar¢ | 2.den- | aro oon- | pos- | atrio- | com- able | con-
droids tinua | able dio - | tinua | con- | tinua
con- | con- tinua
tinua | {inua
1 2 3 4 5 6 7 8 9 10
local homeo- + + + + o+ + + + +
morphisms (8.21) (8.18) (8.18) (8.13) (8.10) (8.8) (8.4) (8.2) (8.2)
hereditarily mon- + + + + + + -+ + +
otone mappings  (8.21) (8.18) (8.16) (8.13) (8.10) (8.8) (8.4) (8.2) (8.2)
atomic + + + + + + + + +
mappings (8.21) (8.18) (8.16) (8.13) (8.10) (8.8) (8.4) (8.2) (8.2)
monotone + + + + + + + + +
mappings (8.21) (8.18) (8.16) (8.13) (8.10) (8.8) (8.4) (8.2) (8.2)
open + + + + + - + - -
mappings (8.21) (8.18) (8.16) (8.13) (8.10) (7.2) (8.4) (7.2) (7.2)
+ - + + + - + - -
MO-mappings (8.21) (8.18) (8.16) (8.13) (8.10) (7.2) (8.4) (7.2) (7.2)
locally
monotone + + —+ +- + + . + + +
mappings (8.21) (8.18) (8.16) (8.13) (8.10) (8.8) (8.4) (8.2) (8.2)
locally + + + + + - + - -
MO-mappings (8.21) (8.18) (8.18) (8.13) (8.10) (7.2) (8.4) (7.2) (7.2)
+ + + + + - + - -
OM-mappings (8.21) (8.18) (8.16) (8.13) (8.10) (7.2) (8.4) (7.2) (7.2)
hereditarily
oonfluent + 3 ? ? + -+ + + +
mappings (8.21) (8.18) (8.17) (8.15) (8.10) (8.8) (8.4) (8.2) (8.2)
quasi-
monotone + - - - — - - + +
mappings 8.21) (7.4) (8.12) (7.4) (8.12) (7.4) (7.14) (8.2) (8.2)
weakly
monotone + - - - — — — — —
mappings (8.21) (7.4) (8.12) (7.4) (8.12) (7.2) (7.14) (7.2) (7.2)
confluent + + ? ? + - + — —
mappings (8.21) (8.18) (8.17) (8.14) (8.10) (7.2) (8.4) (7.2) (7.2)
locally
confluent + - ? - ? — — — —
mappings (8.22) (8.6) (8.17) (8.6) (8.11) (7.2) (8.6) (7.2) (7.2)
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TABLE V cont.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
semi-confluent + + ? ? ? - ? — —
mappings (8.21) (8.20) (8.17) (8.14) (8.11) (7.2) (8.5) .(7.2) (7.2)
locally semi-
confluent - - ? — ? — - — —
mappings (7.18) (7.18) (8.17) (7.18) (8.11) (7.2) (8.6) (7.2) (7.2)
joining — — — — - - - — —
mappings (7.3)  (7.3) (8.12) (7.3) (8.12) (7.3) (7.3) (7.2) (1.3)
hereditarily
weakly
confluent + -+ — ? - ? ? - -
mappings (8.21) (8.19) (8.3) (8.15) (8.3) (8.9) (8.5) (8.3) (7.4)
weakly
confluent — — - — — - — — —
mappings (7.18) (7.16) (8.3) (7.16) (8.3) (7.2) (8.7 (7.2) (7.2)
loocally
weakly — - — — - - — — -
confluent (7.18) (7.18) (8.3) (7.18) (8.3) (7.2) (8.6) (7.2) (7.2)
mappings
pseudo-
confluent — - — - - - — —- —
mappings (7.18) (7.16) (8.3) (7.16) (8.3) (7.2) (8.7) (7.2) (7.2)
hereditarily
atriodic — — - — — — — — —
mappings (1.8)  (7.8)  (8.3) (7.8) (8.3) (T.8) (8.7) (8.3) (7.4)
atriodic ] — - - — — - - — —_
mappings (7.18) (7.16) (8.3) (1.16) (8.3) (7.2) (8.7) (7.2) (7.2)

This proposition is a generalization of Corollary II.4 of [17]. The
hereditarily atriodic (joining, pseudo-confluent) image of an arc need
not be either an arc or a circle (for example see [51], Example 3.6, cf.
Examples (4.49) and (7.3) here). Moreover, every dendrite having only
a finite number of end-points is the image of [0, 1] under a pseudo-con-
fluent mapping (see [28], p. 247).

Table V sums up the invariance properties studied in § 8. The num-
bers under the signs are the numbers of the propositions which justify the
use of signs (cf. Table II).



9. Images of hereditarily decomposable continua

In this section we consider problems concerning the invariance of
some classes of continua which are subclasses of the class of hereditarily
decomposable continua (cf. Table I).

A. Images of hereditarily decomposable continua in general. The next
two theorems generalize some earlier results (cf. [9], XII, p. 217, [52],
Theorem 5.1, p. 261)

(9.1) THEOREM. The atriodic (pseudo-confluent) image of a heredi-
tarily decomposable continuum is hereditarily decomposable.

Proof. Let an atriodic (pseudo-confluent) mapping f map a her-
editarily decomposable continuum X onto a continunum ¥ and suppose
on the contrary that ¢ is an indecomposable subcontinuum of ¥ (then @
is also an irreducible subcontinuum of Y). In both cases if f is atriodic
or if f is pseudo-confluent, there are two components C; and C, of f~(Q)
such that f(C,uC,) = Q. Then either f(C,y) or f(C,) is equal to @, because
if both f(C,) and f(C,) are proper subcontinua, then the set f(C,)Uf(C,)
is contained in the union of some two composants of ¢ (for the definition
of a composant see [36], § 48, VI, p. 208). Thus f(C,)Uf(C,) is a proper
subset of @ by Theorem 7 of [36], § 48, VI, p. 212, a contradiction. Conse-
quently, we can assume that f(C,) = Q. Hence C, contains an indecompos-
able continuum by Theorem 4 of [36], § 48, V, p. 208, a contradiction of
the assumptions regarding X.

(9.2) THEOREM. The joining iMage of a hereditarily decomposable continuum
18 hereditarily decomposable.

Proof. Let a joining mapping f map a hereditarily decomposable
continuum X onto a continuum Y and suppose on the contrary that
@ is an indecomposable subecontinuum of Y. If, for each component C
of f71(Q), f(C) is a proper subcontinuum of @, then f(C) is contained in
some single composant of @ (for the definition of a composant and for
its properties see [36], § 48, VI, p. 208). Since the intersection of any two
components of f~'(Q) is nonempty (f is joining), we infer that ff~'(Q)
is contained in some single composant of @, a contradiction.
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Consequently there is & component C of f~'(Q) such that f(C) = Q.
Then C contains an indecomposable continuum (see [36], § 48, V, Theorem
4, p. 208).

A class of mappings which contains either the class of quasi-monotone
mappings or the class of locally confluent mappings does not preserve
the hereditary decomposability of continua. This can be seen from
Examples (7.12) and (7.17).

Note also that (see [57], Theorem (5.9))

(9.3) The hereditarily unicoherent image of a hereditarily decomposable
continuum is hereditarily decomposable.

B. Images of Suslinian continua. It has been proved in [51], 5.2
that ’

(9.4) The pseudo-confluent image of a Suslinian continuum is Suslinian.

Similarly, we§have the following

(9.5) THEOBEM. The locally weakly confluent (atriodie, joining) image
of a Suslinian continuum i3 Suslinian.

Proof. Let a locally weakly confluent (atriodie, joining) mapping f
map a Suslinian continuum X onto Y. Suppose on the contrary that
there is an uncountable collection ¥ of mutually disjoint nondegenerate
subcontinua of ¥. Then for each positive number & there is a collection
¢, of nondegenerate subcontinuum of Y having diameters less than e
and such that each member of ¢, is contained in some member of % (see
[36], § 47, III, Theorem 4, p. 173). We can assume that ¢, are collections
of mutually disjoint continua. In any case, if fis locally weakly confluent,
or if f is atriodic or if f is joining, there is some nondegenerate component
of the inverse image of each member of ¢, for sufficiently small ¢ (cf.
(4.37)). Taking these nondegenerate components, we obtain an uncount-
able collection of mutually disjoint subcontinua of X, which contra-
dicts the fact that X is Suslinian.

The remaining two classes which are not contained in any of the
classes mentioned above are quasi-monotone mappings and weakly mono-
‘tone mappings. Exactly these two classes do not preserve Suslinian con-
tinua by Example (7.14).

C. Images of rational continua. It follows from (3.8) and (3.9) of
[49] that

(9.6)  The image of a rational continuum under an OM-mapping is rational.
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Since the confluent image of a rational continuum is hereditarily
decomposable (c¢f. Tables I and IT and (9.1)), we infer, by Theorem (6.8)
that

(9.7) The hereditarily confluent image of a rational continuum is rational.
The following problem remains open (cf. [49], Problem III):

(9.8) ProBLEM. Is the confluent (locally confluent, semi-confluent, looally
semi-confluent, joining) image of & rational comtinuum always rational?

Example (7.14) and the example described below show that the
other classes of mappings considered in this paper do not preserve the
rationality of continua.

(9.9) ExaMpre. The arc-like nonrational continuum described in [14],
P- 178 can be shown to be the continuous image of the rational continnum
described in [48], Example 3. Thus it is the hereditarily weakly confluent
image of this rational continuum by Theorem (6.16).

The following proposition as well as Corollary (9.1) are partial
answers to Problem (9.8) (see [61], 5.1)

(9.10)  The locally connected pseudo-confluent image of a rational continuum
i8 rational.

We have the following

(9.31) CorROLLARY. The locally connedted image of a rational continuum
under a locally weakly confluent mapping 8 rational.

Proof. Let a locally weakly confluent mapping f map a rational
continuum X onto a locally connected continuum Y and let ¢ be a positive
number such that for each subcontinuum @ of Y of diameter less than e
the mapping f|f~1(Q) is weakly confluent (cf. (4.37)). It follows from Theo-
rem 3 of [36], § 50, II, p. 257 that there are locally connected continua
Y, Y,,..., Y, of diameters less than ¢ and such that ¥ = Y,u Yz

VY, It suffices to show that each Y, is ratlonal for¢i =1,2,.
by Theorem 6 of [36], § 61, IV, p. 286.

Fix © =1,2,...,n It is clear that X; = f~(X;) is & reg'ular space
as a subset of a regular space. Moreover, g = f| X, is weakly confluent.
Given two points y,y’ € Y,, there is an open subset G = X; such that
g (y) = G, @ng 1(y’) = O and the set G\Gis countable (see [36], § b1,
IV, Theorem 9 (ii), p. 287). Then U = ¥Y;\g(@\@) is an open subset
of ¥, which contains ¥ and y’. Moreover, we have g~} (U) c @\(X\G).
Thus the set g~'(U) is not connected between g~1(y) and g~ '(y’'). Since
the points y and ¥’ lie in distinct components of U, we find that U is not



80 Continuous mappings on continua

connected between y and %', because the components of the open set U
coincide with quasi-components in the locally connected space Y.
Since Y,\U = ¢g(G\@) is countable, ¥ is rational (cf. [89], p. 97).
The end of this proof uses the methods of [51].

D. Images of hereditarily locally connected continua. It has been
proved in [54], Theorem 3.1, p. 64 (cf. also [76], Theorem 7) that

(9.12)  The locally weakly confluent image of a hereditarily locally con-
nected continuum i8 hereditarily locally conneoted.

Since the continuous image of a locally connected continuum is
locally connected, we infer by (6.2) and (9.12) (cf. Table II) that

(9.13) The weakly monotone image of a hereditarily locally connected
continuum 1is hereditarily locally conmwected.

It is clear that

(9.14) LeMMA. If a mapping f: X — f(X) is joining and ab is an arc
in f(X), then for each two components C; and O, of f~'(ab) with a € f(0,)
and b € f(C,) we have the equality f(C,)Vf(C,) = ab.

Now we will prove (ef. [51], Theorem 4.7)

(9.15) TurEoREM. The pseudo-confluent (atriodic, joining) image of a
hereditarily locally connected continuwm is hereditarily locally conmected.

Proof. Let a pseudo-confluent (atriodic, joining) mapping f map
a hereditarily locally connected continuum X onto Y. Suppose on the
contrary that Y is not hereditarily locally connected. It follows from
Theorem 2 of [36], § 50, IV, p. 269 that there is a convergent sequence

{@.} of pairwise disjoint subcontinua of ¥ such that Lim @, is nonde-
n—>00 .

generate and disjoint with each @, for n =1, 2, ... Let {a,} and {b,} be the
sequences of points of ¥ such that {a,, b,} = @, for each n» = 1,2, ... and

lima, =a #b =1imb,.
n—>00 n—>o0o

Since Y is locally connected, it is an immediate consequence of
Theorem 3 of [36], § 50, II, p. 257 that there are locally connected con-
tinua @, in Y such that @, < Q,,Q.nQ,, =0 = @, n Lim @, for each

n—>00
n #m and n,m = 1,2, ... Since each @, is arcwise connected (see [36],

§ 50, I, Theorem 2, p. 253 and ibid., II, Theorem 1, p. 254) and since

{@n, b,} = Q,, for each n =1,2,..., we infer that there is a convergent

sequence {a,b,} of arcs such that a,b,na,bd, =0 =a,b, nLima,b,.
n—roo
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Since f is pseudo-confluent (atriodic, joining, c¢f. Lemma (9.14)),
we conclude that there are continua 4, and B, in X such that f(4,VB,)
=a,b, for each n =1,2,... We can assume that the sequences {4,}
and {B,} are convergent (see [36], § 42, I, Theorem 1, p. 45 and ibid.
§42, II) and put A = Lim A4, and Lim B, = B. Then the sets

n—>00 n—>»00 .

A and B are continua (cf. [36], § 47, II, Theorem 4, p. 170) of the con-
vergence in X (for the definition see ibid., p. 245). Since X is hereditarily
locally connected, we infer that A and B are degenerate by Theorem 2
of [36], § 50, IV, p. 269. Therefore f(AuUB) is at most a two-point set,
but f(AUB) = Lim f(4,)vLim f(B,) = Lim a,b, is a nondegenerate con-

n—»00 N—>00 n—>00
tinuum, a contradiction. The proof of Theorem (9.15) is complete.

E. Images of finitely Suslinian continua. It has been proved in [51],
Theorem 4.6, that

(9.16)  The pseudo-confluent image of a finitely Suslinian continuum is
finitely Suslinian.

Since the continuous image of a locally connected continuum is
locally connected, we infer by (6.2) and (9.16) (ef. Tables I and II) that

(9.17)  The weakly monotone image of a finitely Suslintan continuum
18 finitely Suslinian.

We also have the following

(9.18) THEOREM. The locally weakly confluent (atriodic, joining) image
of a finitely Suslinian continuum is finitely Suslinian.

Proof. Let a locally weakly confluent (atriodic, joining) mapping f
map a finitely Suslinian continuum X onto Y. It follows from (4.37)
and from Lemma (9.14) that there is a positive number ¢, such that

(9.18.1) if Kis an arcin Y of diameter less than ¢,, then there are continua
A and B in X such that f(AUB) = K.

By the continuity of f we infer that

(9.18.2) for each € > 0 there is a 6 > O such that if A is of diameter less
than 6, then f(A) is of diameter less than e.

Let o be a collection of pairwise disjoint subcontinua of ¥ with
diameters greater than e. Since Y is hereditarily locally connected (cf.
Table I, (9.12) and (9.15)), it is hereditarily arcwise connected (see [36],
§ 50, I, Theorem 2, p. 253 and ibid. Theorem 1, p 254). Thus there is

6 — Dissertationes Math. 158
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a collection "’ of pairwise disjoint arcs such that 1/2 min (¢, £) < diam K
< g for each K € X' and cards# = card x¢".

Thus, by (9.18.1), for each K e s’ there are continua A and Bg
such that f(AxUBg) = K. Since diam K > 1/2 min(ey, ), there is
8> 0 (by (9.18.2)) such that either diam Ax > ¢ or diam Bg> § for
each K € X'. We can assume that diam Az > § for each K € #’. The
collection ¥ = {Ax: K € &'} is a collection of pairwise disjoint continua
with diamefers greater that 8. Thus card® is finite. Since card ¥
= card ¥’ = card )", we infer that the collection 3{ is finite. This means
that Y is finitely Suslinian.

F. Images of regular continua. It has been proved in [51], Theorem
4.5, that

(9.19) The pseudo-confluent image of a regular conlinuum is regular.
- Thus, by (6.2) (cf. Table IT) we conclude that
(9.20) The weakly monotone image of a regqular continuum is regular.

By an easy modification of the proof of Theorem (9.18) and by (2.23)
one can infer that

(9.21)  The locally weakly confluent (atriodic, joining) image of a regular
continuum is regular.

G. Images of local dendrites. We have

(9.22)  Let a monotone mappings f map a hereditarily locally connected
continuum X onto Y. Then for each simple closed curve 8 in Y there is a
simple closed ourve S’ in X such that f(S') = 8.

Indeed, let S be a simple closed curve in Y and let A and B be subarcs
of § such that § = AUB, AnB = {a,b} and a # b. Take a’ € f(a)
and b’ e f~'(b). Sets f~*(4) and f~!(B) are continua by the monotoneity
of f. According to the assumption regarding X there are arcs A’ and B’
with endpoints &’ and b’ such that A’ < f~!(4) and B’ < f~'(B). The
union A'UB’ contains a simple closed curve 8’ such that f(§8’) = 8.
From (2.30) and (9.22) (cf. Table I) we conclude that

(9.23) The monotone image of a local dendrite i3 a local dendrite.
We will now prove the following

(9.24) THEOREM. The locally semi-confluent (hereditarily weakly oon-
fluent) image of a local dendrite is a local dendrite.

Proof. Let a locally semi-confluent (hereditarily weakly confluent)
mapping f map a local dendrite X onto Y. By Whyburn’s factorization
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theorem (see [83], (4.1), p. 141) we infer that there are a monotone map-
ping f;: X — X’ and a light mapping f,: X' — Y such that f(z) = f.f,(x)
for each # € X. The continuum X' is a local dendrite by (9.23). Thus
there is an & > 0 such that (see [36], § 51, VII, Theorem 2, p. 303)

(9.24.1) if C i3 a subcontinuum of X' of diameter less than &,, then it
i8 a dendrile.

Since the mapping f, is light, we infer (see [83], (4.41), p. 131) that
(9.24.2)  there is @& 6, > O such that if K is a subcontinuum of ¥ of di-
ameter less than 0, then each component of the set f;'(K) is of diameter less
than .

The continuum Y is locally connected (as a continuous image of a
locally connected continuum). Suppose on the contrary that Y is not a
local dendrite. Then Y contains infinitely many simple closed curves
by (2.30). Therefore (see [36], § 51, VII, Theorem 5, p. 304) Y contains
some simple closed curves with arbitrarily small diameters. Since f
is locally semi-confluent (hereditarily weakly confluent), there is a posi-
tive number &, such that if K is a subcontinuum of Y of diameter less
than e,, then there is a continuum C of X such that f(C) = K and f’|C
is semi-confluent (hereditarily weakly confluent) (compare [52], Theorem
3.7, p. 265). We conclude that there is a simple closed curve § in Y of
diameter less than 6, and less than ¢,. Then there is a continuum ( of X
such that f(C) = S and f|C is semi-confluent (hereditarily weakly con-
fluent). Since f|C = (f;|fi(C))(f1IC) (and since f; is monotone if f is
hereditarily weakly confluent), we infer that f,|f,(C) is semi-confluent
(hereditarily weakly confluent) by (5.16) (by (5.29), respectively). Moreover,
since the diameter of f,(C) is less than ¢, (by (9.24.2)), we infer that the
continuum f, (C) is a dendrite by (9.24.1). Thus f(C) = (faIf1(C)) (f110) (0)
is a dendrite by (7.36), a contradiction,. because f(C) = 8§.

From (6.2) and (9.24) (cf. Table II), we infer that

(9.25)  The weakly monotone image of a local dendrite is & local dendrite.

The following problem remains open:

(9.26) PROBLEM. I8 the hereditarily atriodic image of a local dendrite
always a local dendrite?

It is my conjecture that the answer is positive. The class of joining
mappings does not preserve local dendrites by Example (7.9) and the class
of weakly confluent mappings does not preserve local dendrites either.
This can be seen from the following

(9.27) ExAMpPLE. Let (x,y) denote a point of the Euclidean plane
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having » and y as its rectangular coordinates. Put

2n +1 1 ]
= _ —f) —,—1: L<IL
4 {(t onin i) Y nn) Ostsip

, 2n+3 1 ¢
A =ty =, —): o<
n {( 2%(%—{-1)_'—(1 t)n’n) 0<t 1}’

: 1
8, = {(% (1+cos 2nt),—;(1+sin 27rt)): 0t

N

1\
J
for each » =1,2,...and put I = [0,1].

!

/
/
/

| \\
.
| \/ \/ | OOO

Fig. 12

It is easy to observe that the set

X=Ivl 4,v4,)

n=l

is a dendrite (see Fig. 12) and that the set

Y=1ul 8,
n=1 )

is not a local dendrite.
The weakly confluent mapping f from X onto Y is defined first by

putting
1 2 1/2
—_—— 2
e

4n2+8n 45

a,(%,y) =2-n-(n+1)- (
and then
(2, ¥) it (wy)el,
1 1
(;(1 +cos ( —4na, (x, ¥) fn)), - (L+sin (—4ra, (@, y) —7;)))
flz,y) = it (2,9) e A,
1 1 *
(I (1 + cos (4ra, (@, y) —)), —~ (1 +sin (4na, (z, y) —1:)))
if  (z,y)ed,.
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TABLE VI
h i-
heredi- t:f_?ldl
finitel taril ratio- | Sus- y
local . y y decom-
graphs | : den. regular | - Sus- locally |* mnal linian p 08-
drites. continua| linian | con- con- con- | 1le
con- nected | tinma | tinua con-
tinua | continua tinua
1 2 3 4 5 6 7 8 9
local + + + + + + o+ o+
homeo- (9.28) (9.24) (9.19) (9.16) (9.12)  (9.6) (9.4) . (9.2)
morphisms
hereditarily + + + + + + + +
monotone (9.28) (9.24) (9.19) (9.16) (9.12)  (9.6) (9.4) = (9.2)
mappings - : -
atomic + + + + + + + +
mappings (9.28) (9.24) (9.19)  (9.18) (9.12)  (9.6) (9.4) (9.2)
monotone + + + + + + + ., +
mappings (9.28) (9.24) (9.19) (9.16) (9.12) (9.6) (9.4) (9.2)
open + + + + 4 - - +
mappings (9.28) (9.24) (9.19)  (9.18) (9.12)  (9.8) (9.4) (9.2)
MO-mappings + + + + + + + +
(9.28)  (9.24)  (9.19) (9.16)  (9.12)  (9.6) (9.4)  (9.2)
locally + o+ + + + + o+ +
monotone (9.28) (9.24) (9.19)  (9.16) (9.12)  (9.6) (9.4) (9.2
mappings
locally o+ + + + + + o+ +
MO-mappings (9.28) (9.24) (9.19)  (9.16) (9.12)  (9.6) (9.4) (9.2
OM-mappings + T+ + -+ + + + +
(9.28) (9.24) (9.19)  (9.18) (9.12)  (9.8) (9.4)  (9.2)
hereditarily + + + + + + + +
confluent (9.28) (9.24) (9.19)  (9.16) (9.12)  (9.7) (9.49) = (9.2)
mappings
quasi-monotone + + + + + — - -
mappings (9.29)  (9.25) (9.20)  (9.17) (9.13)  (7.14) (7.14) . (7.12)
weakly + + + + + - - -
monotone (9.29) (9.26) (9.20)  (9.17) (9.13)  (7.14) (7.14) (1.12)
mappings : :
confluent + + + + + ? o+ +
mappings (0.28) (9.24) (9.19)  (9.16) (9.12)  (9.8) (9.4) (9.2)
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TABLE VI cont.

1 | 2 | 3 | &« | 5 | 6 | 7| 8 | o
locally + + + + + ? + -
confluent (9.28) (9.24) (9.21) (9.18)  (9.12) (9.8) (9.5) (7.17)
mappings
semi-confluent + + + + + ? + +
mappings (9.28) (9.24) (9.19) (9.16) (9.12) (9.8) (9.4) = (9.2)
locally + + + + + ? + -
semi- (9.28) (9.24) (9.21) (9.16) (9.12) (9.8) (9.5) (7.17)
confluent
mappings
joining - — + + + ? + +
mappings (7.3) (7.3) (9.21) (9.18)  (9.15) (9.8) (9.5) (9.2)
hereditarily - + o+ + + -~ + 4
weakly (9.28) (9.24) (9.19) (9.16) (9.12) (9.9) (9.4) (9.1)
confluent
mappings
weakly + - + + + - + +
confluent (9.28) (9.27) (9.19)  (9.16) (9.12)  (9.9) (9.4) (9.1)
mappings
locally weakly + - <4 + + - + -
confluent (9.28) (9.27) (8.21) (9.18) (9.12) (9.9) (9.5) (7.17)
mappings
pseudo- ? — + + + —- + +
confluent (9.30) (9.27) (9.19)  (9.16) (8.15)  (9.9) (9.4)  (9.1)
mappings
hereditarily ? ? + + £ - 4 +
atriodic (9.30) (9.26) (9.21) (9.18) (9.15) (9.9) (9.5) (9.1)
mappings :
atriodic ? - + + + - + +
mappings (9.30) (9.27) (9.21) (9.18) (9.15) (9.9) (9.5) (9.1)

H. Images of graphs. It has been proved in [54], Theorem (4.3),
p. 70 that .

(9.28)  The locally weakly confluent image of a graph is a graph.

Note also that in [64], Corollary (4.3), p. 73 we find the character-
ization of graphs which are locally weakly confluent images of an arbitrary
graph. :

From (6.2) and (9.28) (cf. Table II) we conclude that

(9.29) The weakly monotone image of a graph is & graph.
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We have the following

(9.30) PrOBLEM. Is the alriodic (hereditarily atriodio, pseudo-confluent)
image of a graph also a graph?

The joining image of a graph need not be a graph by Example (7.3).

Table VI sums up the invariance properties studied in § 9. The num-
bers under the signs denote the numbers of the proposition which justify
the use of these signs (cf. Table II).
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